Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Materials (Basel) ; 16(17)2023 Aug 31.
Article in English | MEDLINE | ID: mdl-37687671

ABSTRACT

Calcium phosphate materials and materials based on silicon dioxide have been actively studied for more than 50 years due to their high biocompatibility and bioactivity. Hydroxyapatite and tricalcium phosphate are the most known among calcium phosphate materials, and Bioglass 45S5 is the most known material in the Na2O-CaO-SiO2-P2O5 system. Each of these materials has its application limits; however, some of them can be eliminated by obtaining composites based on calcium phosphate and bioglass. In this article, we provide an overview of the role of silicon and its compounds, including Bioglass 45S5, consider calcium phosphate materials, talk about the limits of each material, demonstrate the potential of the composites based on them, and show the other ways of obtaining composite ceramics in the Na2O-CaO-SiO2-P2O5 system.

2.
Biomed Mater Eng ; 34(5): 439-458, 2023.
Article in English | MEDLINE | ID: mdl-36744331

ABSTRACT

BACKGROUND: While autografts to date remain the "gold standard" for bone void fillers, synthetic bone grafts have garnered attention due to their favorable advantages such as ability to be tailored in terms of their physical and chemical properties. Bioactive glass (BG), an inorganic material, has the capacity to form a strong bond with bone by forming a bone-like apatite surface, enhancing osteogenesis. Coupled with additive manufacturing (3D printing) it is possible to maximize bone regenerative properties of the BG. OBJECTIVE: The objective of this study was to synthesize and characterize 3D printed mesoporous bioactive glass (MBG), BG 45S5, and compare to ß-Tricalcium phosphate (ß-TCP) based scaffolds; test cell viability and osteogenic differentiation on human osteoprogenitor cells in vitro. METHODS: MBG, BG 45S5, and ß-TCP were fabricated into colloidal gel suspensions, tested with a rheometer, and manufactured into scaffolds using a 3D direct-write micro-printer. The materials were characterized in terms of microstructure and composition with Thermogravimetric Analyzer/Differential Scanning Calorimeter (TGA/DSC), Fourier Transform Infrared Spectroscopy (FTIR), X-ray Diffraction (XRD), Micro-Computed Tomography (µ-CT), Scanning Electron Microscopy (SEM), Energy Dispersive X-ray Spectroscopy (EDS), and Mattauch-Herzog-Inductively Coupled Plasma-Mass Spectrometry (MH-ICP-MS). RESULTS: Scaffolds were tested for cell proliferation and osteogenic differentiation using human osteoprogenitor cells. Osteogenic media was used for differentiation, and immunocytochemistry for osteogenic markers Runx-2, Collagen-I, and Osteocalcin. The cell viability results after 7 days of culture yielded significantly higher (p < 0.05) results in ß-TCP scaffolds compared to BG 45S5 and MBG groups. CONCLUSION: All materials expressed osteogenic markers after 21 days of culture in expansion and osteogenic media.


Subject(s)
Osteogenesis , Tissue Scaffolds , Humans , Tissue Scaffolds/chemistry , Regenerative Medicine , X-Ray Microtomography , Glass/chemistry , Ceramics/chemistry , Printing, Three-Dimensional
3.
Clin Oral Investig ; 26(2): 1915-1925, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34505917

ABSTRACT

OBJECTIVES: To evaluate the effect of strontium-containing titanium- and/or magnesium-doped phosphate bioactive glass on the control of dental erosion. MATERIALS AND METHODS: Fifty fragments of human enamel were divided into five groups: negative control, 45S5 bioglass, strontium-containing Ti-doped phosphate bioactive glass (PBG-Ti), strontium-containing Mg-doped phosphate bioactive glass (PBG-Mg), and strontium-containing Ti- and Mg-doped phosphate bioactive glass (PBG-TiMg). The specimens underwent cycles of erosive challenge twice daily for 5 days with 1 mL of citric acid for 2 min followed by 1 mL of the suspension with bioactive substances for 3 min. After the cycles, profilometry, roughness and microhardness testing, and scanning electron microscopy (SEM) were performed. The following statistical tests were used: one-way ANOVA (profile, roughness, and surface microhardness (%VMS) data variation), Tukey's HSD (%VMS), Games-Howell test (profilometry), Student's t test (roughness), and Pearson's correlation between the variables. RESULTS: The lower loss of enamel surface and lower %VMS was observed in the PBG-Mg and PBG-TiMg groups, and only the PBG-Mg group showed similar roughness between baseline and eroded areas (p > 0.05). On SEM micrographs, PBG-Ti and PBG-Mg groups showed lower apparent demineralization. CONCLUSION: All bioactive materials protected the enamel against erosion. However, strontium-containing phosphate bioactive glasses showed lower enamel loss, and the presence of Mg in these bioactive glasses provided a greater protective effect. CLINICAL RELEVANCE: Experimental strontium-containing phosphate bioactive glasses are effective in controlling enamel erosion. The results obtained in this study will guide the development of new dental products.


