Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 48
Filter
1.
Curr Biol ; 2024 Aug 23.
Article in English | MEDLINE | ID: mdl-39197459

ABSTRACT

Natural history collections are a priceless resource for understanding patterns and processes of biodiversity change in the Anthropocene.1 Herbaria, which house millions of historical plant records from all over the globe, are particularly valuable to study population genetics of the plants themselves and to understand the assembly of plant-associated microbial communities.2 Here we test if herbaria can serve yet another essential purpose, namely to provide information on the historical assembly of plant-arthropod interactions. The specificity and temporal stability of these associations are poorly known.3 Considering their pivotal role in the assembly of terrestrial food webs,4 this knowledge is paramount to understanding the consequences of global change. We use environmental DNA (eDNA) metabarcoding to characterize communities of plant-associated arthropods from archived herbarium specimens of different ages and origins. The herbarium specimens yield arthropod DNA across various ecological guilds and trophic levels over multiple decades. In an experiment, we also show that the typical dry storage of plants in herbaria does not alter the recovered arthropod diversity and community composition. By analyzing a time series of leaf samples from a forest monitoring project, we then characterize changes in arthropod biodiversity over two decades, showing that archived plants can also provide the time series data that are urgently needed to understand arthropod declines.5 This use of herbaria and plant archives promises unprecedented insights into plant-arthropod interactions and revolutionizes our ability to monitor spatiotemporal changes in interaction diversity.

2.
Article in English | MEDLINE | ID: mdl-39114921

ABSTRACT

Big biodiversity data sets have great potential for monitoring and research because of their large taxonomic, geographic and temporal scope. Such data sets have become especially important for assessing temporal changes in species' populations and distributions. Gaps in the available data, especially spatial and temporal gaps, often mean that the data are not representative of the target population. This hinders drawing large-scale inferences, such as about species' trends, and may lead to misplaced conservation action. Here, we conceptualise gaps in biodiversity monitoring data as a missing data problem, which provides a unifying framework for the challenges and potential solutions across different types of biodiversity data sets. We characterise the typical types of data gaps as different classes of missing data and then use missing data theory to explore the implications for questions about species' trends and factors affecting occurrences/abundances. By using this framework, we show that bias due to data gaps can arise when the factors affecting sampling and/or data availability overlap with those affecting species. But a data set per se is not biased. The outcome depends on the ecological question and statistical approach, which determine choices around which sources of variation are taken into account. We argue that typical approaches to long-term species trend modelling using monitoring data are especially susceptible to data gaps since such models do not tend to account for the factors driving missingness. To identify general solutions to this problem, we review empirical studies and use simulation studies to compare some of the most frequently employed approaches to deal with data gaps, including subsampling, weighting and imputation. All these methods have the potential to reduce bias but may come at the cost of increased uncertainty of parameter estimates. Weighting techniques are arguably the least used so far in ecology and have the potential to reduce both the bias and variance of parameter estimates. Regardless of the method, the ability to reduce bias critically depends on knowledge of, and the availability of data on, the factors creating data gaps. We use this review to outline the necessary considerations when dealing with data gaps at different stages of the data collection and analysis workflow.

3.
Ecol Appl ; 34(4): e2977, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38706047

ABSTRACT

Ocean warming and species exploitation have already caused large-scale reorganization of biological communities across the world. Accurate projections of future biodiversity change require a comprehensive understanding of how entire communities respond to global change. We combined a time-dynamic integrated food web modeling approach (Ecosim) with previous data from community-level mesocosm experiments to determine the independent and combined effects of ocean warming, ocean acidification and fisheries exploitation on a well-managed temperate coastal ecosystem. The mesocosm parameters enabled important physiological and behavioral responses to climate stressors to be projected for trophic levels ranging from primary producers to top predators, including sharks. Through model simulations, we show that under sustainable rates of fisheries exploitation, near-future warming or ocean acidification in isolation could benefit species biomass at higher trophic levels (e.g., mammals, birds, and demersal finfish) in their current climate ranges, with the exception of small pelagic fishes. However, under warming and acidification combined, biomass increases at higher trophic levels will be lower or absent, while in the longer term reduced productivity of prey species is unlikely to support the increased biomass at the top of the food web. We also show that increases in exploitation will suppress any positive effects of human-driven climate change, causing individual species biomass to decrease at higher trophic levels. Nevertheless, total future potential biomass of some fisheries species in temperate areas might remain high, particularly under acidification, because unharvested opportunistic species will likely benefit from decreased competition and show an increase in biomass. Ecological indicators of species composition such as the Shannon diversity index decline under all climate change scenarios, suggesting a trade-off between biomass gain and functional diversity. By coupling parameters from multilevel mesocosm food web experiments with dynamic food web models, we were able to simulate the generative mechanisms that drive complex responses of temperate marine ecosystems to global change. This approach, which blends theory with experimental data, provides new prospects for forecasting climate-driven biodiversity change and its effects on ecosystem processes.


