Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 3.524
Filter
1.
Ecol Lett ; 27(8): e14487, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39086139

ABSTRACT

The hypothesis that species' ranges are limited by interspecific competition has motivated decades of debate, but a general answer remains elusive. Here we test this hypothesis for lowland tropical birds by examining species' precipitation niche breadths. We focus on precipitation because it-not temperature-is the dominant climate variable that shapes the biota of the lowland tropics. We used 3.6 million fine-scale citizen science records from eBird to measure species' precipitation niche breadths in 19 different regions across the globe. Consistent with the predictions of the interspecific competition hypothesis, multiple lines of evidence show that species have narrower precipitation niches in regions with more species. This means species inhabit more specialized precipitation niches in species-rich regions. We predict this niche specialization should make tropical species in high diversity regions disproportionately vulnerable to changes in precipitation regimes; preliminary empirical evidence is consistent with this prediction.


Subject(s)
Animal Distribution , Birds , Rain , Tropical Climate , Animals , Birds/physiology , Ecosystem , Competitive Behavior , Biodiversity
2.
Proc Biol Sci ; 291(2028): 20240473, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39106959

ABSTRACT

A central objective of historical biogeography is to understand where clades originated and how they moved across space and over time. However, given the dynamic history of ecosystem changes in response to climate change and geological events, the manifold long-distance dispersals over evolutionary timescales, and regional and global extinctions, it remains uncertain how reliable inferences based solely on extant taxa can be achieved. Using a novel species-level phylogeny of all known extant and extinct species of the mammalian order Carnivora and related extinct groups, we show that far more precise and accurate ancestral areas can be estimated by fully integrating extinct species into the analyses, rather than solely relying on extant species or identifying ancestral areas only based on the geography of the oldest fossils. Through a series of simulations, we further show that this conclusion is robust under realistic scenarios in which the unknown extinct taxa represent a biased subset of all extinct species. Our results highlight the importance of integrating fossil taxa into a phylogenetic framework to further improve our understanding of historical biogeography and reveal the dynamic dispersal and diversification history of carnivores.


Subject(s)
Carnivora , Extinction, Biological , Fossils , Phylogeny , Phylogeography , Animals , Carnivora/classification , Biological Evolution
3.
Syst Biol ; 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38953551

ABSTRACT

Advances in genomics have greatly enhanced our understanding of mountain biodiversity, providing new insights into the complex and dynamic mechanisms that drive the formation of mountain biotas. These span from broad biogeographic patterns to population dynamics and adaptations to these environments. However, significant challenges remain in integrating large-scale and fine-scale findings to develop a comprehensive understanding of mountain biodiversity. One significant challenge is the lack of genomic data, particularly in historically understudied arid regions where reptiles are a particularly diverse vertebrate group. In the present study, we assembled a de novo genome-wide SNP dataset for the complete endemic reptile fauna of a mountain range (19 described species with more than 600 specimens sequenced), and integrated state-of-the-art biogeographic analyses at the population, species, and community level. Thus, we provide a holistic integration of how a whole endemic reptile community has originated, diversified and dispersed through a mountain system. Our results show that reptiles independently colonized the Hajar Mountains of southeastern Arabia 11 times. After colonization, species delimitation methods suggest high levels of within-mountain diversification, supporting up to 49 deep lineages. This diversity is strongly structured following local topography, with the highest peaks acting as a broad barrier to gene flow among the entire community. Interestingly, orogenic events do not seem key drivers of the biogeographic history of reptiles in this system. Instead, past climatic events seem to have had a major role in this community assemblage. We observe an increase of vicariant events from Late Pliocene onwards, coinciding with an unstable climatic period of rapid shifts between hyper-arid and semiarid conditions that led to the ongoing desertification of Arabia. We conclude that paleoclimate, and particularly extreme aridification, acted as a main driver of diversification in arid mountain systems which is tangled with the generation of highly adapted endemicity. Overall, our study does not only provide a valuable contribution to understanding the evolution of mountain biodiversity, but also offers a flexible and scalable approach that can be reproduced into any taxonomic group and at any discrete environment.