Subject(s)
Magnesium Oxide , Tooth Erosion , Dental Enamel , Glass , Humans , Phosphates , Strontium , Titanium , Tooth Erosion/prevention & control
4.
Materials (Basel) ; 14(18)2021 Sep 20.
Article in English | MEDLINE | ID: mdl-34576662

ABSTRACT

The use of bioactive glasses in dentistry, reconstructive surgery, and in the treatment of infections can be considered broadly beneficial based on the emerging literature about the potential bioactivity and biocompatibility of these materials, particularly with reference to Bioglass® 45S5, BonAlive® and 19-93B3 bioactive glasses. Several investigations have been performed (i) to obtain bioactive glasses in different forms, such as bulk materials, powders, composites, and porous scaffolds and (ii) to investigate their possible applications in the biomedical field. Although in vivo studies in animals provide us with an initial insight into the biological performance of these systems and represent an unavoidable phase to be performed before clinical trials, only clinical studies can demonstrate the behavior of these materials in the complex physiological human environment. This paper aims to carefully review the main published investigations dealing with clinical trials in order to better understand the performance of bioactive glasses, evaluate challenges, and provide an essential source of information for the tailoring of their design in future applications. Finally, the paper highlights the need for further research and for specific studies intended to assess the effect of some specific dissolution products from bioactive glasses, focusing on their osteogenic and angiogenic potential.

5.
J Foot Ankle Surg ; 60(5): 881-886, 2021.
Article in English | MEDLINE | ID: mdl-33781640

ABSTRACT

Few studies have characterized the clinical outcomes of 45S5 Bioglass® applied as a bone graft to that of allogeneic bone applied in calcaneal open curettage. Therefore, the purpose of the present investigation was to compare the outcomes of patients with calcaneal tumors and tumor-like lesions treated by open curettage with 45S5 Bioglass® or allogeneic bone. Of the 31 patients who underwent open curettage (18 cases of unicameral bone cysts, 7 cases of aneurysmal bone cysts, and 6 cases of intraosseous lipoma), 16 (52%) received grafts with 45S5 Bioglass® and 15 (48%) with allogeneic bone. All the feet achieved bone fusion according to the modified Neer radiographic classification system at the last follow-up examination. The mean bone ingrowth time for the grafts with 45S5 Bioglass® versus allogeneic bone was 3.71 ± 0.86 versus 4.46 ± 1.04 months (p = .038), the mean bone healing time was 4.86 ± 0.93 versus 5.73 ± 1.07 months (p = .021), and the mean incision drying time was 7.2 ± 1.8 versus 8.2 ± 1.5 days (p = .047), respectively. No differences were found in the postoperative American Orthopaedic Foot and Ankle Society ankle-hindfoot scale scores between the 2 groups (p = .213). These results show that 45S5 Bioglass® can better facilitate the formation of new bone with a faster drying time of the incision than allogeneic bone. Although both materials can benefit the clinical outcomes of calcaneal tumors and tumor-like lesions, further studies are needed to observe the long-term complications and lesion recurrence rates.


Subject(s)
Calcaneus , Hematopoietic Stem Cell Transplantation , Calcaneus/diagnostic imaging , Calcaneus/surgery , Curettage , Glass , Humans , Neoplasm Recurrence, Local
6.
Rev. Ateneo Argent. Odontol ; 62(1): 31-38, jun. 2020. ilus
Article in Spanish | LILACS | ID: biblio-1148166

ABSTRACT

Se analizan aspectos fármaco-tecnológicos y clínicos de biocerámicos bioabsorbibles compuestos por biovidrios con capacidad osteogénica y microbicida, para ser utilizados como relleno bioactivo en el conducto radicular y como tratamiento terapéutico en el sitio de a lesión apicoperirradicular de origen endodóntico. Mediante un diagrama ternario se consideraron las diversas variables cuyos valores determinan las diferentes fases de los vidrios bioactivos, hasta alcanzar la formación de hidroxiapatita, cuando se someten a un medio biológico. Se analizaron composición y mecanismo de acción en la reparación posendodóntica, que parte de la integración del biomaterial al tejido duro sano, sin formación de fibrosis o proceso inflamatorio inmune (AU)