Subject(s)
Global Warming , Models, Biological , Oceans and Seas , Seawater , Animals , Seawater/chemistry , Food Chain , Hydrogen-Ion Concentration , Ecosystem , Biomass , Fisheries , Climate Change , Ocean Acidification
4.
Ecol Lett ; 27(5): e14430, 2024 May.
Article in English | MEDLINE | ID: mdl-38714364

ABSTRACT

Wintering birds serve as vital climate sentinels, yet they are often overlooked in studies of avian diversity change. Here, we provide a continental-scale characterization of change in multifaceted wintering avifauna and examine the effects of climate change on these dynamics. We reveal a strong functional reorganization of wintering bird communities marked by a north-south gradient in functional diversity change, along with a superimposed mild east-west gradient in trait composition change. Assemblages in the northern United States saw contractions of the functional space and increases in functional evenness and originality, while the southern United States saw smaller contractions of the functional space and stasis in evenness and originality. Shifts in functional diversity were underlined by significant reshuffling in trait composition, particularly pronounced in the western and northern United States. Finally, we find strong contributions of climate change to this functional reorganization, underscoring the importance of wintering birds in tracking climate change impacts on biodiversity.


Subject(s)
Biodiversity , Birds , Climate Change , Seasons , Animals , Birds/physiology , United States
5.
Trends Ecol Evol ; 39(6): 515-523, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38508923

ABSTRACT

Measuring and tracking biodiversity from local to global scales is challenging due to its multifaceted nature and the range of metrics used to describe spatial and temporal patterns. Abundance can be used to describe how a population changes across space and time, but it can be measured in different ways, with consequences for the interpretation and communication of spatiotemporal patterns. We differentiate between relative and absolute abundance, and discuss the advantages and disadvantages of each for biodiversity monitoring, conservation, and ecological research. We highlight when absolute abundance can be advantageous and should be prioritized in biodiversity monitoring and research, and conclude by providing avenues for future research directions to better assess the necessity of absolute abundance in biodiversity monitoring.


Subject(s)
Biodiversity , Conservation of Natural Resources , Population Density , Population Dynamics , Animals
6.
Glob Chang Biol ; 30(2): e17163, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38380701

ABSTRACT

The abundance of large marine dinoflagellates has declined in the North Sea since 1958. Although hypotheses have been proposed to explain this diminution (increasing temperature and wind), the mechanisms behind this pattern have thus far remained elusive. In this article, we study the long-term changes in dinoflagellate biomass and biodiversity in relation to hydro-climatic conditions and circulation within the North Atlantic. Our results show that the decline in biomass has paralleled an increase in biodiversity caused by a temperature-induced northward movement of subtropical taxa along the European shelf-edge, and facilitated by changes in oceanic circulation (subpolar gyre contraction). However, major changes in North Atlantic hydrodynamics in the 2010s (subpolar gyre expansion and low-salinity anomaly) stopped this movement, which triggered a biodiversity collapse in the North Sea. Further, North Sea dinoflagellate biomass remained low because of warming. Our results, therefore, reveal that regional climate warming and changes in oceanic circulation strongly influenced shifts in dinoflagellate biomass and biodiversity.