4.
Microorganisms ; 12(7)2024 Jun 24.
Article in English | MEDLINE | ID: mdl-39065051

ABSTRACT

Bacteria and archaea are foundational life forms on Earth and play crucial roles in the development of our planet's biological hierarchy. Their interactions influence various aspects of life, including eukaryotic cell biology, molecular biology, and ecological dynamics. However, the coexistence network patterns of these microorganisms within natural river ecosystems, vital for nutrient cycling and environmental health, are not well understood. To address this knowledge gap, we systematically explored the non-random coexistence patterns of planktonic bacteria and archaea in the 6000-km stretch of the Yangtze River by using high-throughput sequencing technology. By analyzing the O/R ratio, representing the divergence between observed (O%) and random (R%) co-existence incidences, and the module composition, we found a preference of both bacteria and archaea for intradomain associations over interdomain associations. Seasons notably influenced the co-existence of bacteria and archaea, and archaea played a more crucial role in spring as evidenced by their predominant presence of interphyla co-existence and more species as keystone ones. The autumn network was characterized by a higher node or edge number, greater graph density, node degree, degree centralization, and nearest neighbor degree, indicating a more complex and interconnected structure. Landforms markedly affected microbial associations, with more complex networks and more core species found in plain and non-source areas. Distance-decay analysis suggested the importance of geographical distance in shaping bacteria and archaea co-existence patterns (more pronounced in spring). Natural, nutrient, and metal factors, including water temperature, NH4+-N, Fe, Al, and Ni were identified as crucial determinants shaping the co-occurrence patterns. Overall, these findings revealed the dynamics of prokaryotic taxa coexistence patterns in response to varying environmental conditions and further contributed to a broader understanding of microbial ecology in freshwater biogeochemical cycling.

5.
Mol Phylogenet Evol ; 199: 108144, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38972494

ABSTRACT

Phylogenomic approaches have recently helped elucidate various insect relationships, but large-scale comprehensive analyses on relationships within sawflies and woodwasps are still lacking. Here, we infer the relationships and long-term biogeographic history of these hymenopteran groups using a large dataset of 354 UCE loci collected from 385 species that represent all major lineages. Early Hymenoptera started diversifying during the Early Triassic âˆ¼249 Ma and spread all over the ancient supercontinent Pangaea. We recovered Xyeloidea as a monophyletic sister group to other Hymenoptera and Pamphilioidea as sister to Unicalcarida. Within the diverse family Tenthredinidae, our taxonomically and geographically expanded taxon sampling highlights the non-monophyly of several traditionally defined subfamilies. In addition, the recent removal of Athalia and related genera from the Tenthredinidae into the separate family Athaliidae is supported. The deep historical biogeography of the group is characterised by independent dispersals and re-colonisations between the northern (Laurasia) and southern (Gondwana) palaeocontinents. The breakup of these landmasses led to ancient vicariance in several Gondwanan lineages, while interchange across the Northern Hemisphere has continued until the Recent. The little-studied African sawfly fauna is likewise a diverse mixture of groups with varying routes of colonization. Our results reveal interesting parallels in the evolution and biogeography of early hymenopterans and other ancient insect groups.

6.
Philos Trans R Soc Lond B Biol Sci ; 379(1909): 20230166, 2024 Sep 09.
Article in English | MEDLINE | ID: mdl-39034704

ABSTRACT

Knowledge about how ecological networks vary across global scales is currently limited given the complexity of acquiring repeated spatial data for species interactions. Yet, recent developments in metawebs highlight efficient ways to first document possible interactions within regional species pools. Downscaling metawebs towards local network predictions is a promising approach to using the current data to investigate the variation of networks across space. However, issues remain in how to represent the spatial variability and uncertainty of species interactions, especially for large-scale food webs. Here, we present a probabilistic framework to downscale a metaweb based on the Canadian mammal metaweb and species occurrences from global databases. We investigated how our approach can be used to represent the variability of networks and communities between ecoregions in Canada. Species richness and interactions followed a similar latitudinal gradient across ecoregions but simultaneously identified contrasting diversity hotspots. Network motifs revealed additional areas of variation in network structure compared with species richness and number of links. Our method offers the potential to bring global predictions down to a more actionable local scale, and increases the diversity of ecological networks that can be projected in space. This article is part of the theme issue 'Connected interactions: enriching food web research by spatial and social interactions'.