Subject(s)
Dinoflagellida , Hydrodynamics , Temperature , North Sea , Biodiversity , Atlantic Ocean
7.
Glob Chang Biol ; 30(2): e17189, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38375686

ABSTRACT

Terrestrial ecosystems affect climate by reflecting solar irradiation, evaporative cooling, and carbon sequestration. Yet very little is known about how plant traits affect climate regulation processes (CRPs) in different habitat types. Here, we used linear and random forest models to relate the community-weighted mean and variance values of 19 plant traits (summarized into eight trait axes) to the climate-adjusted proportion of reflected solar irradiation, evapotranspiration, and net primary productivity across 36,630 grid cells at the European extent, classified into 10 types of forest, shrubland, and grassland habitats. We found that these trait axes were more tightly linked to log evapotranspiration (with an average of 6.2% explained variation) and the proportion of reflected solar irradiation (6.1%) than to net primary productivity (4.9%). The highest variation in CRPs was explained in forest and temperate shrubland habitats. Yet, the strength and direction of these relationships were strongly habitat-dependent. We conclude that any spatial upscaling of the effects of plant communities on CRPs must consider the relative contribution of different habitat types.


Subject(s)
Ecosystem , Grassland , Plants , Climate , Climatic Processes , Biodiversity
8.
Sci China Life Sci ; 67(4): 789-802, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38057621

ABSTRACT

Foundational cushion plants can re-organize community structures and sustain a prominent proportion of alpine biodiversity, but they are sensitive to climate change. The loss of cushion species can have broad consequences for associated biota. The potential plant community changes with the population dynamics of cushion plants remain, however, unclear. Using eight plant communities along a climatic and community successional gradient, we assessed cushion population dynamics, the underlying ecological constraints and hence associated plant community changes in alpine communities dominated by the foundational cushion plant Arenaria polytrichoides. The population dynamics of Arenaria are attributed to ecological constraints at a series of life history stages. Reproductive functions are constrained by increasing associated beneficiary plants; subsequent seedling establishment is constrained by temperature, water and light availability, extreme climate events, and interspecific competition; strong competitive exclusion may accelerate mortality and degeneration of cushion populations. Along with cushion dynamics, species composition, abundance and community structure gradually change. Once cushion plants completely degenerate, previously cushion-dominated communities shift to relatively stable communities that are overwhelmingly dominated by sedges. Climate warming may accelerate the degeneration process of A. polytrichoides. Degeneration of this foundational cushion plant will possibly induce massive changes in alpine plant communities and hence ecosystem functions in alpine ecosystems. The assessment of the population dynamics of foundation species is critical for an effective conservation of alpine biodiversity.


Subject(s)
Biodiversity , Ecosystem , Plants , Climate Change , Biota
9.
New Phytol ; 241(5): 2287-2299, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38126264

ABSTRACT

Global change has accelerated local species extinctions and colonizations, often resulting in losses and gains of evolutionary lineages with unique features. Do these losses and gains occur randomly across the phylogeny? We quantified: temporal changes in plant phylogenetic diversity (PD); and the phylogenetic relatedness (PR) of lost and gained species in 2672 semi-permanent vegetation plots in European temperate forest understories resurveyed over an average period of 40 yr. Controlling for differences in species richness, PD increased slightly over time and across plots. Moreover, lost species within plots exhibited a higher degree of PR than gained species. This implies that gained species originated from a more diverse set of evolutionary lineages than lost species. Certain lineages also lost and gained more species than expected by chance, with Ericaceae, Fabaceae, and Orchidaceae experiencing losses and Amaranthaceae, Cyperaceae, and Rosaceae showing gains. Species losses and gains displayed no significant phylogenetic signal in response to changes in macroclimatic conditions and nitrogen deposition. As anthropogenic global change intensifies, temperate forest understories experience losses and gains in specific phylogenetic branches and ecological strategies, while the overall mean PD remains relatively stable.