Subject(s)
Biodiversity , Food Chain , Canada , Animals , Mammals/physiology , Models, Biological
7.
J Vet Sci ; 25(4): e56, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39083208

ABSTRACT

IMPORTANCE: Canine parvovirus enteritis (CPE) is a contagious viral disease of dogs caused by the canine parvovirus-2 (CPV-2) associated with high morbidity and mortality rates. CPV-2 has a high global evolutionary rate. Molecular characterization of CPV-2 and understanding its epidemiology are essential for controlling CPV-2 infections. OBJECTIVE: This study examined the risk factors and survival outcomes of dogs infected with CPV-2. Molecular characterization of CPV-2 genotypes circulating in Egypt was performed to determine the evolution of CPV-2 nationally and globally. METHODS: An age-matched case-control study was conducted on 47 control and 47 CPV-infected dogs. Conditional logistic regression analysis examined the association between the potential risk factors and CPE in dogs. Survival analysis was performed to determine the survival pattern of the infected dogs. Thirteen fecal samples from infected dogs were collected to confirm the CPV genotype by CPV-2 VP2 gene sequencing, assembly of nucleotide sequences, and phylogenic analysis. RESULTS: Unvaccinated and roamer dogs had eight and 2.3 times higher risks of CPV infection than vaccinated dogs and non-roamer dogs, respectively. The risk of death from CPE was high among dogs without routine visits to veterinary clinics and among non-roamer dogs. Molecular characterization of CPV-2 confirmed its genotype identity and relationship with the CPV-2 c and b clade types. CONCLUSIONS AND RELEVANCE: This study highlights the potential factors for CPE control, especially vaccination and preventing dogs from roaming freely outside houses. Isolated CPV genotypes are closely related to southern Asian genotypes, suggesting a substantial opportunity for global transmission.


Subject(s)
Dog Diseases , Parvoviridae Infections , Parvovirus, Canine , Animals , Dogs , Parvovirus, Canine/genetics , Dog Diseases/epidemiology , Dog Diseases/virology , Parvoviridae Infections/veterinary , Parvoviridae Infections/epidemiology , Parvoviridae Infections/virology , Egypt/epidemiology , Case-Control Studies , Female , Male , Phylogeny , Risk Factors , Genotype , Feces/virology
8.
Am J Bot ; : e16379, 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-39081002

ABSTRACT

PREMISE: Polypodium pellucidum, a fern endemic to the Hawaiian Islands, encompasses five ecologically and morphologically variable subspecies, suggesting a complex history involving both rapid divergence and rampant hybridization. METHODS: We employed a large target-capture data set to investigate the evolution of genetic, morphological, and ecological variation in P. pellucidum. With a broad sampling across five Hawaiian Islands, we deciphered the evolutionary history of P. pellucidum, identified nonhybrid lineages and intraspecific hybrids, and inferred the relative influence of geography and ecology on their distributions. RESULTS: Polypodium pellucidum is monophyletic, dispersing to the Hawaiian archipelago 11.53-7.77 Ma and diversifying into extant clades between 5.66 and 4.73 Ma. We identified four nonhybrid clades with unique morphologies, ecological niches, and distributions. Additionally, we elucidated several intraspecific hybrid combinations and evidence for undiscovered or extinct "ghost" lineages contributing to extant hybrid populations. CONCLUSIONS: We provide a foundation for revising the taxonomy of P. pellucidum to account for cryptic lineages and intraspecific hybrids. Geologic succession of the Hawaiian Islands through cycles of volcanism, vegetative succession, and erosion has determined the available habitats and distribution of ecologically specific, divergent clades within P. pellucidum. Intraspecific hybrids have likely arisen due to ecological and or geological transitions, often persisting after the local extinction of their progenitors. This research contributes to our understanding of the evolution of Hawai'i's diverse fern flora and illuminated cryptic taxa to allow better-informed conservation efforts.