Les changements globaux accélèrent les processus de colonisation et d'extinction locales d'espèces, aboutissant à des gains ou à des pertes de lignées évolutives uniques. Ces gains et pertes se produisent-ils de manière aléatoire dans l'arbre phylogénétique ? Nous avons mesuré: les changements de diversité phylogénétique; et la parenté phylogénétique des espèces végétales gagnées ou perdues dans 2672 placettes semi-permanentes disposées dans le sous-bois de forêts tempérées d'Europe sur une période moyenne de 40 ans. Une fois corrigée par la richesse spécifique, la diversité phylogénétique a légèrement augmenté au cours du temps dans les différentes placettes. Les espèces perdues ont une plus grande parenté phylogénétique que les espèces gagnées. Les espèces gagnées sont donc issues d'un plus grand nombre de lignées évolutives que les espèces perdues. Certaines lignées ont gagné ou perdu davantage d'espèces que ce qui est prédit par le hasard : les Ericaceae, les Fabaceae et les Orchidaceae ayant davantage perdu, tandis que les Amaranthaceae, les Cyperaceae, et les Rosaceae ont plus gagné. Il n'y a pas de signal phylogénétique des gains ou pertes d'espèces en réponse aux changements de conditions macroclimatiques ou des dépôts atmosphériques d'azote. Alors que les changements globaux d'origine anthropique s'intensifient, les sous-bois des forêts tempérées connaissent des gains et des pertes de certaines lignées évolutives et de certaines stratégies écologiques, sans que la diversité phylogénétique moyenne ne s'en trouve véritablement affectée.


El cambio global ha acelerado las extinciones y colonizaciones a escala local, lo que a menudo ha supuesto pérdidas y ganancias de linajes evolutivos con características únicas. Ahora bien, ¿estas pérdidas y ganancias ocurren aleatoriamente a lo largo de la filogenia? Cuantificamos: los cambios temporales en la diversidad filogenética de las plantas; y la relación filogenética de las especies perdidas y ganadas en 2.672 parcelas de vegetación semipermanente en sotobosques templados europeos y re-muestreadas durante un período promedio de 40 años. Al controlar por las diferencias en la riqueza de especies, la diversidad filogenética aumentó ligeramente con el tiempo y entre parcelas. Además, las especies perdidas dentro de las parcelas exhibieron un mayor grado de relación filogenética que las especies ganadas. Esto implica que las especies ganadas se originaron en un conjunto de linajes evolutivos más diversos que las especies perdidas. Ciertos linajes también perdieron y ganaron más especies de las esperadas aleatoriamente: Ericaceae, Fabaceae y Orchidaceae experimentaron pérdidas y Amaranthaceae, Cyperaceae y Rosaceae mostraron ganancias. Las pérdidas y ganancias de especies no mostraron ninguna señal filogenética significativa en respuesta a los cambios en las condiciones macro-climáticas y la deposición de nitrógeno. A medida que se intensifica el cambio global antropogénico, los sotobosques temperados experimentan pérdidas y ganancias en ramas filogenéticas y estrategias ecológicas específicas, mientras que la diversidad filogenética media general permanece relativamente estable.


Subject(s)
Biodiversity , Nitrogen , Phylogeny , Climate Change , Forests , Plants
10.
Ecol Evol ; 13(6): e10168, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37304373

ABSTRACT

Historical data on co-occurring taxa are extremely rare. As such, the extent to which distinct co-occurring taxa experience similar long-term patterns in species richness and compositional change (e.g., when exposed to a changing environment) is not clear. Using data from a diverse ecological community surveyed in the 1930s and resurveyed in the 2010s, we investigated whether local plant and insect assemblages displayed cross-taxon congruence-that is, spatiotemporal correlation in species richness and compositional change-across six co-occurring taxa: vascular plants, non-vascular plants, grasshoppers and crickets (Orthoptera), ants (Hymenoptera: Formicinae), hoverflies (Diptera: Syrphidae), and dragonflies and damselflies (Odonata). All taxa exhibited high levels of turnover across the ca. 80-year time period. Despite minimal observed changes at the level of the whole study system, species richness displayed widespread cross-taxon congruence (i.e., correlated temporal change) across local assemblages within the study system. Hierarchical logistic regression models suggest a role for shared responses to environmental change underlying cross-taxon correlations and highlight stronger correlations between vascular plants and their direct consumers, suggesting a possible role for biotic interactions between these groups. These results provide an illustration of cross-taxon congruence in biodiversity change using data unique in its combination of temporal and taxonomic scope, and highlight the potential for cascading and comparable effects of environmental change (abiotic and biotic) on co-occurring plant and insect communities. However, analyses of historical resurveys based on currently available data come with inherent uncertainties. As such, this study highlights a need for well-designed experiments, and monitoring programs incorporating co-occurring taxa, to determine the underlying mechanisms and prevalence of congruent biodiversity change as anthropogenic environmental change accelerates apace.