9.
Mol Phylogenet Evol ; 199: 108162, 2024 Jul 26.
Article in English | MEDLINE | ID: mdl-39067655

ABSTRACT

Needle-leaved junipers (Juniperus sect. Juniperus, Cupressaceae) are coniferous trees and shrubs with red or blue fleshy cones. They are distributed across Asia, Macaronesia and the Mediterranean Basin, with one species (J. communis) having a circumboreal distribution. Here we aim to resolve the phylogeny of this clade to infer its intricate evolutionary history. To do so, we built a comprehensive, time-calibrated phylogeny using genotyping-by-sequencing (GBS) and combine it with species occurrence using phylogeographic tools. Our results provide solid phylogenetic resolution to propose a new taxonomic classification and a biogeographical history of the section. Specifically, we confirm the monophyly of two groups within J. sect. Juniperus: the Asian (blue-cone) species including the circumboreal J. communis, and the Mediterranean-Macaronesian (red-cone) species. In addition, we provide strong phylogenetic evidence for three distinct species (J. badia, J. conferta, J. lutchuensis) previously considered subspecies or varieties, as well as for the differentiation between the eastern and western Mediterranean lineages of J. macrocarpa. Our findings suggest that the Mediterranean basin was the primary center of diversification for Juniperus sect. Juniperus, followed by an East Asian-Tethyan disjunction resulting from uplifts of the Qinghai-Tibetan Plateau and climatic shifts. The colonization history of Macaronesia by red-cone junipers from the western Mediterranean appears to have taken place independently in two different geological periods: the Miocene (Azores) and the Pliocene (Madeira-Canary Islands). Overall, genomic data and phylogenetic analysis are key to consider a new taxonomic proposal and reconstruct the biogeographical history of the iconic needle-leaved junipers across the Paleartic.

10.
Biodivers Data J ; 12: e127689, 2024.
Article in English | MEDLINE | ID: mdl-39070715

ABSTRACT

Background: The order Isopoda Latreille, 1816 consists of species occurring in terrestrial, marine and freshwater environments. In the Southern Ocean (SO), this group is amongst the most speciose and occur at all depths. Isopoda biogeography, despite being studied since the first Antarctic expeditions, is still poorly known from a geographical point of view and shows large occurrence gaps for some groups in specific sectors of the SO. In this paper, we update the isopod checklists of the Ross Sea (RS) and of some peri-Antarctic areas, such as the South Orkney Islands (SOI) and the South Sandwich Islands (SSI), based on the study of museum vouchers curated by the Italian National Antarctic Museum (MNA, Section of Genoa). New information: A total of 279 MNA samples from 15 different expeditions were studied. From this material, consisting of 419 specimens, 41 accepted species distributed in 24 families and 51 genera were identified. Comparing this newly-obtained information with the GBIF (Global Biodiversity Information Facility) and OBIS (Ocean Biodiversity Information System) portal, 15 species are here reported for the first time in the Ross Sea, with five new records in the Ross Sea Marine Protected Area. All records are new for the Terra Nova Bay area, for which a checklist of this group has never been produced before.

11.
Zookeys ; 1207: 167-183, 2024.
Article in English | MEDLINE | ID: mdl-39071232

ABSTRACT

Insular amphibian species are often overlooked, rendering them vulnerable to habitat encroachment and other anthropogenic threats. The aim of this study was to compile a comprehensive list of amphibian species on Ko Pha-ngan in Surat Thani Province, Thailand. Data were collected via transect surveys and drift line fence traps in three different habitat types from February 2021 to September 2023. Our efforts detected 12 unique amphibian species in each of the three habitat types. The highest number of detections was observed in the Ko Pha-ngan-Than Sadet National Park protected areas. The common tree frog (Polypedatesleucomystax) and the common Asian toad (Duttaphrynusmelanostictus) were the two most abundantly found species on the island, whereas the Koh Tao caecilian (Ichthyophiskohtaoensis) and the newly described false Doria's fanged frog (Limnonectespseudodoriae) where the least commonly found species. In addition, Microhylaheymonsi and Fejervaryalimnocharis tadpoles were observed developing in high-salinity water bodies. Many species have shown a high tolerance in human-dominated landscapes. This study sheds light on the need for additional monitoring to better understand the dynamics of endemic species in addition to the impact tourism-driven development and habitat destruction has on a species with an insularly finite habitat.

12.
Sci Total Environ ; : 175001, 2024 Jul 23.
Article in English | MEDLINE | ID: mdl-39053532

ABSTRACT

Albeit remote, Arctic benthic ecosystems are impacted by fisheries and climate change. Yet, anthropogenic impacts are poorly understood, as benthic ecosystems and their drivers have not been mapped over large areas. We disentangle spatial patterns and drivers of benthic epifauna (animals living on the seabed surface) in West Greenland, by integrating an extensive beam-trawl dataset (326 stations, 59-75°N, 30-1400 m water depth) with environmental data. We find high variability at different spatial scales: (1) Epifauna biomass decreases with increasing latitude, sea-ice cover and water depth, related to food limitation. (2) In Greenland, the Labrador Sea in the south shows higher epifauna taxon richness compared to Baffin Bay in the north. Τhe interjacent Davis Strait forms a permeable boundary for epifauna dispersal and a mixing zone for Arctic and Atlantic taxa, featuring regional biodiversity hotspots. (3) The Labrador Sea and Davis Strait provide suitable habitats for filter-feeding epifauna communities of high biomass e.g., sponges on the steep continental slope and sea cucumbers on shallow banks. In Baffin Bay, the deeper continental shelf, more gentle continental slope, lower current speed and lower phytoplankton biomass promote low-biomass epifauna communities, predominated by sea stars, anemones, or shrimp. (4) Bottom trawling reduces epifauna biomass and taxon richness throughout the study area, where sessile filter feeders are particularly vulnerable. Climate change with diminished sea ice cover in Baffin Bay may amplify food availability to epifauna, thereby increasing their biomass. While more species might expand northward due to the general permeability of Davis Strait, an extensive colonization of Baffin Bay by high-biomass filter-feeding epifauna remains unlikely, given the lack of suitable habitats. The pronounced vulnerability of diverse and biomass-rich epifauna communities to bottom trawling emphasizes the necessity for an informed and sustainable ecosystem-based management in the face of rapid climate change.

13.
Article in English | MEDLINE | ID: mdl-39058551

ABSTRACT

A new heterotrophic, aerobic alphaproteobacterium, designated strain SH36 (=DSM 23330=LMG 25292), was obtained from a seawater sample collected in the open North Sea during a phytoplankton bloom. Analysis of the 16S rRNA gene sequence revealed affiliation of strain SH36 to the species Lentibacter algarum (family Roseobacteraceae), showing 100 and 99.9 % sequence similarity to the 16S rRNA genes of the strains L. algarum ZXM098 and ZXM100T. Digital DNA-DNA hybridization of strain SH36 with the type strain of L. algarum showed 98.0 % relatedness, confirming that strain SH36 can be classified within the same species. All three L. algarum strains were compared by physiological, morphological, chemotaxonomic, and genotypic characteristics. The strains showed only minor differences in the composition of fatty acids and polar lipids, but considerable physiological differences. Comparison of the 16S rRNA gene sequence of SH36 with sequences present in GenBank revealed that phylotypes with ≥98.65 % sequence identity to the type strain of L. algarum were found at different marine and estuarine locations of temperate and subtropic regions. Furthermore, by using a specific PCR approach L. algarum was detected throughout annual cycles at the offshore station at Helgoland Roads in the German Bight, indicating that this species is a permanent member of the microbial community in the North Sea.