11.
Proc Biol Sci ; 290(1998): 20222450, 2023 05 10.
Article in English | MEDLINE | ID: mdl-37161334

ABSTRACT

Alien species are widely linked to biodiversity change, but the extent to which they are associated with the reshaping of ecological communities is not well understood. One possible mechanism is that assemblages where alien species are found exhibit elevated temporal turnover. To test this, we identified assemblages of vascular plants in the BioTIME database for those assemblages in which alien species are either present or absent and used the Jaccard measure to compute compositional dissimilarity between consecutive censuses. We found that, although alien species are typically rare in invaded assemblages, their presence is associated with an increase in the average rate of compositional change. These differences in compositional change between invaded and uninvaded assemblages are not linked to differences in species richness but rather to species replacement (turnover). Rapid compositional restructuring of assemblages is a major contributor to biodiversity change, and as such, our results suggest a role for alien species in bringing this about.


Subject(s)
Tracheophyta , Biodiversity , Databases, Factual , Introduced Species
12.
Ecol Lett ; 26(7): 1071-1083, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37183392

ABSTRACT

The composition of ecological assemblages has changed rapidly over the past century. Compositional reorganization rates are high relative to rates of alpha diversity change, creating an urgent need to understand how this compositional reorganization is progressing. We developed a quantitative framework for comparing temporal trajectories of compositional reorganization and applied it to two long-term bird and marine fish datasets. We then evaluated how the number and magnitude of short-term changes relate to overall rates of change. We found varied trajectories of turnover across birds and fish, with linear directional change predominating in birds and non-directional change more common in fish. The number of changes away from the baseline was a more consistent correlate of the overall rate of change than the magnitude of such changes, but large unreversed changes were found in both fish and birds, as were time series with accelerating compositional change. Compositional reorganization is progressing through a complex mix of temporal trajectories, including both threshold-like behaviour and the accumulation of repeated, linear change.


Subject(s)
Biodiversity , Ecosystem , Animals , Birds , Fishes , Longitudinal Studies
13.
Proc Biol Sci ; 290(1997): 20230464, 2023 04 26.
Article in English | MEDLINE | ID: mdl-37072041

ABSTRACT

To safeguard nature, we must understand the drivers of biodiversity loss. Time-delayed biodiversity responses to environmental changes (ecological lags) are often absent from models of biodiversity change, despite their well-documented existence. We quantify how lagged responses to climate and land-use change have influenced mammal and bird populations around the world, while incorporating effects of direct exploitation and conservation interventions. Ecological lag duration varies between drivers, vertebrate classes and body size groupings-e.g. lags linked to climate-change impacts are 13 years for small birds, rising to 40 years for larger species. Past warming and land conversion generally combine to predict population declines; however, such conditions are associated with population increases for small mammals. Positive effects of management (>+4% annually for large mammals) and protected areas (>+6% annually for large birds) on population trends contrast with the negative impact of exploitation (<-7% annually for birds), highlighting the need to promote sustainable use. Model projections suggest a future with winners (e.g. large birds) and losers (e.g. medium-sized birds), with current/recent environmental change substantially influencing abundance trends to 2050. Without urgent action, including effective conservation interventions and promoting sustainable use, ambitious targets to stop declines by 2030 may already be slipping out of reach.


Subject(s)
Biodiversity , Vertebrates , Animals , Birds/physiology , Mammals , Climate Change , Ecosystem , Conservation of Natural Resources
14.
Ecology ; 104(6): e4044, 2023 06.
Article in English | MEDLINE | ID: mdl-36976104

ABSTRACT

The Living Planet Index (LPI) is a crucial tool to track global biodiversity change, but necessarily sacrifices information to summarize thousands of population trends into a single communicable index. Evaluating when and how this information loss affects the LPI's performance is essential to ensure interpretations of the index reflect the truth as reliably as possible. Here, we evaluated the ability of the LPI to accurately and precisely capture trends of population change from uncertain data. We derived a mathematical analysis of uncertainty propagation in the LPI to track how measurement and process uncertainty may bias estimates of population growth rate trends, and to measure the overall uncertainty of the LPI. We demonstrated the propagation of uncertainty using simulated scenarios of declining, stable, or growing populations fluctuating independently, synchronously, or asynchronously, to assess the bias and uncertainty of the LPI in each scenario. We found that measurement and process uncertainty consistently pull the index below the expected true trend. Importantly, variability in the raw data scales up to draw the index further below the expected trend and to amplify its uncertainty, particularly when populations are small. These findings echo suggestions that a more complete assessment of the variability in population change trends, with particular attention to covarying populations, would enrich the LPI's already critical influence on conservation communication and decisions.


Subject(s)
Conservation of Natural Resources , Planets , Uncertainty , Biodiversity , Population Growth
15.
Proc Biol Sci ; 290(1990): 20221904, 2023 01 11.
Article in English | MEDLINE | ID: mdl-36629107

ABSTRACT

Global change drivers (e.g. climate and land use) affect the species and functional traits observed in a local site but also its dark diversity-the set of species and traits locally suitable but absent. Dark diversity links regional and local scales and, over time, reveals taxa under expansion lags by depicting the potential biodiversity that remains suitable but is absent locally. Since global change effects on biodiversity are both spatially and temporally scale dependent, examining long-term temporal dynamics in observed and dark diversity would be relevant to assessing and foreseeing biodiversity change. Here, we used sedimentary pollen data to examine how both taxonomic and functional observed and dark diversity changed over the past 14 500 years in northern Europe. We found that taxonomic and functional observed and dark diversity increased over time, especially after the Late Glacial and during the Late Holocene. However, dark diversity dynamics revealed expansion lags related to species' functional characteristics (dispersal limitation and stress intolerance) and an extensive functional redundancy when compared to taxa in observed diversity. We highlight that assessing observed and dark diversity dynamics is a promising tool to examine biodiversity change across spatial scales, its possible causes, and functional consequences.


Subject(s)
Life History Traits , Plants , Biodiversity , Pollen , Europe , Ecosystem
16.
Biometrics ; 79(3): 2503-2515, 2023 09.
Article in English | MEDLINE | ID: mdl-36579700

ABSTRACT

In recent years, the study of species' occurrence has benefited from the increased availability of large-scale citizen-science data. While abundance data from standardized monitoring schemes are biased toward well-studied taxa and locations, opportunistic data are available for many taxonomic groups, from a large number of locations and across long timescales. Hence, these data provide opportunities to measure species' changes in occurrence, particularly through the use of occupancy models, which account for imperfect detection. These opportunistic datasets can be substantially large, numbering hundreds of thousands of sites, and hence present a challenge from a computational perspective, especially within a Bayesian framework. In this paper, we develop a unifying framework for Bayesian inference in occupancy models that account for both spatial and temporal autocorrelation. We make use of the Pólya-Gamma scheme, which allows for fast inference, and incorporate spatio-temporal random effects using Gaussian processes (GPs), for which we consider two efficient approximations: subset of regressors and nearest neighbor GPs. We apply our model to data on two UK butterfly species, one common and widespread and one rare, using records from the Butterflies for the New Millennium database, producing occupancy indices spanning 45 years. Our framework can be applied to a wide range of taxa, providing measures of variation in species' occurrence, which are used to assess biodiversity change.


Subject(s)
Butterflies , Animals , Population Dynamics , Bayes Theorem , Biodiversity , Cluster Analysis
17.
Ecol Appl ; 33(2): e2777, 2023 03.
Article in English | MEDLINE | ID: mdl-36377921

ABSTRACT

Plant species invasion represents one of the major drivers of biodiversity change globally, yet there is confusion about the nature of nonindigenous species (NIS) impact. This confusion stems from differing notions of what constitutes invasive species impact and the scales at which it should be assessed. At local scales, the mechanisms of the impact on local competitors can be classified into four scenarios: (1) minimal impact from NIS inhabiting unique niches; (2) neutral impact spread across the community and proportional to NIS abundance; (3) targeted impact on a small number of competitors with overlapping niches; and (4) pervasive impact that is disproportionate to NIS abundance and caused by modifications that filter out other species. I developed a statistical test to distinguish these four mechanism scenarios based on plant community rank-abundance curves and then created a scale-independent standardized impact score. Using an example long-term dataset with high native plant diversity and an abundance gradient of the invasive vine, Vincetoxicum rossicum, I show that the impact resulted in either targeted or pervasive extirpations. Regardless of whether the NIS impact is neutral, targeted, or pervasive, the net outcome will be the homogenization of ecosystems and reduced biodiversity at larger scales, perhaps reducing ecosystem resilience. The framework and statistical evaluation of impact presented in this paper provide researchers and managers with an objective approach to quantifying NIS impact and prioritizing species for further management actions.