Subject(s)
Bacterial Typing Techniques , DNA, Bacterial , Fatty Acids , Nucleic Acid Hybridization , Phylogeny , RNA, Ribosomal, 16S , Seawater , Sequence Analysis, DNA , North Sea , RNA, Ribosomal, 16S/genetics , Seawater/microbiology , DNA, Bacterial/genetics , Fatty Acids/analysis , Base Composition , Rhodobacteraceae/genetics , Rhodobacteraceae/isolation & purification , Rhodobacteraceae/classification
14.
Sci Rep ; 14(1): 17527, 2024 07 30.
Article in English | MEDLINE | ID: mdl-39080395

ABSTRACT

The equilibrium theorem provided a fundamental framework for understanding species' distributions and movement in fragmented ecosystems. Wetland-dependent avian species are model organisms to test insular predictions within protected area networks because their mobility allows surveillance of isolated patches without landscape barriers. We hypothesized size and isolation would influence functional connectivity of sanctuaries by GPS-marked wintering mallards (Anas platyrhynchos) within a mesocosm protected sanctuary area network. We evaluated functional connectivity and sanctuary use, measured by movements between sanctuaries, using a multistate modeling framework. Proximity drove connectivity, underscoring that patch isolation-not size-influenced connectivity, even for an avian species with no ascertainable landscape resistance or barriers. We also found that sanctuary use increased overwintering survival by reducing harvest mortality. Our test of equilibrium theory predictions demonstrated that isolation of protected sanctuary areas supersedes their size in determining functional connectivity for mallards and access to these areas may have direct fitness consequences. Our findings could refine land acquisition, restoration, and management practices with equal or greater emphasis on adjacency in protected area network design, especially for wetland-dependent migratory gamebirds.


Subject(s)
Animal Migration , Conservation of Natural Resources , Ducks , Ecosystem , Seasons , Wetlands , Animals , Ducks/physiology , Conservation of Natural Resources/methods , Animal Migration/physiology , Anseriformes/physiology
15.
Sci Total Environ ; 946: 174429, 2024 Oct 10.
Article in English | MEDLINE | ID: mdl-38960185

ABSTRACT

Understanding species distribution and the related driving processes is a fundamental issue in ecology. However, incomplete data on reef-building corals in the ecoregions of the South China Sea have hindered a comprehensive understanding of coral distribution patterns and their ecological drivers in the Northwest Pacific (NWP). This study investigated the coral species diversity and distribution patterns in the NWP by collecting species presence/absence data from the South China Sea and compiling an extensive species distribution database for the region, and explored their major environmental drivers. Our NWP coral database included 612 recorded coral species across 15 ecoregions. Of these, 536 coral species were recorded in the South China Sea Oceanic Islands after compilation, confirming the extraordinary coral species diversity in this ecoregion. Coral alpha diversity was found to decrease with increasing latitude in the whole NWP, while the influence of the Kuroshio Current on environmental conditions in its path results in a slower decline in species richness with latitude compared to regions within the South China Sea. Beta-diversity decomposition revealed that nestedness patterns mainly occurred between low and high latitude ecoregions, while communities within similar latitudes exhibited a turnover component, particularly pronounced at high latitudes. The impact of environmental factors on coral assemblage structure outweighed the effects of spatial distance. Temperature, especially winter temperature, and light intensity strongly influenced alpha diversity and beta diversity's nestedness component. Additionally, turbidity and winter temperature variations at high latitudes contributed to the turnover pattern observed among communities in the NWP. These findings elucidate the assembly processes and major environmental drivers shaping different coral communities in the NWP, highlighting the significant role of specific environmental filtering in coral distribution patterns and providing valuable insights for coral species conservation efforts.


Subject(s)
Anthozoa , Biodiversity , Coral Reefs , Animals , Anthozoa/physiology , Pacific Ocean , Environmental Monitoring , China , Animal Distribution
16.
Syst Biol ; 2024 Jul 22.
Article in English | MEDLINE | ID: mdl-39037176