Subject(s)
Ecosystem , Introduced Species , Biodiversity , Plants
18.
Glob Chang Biol ; 29(5): 1282-1295, 2023 03.
Article in English | MEDLINE | ID: mdl-36462155

ABSTRACT

There is mounting evidence that terrestrial arthropods are declining rapidly in many areas of the world. It is unclear whether freshwater invertebrates, which are key providers of ecosystem services, are also declining. We addressed this question by analysing a long-term dataset of macroinvertebrate abundance collected from 2002 to 2019 across 5009 sampling sites in English rivers. Patterns varied markedly across taxonomic groups. Within trophic groups we detected increases in the abundance of carnivores by 19% and herbivores by 14.8%, while we estimated decomposers have declined by 21.7% in abundance since 2002. We also found heterogeneity in trends across rivers belonging to different typologies based on geological dominance and catchment altitude, with organic lowland rivers having generally higher rates of increase in abundance across taxa and trophic groups, with siliceous lowland rivers having the most declines. Our results reveal a complex picture of change in freshwater macroinvertebrate abundance between taxonomic groups, trophic levels and river typologies. Our analysis helps with identifying priority regions for action on potential environmental stressors where we discover macroinvertebrate abundance declines.


Subject(s)
Ecosystem , Rivers , Animals , Biodiversity , Environmental Monitoring/methods , Invertebrates
19.
Ecol Lett ; 25(12): 2699-2712, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36278303

ABSTRACT

Global change drivers, such as anthropogenic nutrient inputs, are increasing globally. Nutrient deposition simultaneously alters plant biodiversity, species composition and ecosystem processes like aboveground biomass production. These changes are underpinned by species extinction, colonisation and shifting relative abundance. Here, we use the Price equation to quantify and link the contributions of species that are lost, gained or that persist to change in aboveground biomass in 59 experimental grassland sites. Under ambient (control) conditions, compositional and biomass turnover was high, and losses (i.e. local extinctions) were balanced by gains (i.e. colonisation). Under fertilisation, the decline in species richness resulted from increased species loss and decreases in species gained. Biomass increase under fertilisation resulted mostly from species that persist and to a lesser extent from species gained. Drivers of ecological change can interact relatively independently with diversity, composition and ecosystem processes and functions such as aboveground biomass due to the individual contributions of species lost, gained or persisting.


Subject(s)
Ecosystem , Grassland , Biomass , Biodiversity , Plants
20.
Ecology ; 103(12): e3820, 2022 12.
Article in English | MEDLINE | ID: mdl-35869831

ABSTRACT

Biodiversity metrics often integrate data on the presence and abundance of multiple species. Yet our understanding of covariation between changes to the numbers of individuals, the evenness of species relative abundances, and the total number of species remains limited. Using individual-based rarefaction curves, we show how expected positive relationships among changes in abundance, evenness and richness arise, and how they can break down. We then examined interdependencies between changes in abundance, evenness and richness in more than 1100 assemblages sampled either through time or across space. As predicted, richness changes were greatest when abundance and evenness changed in the same direction, and countervailing changes in abundance and evenness acted to constrain the magnitude of changes in species richness. Site-to-site differences in abundance, evenness, and richness were often decoupled, and pairwise relationships between these components across assemblages were weak. In contrast, changes in species richness and relative abundance were strongly correlated for assemblages varying through time. Temporal changes in local biodiversity showed greater inertia and stronger relationships between the component changes when compared to site-to-site variation. Overall, local variation in assemblage diversity was rarely due to repeated passive samples from an approximately static species abundance distribution. Instead, changing species relative abundances often dominated local variation in diversity. Moreover, how changing relative abundances combined with changes to total abundance frequently determined the magnitude of richness changes. Embracing the interdependencies between changing abundance, evenness and richness can provide new information to better understand biodiversity change in the Anthropocene.


Subject(s)
Biodiversity , Ecosystem , Humans
SELECTION OF CITATIONS
SEARCH DETAIL