ABSTRACT

Despite their extensive diversity and ecological importance, the history of diversification for most groups of parasitic organisms remains relatively understudied. Elucidating broad macroevolutionary patterns of parasites is challenging, often limited by the availability of samples, genetic resources, and knowledge about ecological relationships with their hosts. In this study, we explore the macroevolutionary history of parasites by focusing on parasitic body lice from doves. Building on extensive knowledge of ecological relationships and previous phylogenomic studies of their avian hosts, we tested specific questions about the evolutionary origins of the body lice of doves, leveraging whole genome data sets for phylogenomics. Specifically, we sequenced whole genomes from 68 samples of dove body lice, including representatives of all body louse genera from 51 host taxa. From these data, we assembled >2,300 nuclear genes to estimate dated phylogenetic relationships among body lice and several outgroup taxa. The resulting phylogeny of body lice was well supported, although some branches had conflicting signal across the genome. We then reconstructed ancestral biogeographic ranges of body lice and compared the body louse phylogeny to phylogeny of doves, and also to a previously published phylogeny of the wing lice of doves. Divergence estimates placed the origin of body lice in the late Oligocene. Body lice likely originated in Australasia and dispersed with their hosts during the early Miocene, with subsequent codivergence and host switching throughout the world. Notably, this evolutionary history is very similar to that of dove wing lice, despite the stronger dispersal capabilities of wing lice compared to body lice. Our results highlight the central role of the biogeographic history of host organisms in driving the evolutionary history of their parasites across time and geographic space.

17.
Mol Ecol ; 33(15): e17446, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38946613

ABSTRACT

The Cenozoic topographic development of the Himalaya-Tibet orogen (HTO) substantially affected the paleoenvironment and biodiversity patterns of High Asia. However, concepts on the evolution and paleoenvironmental history of the HTO differ massively in timing, elevational increase and sequence of surface uplift of the different elements of the orogen. Using target enrichment of a large set of transcriptome-derived markers, ancestral range estimation and paleoclimatic niche modelling, we assess a recently proposed concept of a warm temperate paleo-Tibet in Asian spiny frogs of the tribe Paini and reconstruct their historical biogeography. That concept was previously developed in invertebrates. Because of their early evolutionary origin, low dispersal capacity, high degree of local endemism, and strict dependence on temperature and humidity, the cladogenesis of spiny frogs may echo the evolution of the HTO paleoenvironment. We show that diversification of main lineages occurred during the early to Mid-Miocene, while the evolution of alpine taxa started during the late Miocene/early Pliocene. Our distribution and niche modelling results indicate range shifts and niche stability that may explain the modern disjunct distributions of spiny frogs. They probably maintained their (sub)tropical or (warm)temperate preferences and moved out of the ancestral paleo-Tibetan area into the Himalaya as the climate shifted, as opposed to adapting in situ. Based on ancestral range estimation, we assume the existence of low-elevation, climatically suitable corridors across paleo-Tibet during the Miocene along the Kunlun, Qiangtang and/or Gangdese Shan. Our results contribute to a deeper understanding of the mechanisms and processes of faunal evolution in the HTO.


Subject(s)
Anura , Phylogeny , Animals , Tibet , Anura/genetics , Anura/classification , Biodiversity , Phylogeography , Biological Evolution , Transcriptome , Ecosystem , Climate , Temperature
18.
Mol Ecol ; 33(15): e17444, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38984705

ABSTRACT

Speciation generates biodiversity and the mechanisms involved are thought to vary across the tree of life and across environments. For example, well-studied adaptive radiations are thought to be fuelled by divergent ecological selection, but additionally are influenced heavily by biogeographic, genomic and demographic factors. Mechanisms of non-adaptive radiations, producing ecologically cryptic taxa, have been less well-studied but should likewise be influenced by these latter factors. Comparing among contexts can help pinpoint universal mechanisms and outcomes, especially if we integrate biogeographic, ecological and evolutionary processes. We investigate population divergence in the swordtail cricket Laupala cerasina, a wide-spread endemic on Hawai'i Island and one of 38 ecologically cryptic Laupala species. The nine sampled populations show striking population genetic structure at small spatio-temporal scales. The rapid differentiation among populations and species of Laupala shows that neither a specific geographical context nor ecological opportunity are pre-requisites for rapid divergence. Spatio-temporal patterns in population divergence, population size change, and gene flow are aligned with the chronosequence of the four volcanoes on which L. cerasina occurs and reveal the composite effects of geological dynamics and Quaternary climate change on population dynamics. Spatio-temporal patterns in genetic variation along the genome reveal the interplay of genetic and genomic architecture in shaping population divergence. In early phases of divergence, we find elevated differentiation in genomic regions harbouring mating song loci. In later stages of divergence, we find a signature of linked selection that interacts with recombination rate variation. Comparing our findings with recent work on complementary systems supports the conclusion that mostly universal factors influence the speciation process.


Subject(s)
Gene Flow , Genetics, Population , Gryllidae , Animals , Gryllidae/genetics , Gryllidae/classification , Hawaii , Genetic Speciation , Genetic Variation , Population Density , Phylogeography , Biological Evolution
19.
Genome Biol Evol ; 16(7)2024 Jul 03.
Article in English | MEDLINE | ID: mdl-39023104

ABSTRACT

Islands are crucial evolutionary hotspots, providing unique opportunities for differentiation of novel biodiversity and long-term segregation of endemic species. Islands are also fragile ecosystems, where biodiversity is more exposed to environmental and anthropogenic pressures than on continents. The Ponza grayling, Hipparchia sbordonii, is an endemic butterfly species that is currently found only in two tiny islands of the Pontine archipelago, off the coast of Italy, occupying an area smaller than 10 km2. It has been classified as Endangered (IUCN) because of the extremely limited area of occurrence, population fragmentation, and the recent demographic decline. Thanks to a combination of different assemblers of long and short genomic reads, bulk transcriptome RNAseq, and synteny analysis with phylogenetically close butterflies, we produced a highly contiguous, chromosome-scale annotated reference genome for the Ponza grayling, including 28 autosomes and the Z sexual chromosomes. The final assembly spanned 388.61 Gb with a contig N50 of 14.5 Mb and a BUSCO completeness score of 98.5%. Synteny analysis using four other butterfly species revealed high collinearity with Hipparchia semele and highlighted 10 intrachromosomal inversions longer than 10 kb, of which two appeared on the lineage leading to H. sbordonii. Our results show that a chromosome-scale reference genome is attainable also when chromatin conformation data may be impractical or present specific technical challenges. The high-quality genomic resource for H. sbordonii opens up new opportunities for the accurate assessment of genetic diversity and genetic load and for the investigations of the genomic novelties characterizing the evolutionary path of this endemic island species.


Subject(s)
Butterflies , Endangered Species , Genome, Insect , Animals , Butterflies/genetics , Italy , Synteny , Phylogeny
20.
Sci Total Environ ; 948: 174883, 2024 Jul 20.
Article in English | MEDLINE | ID: mdl-39034013

ABSTRACT

Marine prokaryotes and microeukaryotes are essential components of microbial food webs, and drive the biogeochemical cycling. However, the underlying ecological mechanisms driving prokaryotic and microeukaryotic community assembly in large-scale coastal ecosystems remain unclear. In this study, we studied biogeographic patterns of prokaryotic and microeukaryotic communities in the coastal and shelf ecosystem of the China Seas. Results showed that prokaryotic richness was the highest in the Yangtze River Plume, whereas microeukaryotic richness decreased from south to north. Prokaryotic-microeukaryotic co-occurrence networks display greater complexity in the Yangtze River Plume compared to other regions, potentially indicating higher environmental heterogeneity. Furthermore, the cross-domain networks revealed that prokaryotes were more interconnected with each other than with microeukaryotes or between microeukaryotes, and all hub nodes were bacterial taxa, suggesting that prokaryotes may be more important for sustaining the stability and multifunctionality of coastal ecosystem than microeukaryotes. Variation Partitioning Analysis revealed that approximately equal proportions of environmental, biotic and spatial factors contribute to variations in microbial community composition. Temperature was the primary environmental driver of both prokaryotic and microeukaryotic communities across the China Seas. Additionally, stochastic processes (dispersal limitation) and deterministic processes (homogeneous selection) were two major ecological factors in shaping microeukaryotic and prokaryotic assemblages, respectively, suggesting their different environmental plasticity and evolutionary mechanisms. Overall, these results demonstrate both prokaryotic and microeukaryotic communities displayed a latitude-driven distribution pattern and different assembly mechanisms, improving our understanding of microbial biogeography patterns under global change and anthropogenic activity driven habitat diversification in the coastal and shelf ecosystem.

SELECTION OF CITATIONS
SEARCH DETAIL
...