Pharmacotechnological and clinical aspects of bioabsorbable bioceramics composed of bioglasses with osteogenic and microbicidal capacity are analyzed, to be used as a bioactive filler in the root canal and as a therapeutic treatment at the site of an apicoperiradicular lesion of endodontic origin. By means of a ternary diagram, the various variables whose values determine the different phases of the bioactive glasses were considered, until reaching the formation of hydroxyapatite, when subjected to a biological medium. Composition and mechanism of action were analyzed in post-endodontic repair, which starts from the integration of the biomaterial into healthy hard tissue, without the formation of fibrosis or an immune inflammatory process (AU)


Subject(s)
Biocompatible Materials , Ceramics , Durapatite , Absorbable Implants , Glass , Osteogenesis/physiology , Periapical Diseases/therapy , Wound Healing , Calcarea Silicata , Bone Substitutes
7.
Mater Sci Eng C Mater Biol Appl ; 103: 109781, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31349402

ABSTRACT

Bioactive glasses have potential applications in the field of regenerative medicine due to their bioactivity that permits interaction with both hard and soft tissues. In the same way, mesenchymal stromal cells (MSCs) have been experimentally tested as part of engineered constructs considering their self-renewal and multipotent capacities. However, to design an association, it is crucial to investigate the physical properties of bioglass 45S5, as well as its biocompatibility. Therefore, we investigated the structural short range order of the stoichiometric 45S5, by obtaining its total structure factors (S(K)) and total pair distribution function G(r). The in vitro compatibility of human MSCs with 45S5 was verified by viability, morphometry and osteoinduction assays, F-actin staining and scanning electron (SEM) analysis. The compatibility outcome was verified through a subcutaneous implantation in a murine model by grafting the 45S5 as a scaffold for allogeneic MSCs. The cell-substrate modulation includes the maintenance of the MSC viability and osteoinduction potential after being exposed to the 45S5 extract. A low spreading during cell adhesion was detected. Both normal actin cytoskeleton organization and nuclei irregularities were observed, besides an increase of hydroxyapatite (HA) depositions around cells. Cells showed satisfactory compatibility patterns when growing over 45S5 for 7, 30 and 90 days. The implant did not show any apparent toxicity for organs, or strong immunogenic reactions, and it was accompanied by a dense capsule formation around the graft. Our results indicate that MSCs can grow in the long term on the 45S5 while maintaining their characteristics. This fact, together with a non-toxicity to animals means that the 45S5 can be implemented in pre-clinical trials aiming MSC's transplantation leading to further bone and tissue repair.


Subject(s)
Adipose Tissue/metabolism , Ceramics/chemistry , Glass/chemistry , Materials Testing , Mesenchymal Stem Cells/metabolism , Tissue Scaffolds/chemistry , Adipose Tissue/cytology , Animals , Cell Adhesion , Cell Survival , Humans , Mesenchymal Stem Cells/cytology , Mice , Mice, Inbred BALB C
8.
J Biomed Mater Res A ; 105(11): 3197-3223, 2017 Nov.
Article in English | MEDLINE | ID: mdl-28686004

ABSTRACT

Bioglass® 45S5 (BG) has an outstanding ability to bond with bones and soft tissues, but its application as a load-bearing scaffold material is restricted due to its inherent brittleness. BG-based composites combine the amazing biological and bioactive characteristics of BG with structural and functional features of other materials. This article reviews the composites of Bioglass® in combination with metals, ceramics and polymers for a wide range of potential applications from bone scaffolds to nerve regeneration. Bioglass® also possesses angiogenic and antibacterial properties in addition to its very high bioactivity; hence, composite materials developed for these applications are also discussed. BG-based composites with polymer matrices have been developed for a wide variety of soft tissue engineering. This review focuses on the research that suggests the suitability of BG-based composites as a scaffold material for hard and soft tissues engineering. Composite production techniques have a direct influence on the bioactivity and mechanical behavior of scaffolds. A detailed discussion of the bioactivity, in vitro and in vivo biocompatibility and biodegradation is presented as a function of materials and its processing techniques. Finally, an outlook for future research is also proposed. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 3197-3223, 2017.


Subject(s)
Biocompatible Materials/chemistry , Ceramics/chemistry , Glass/chemistry , Tissue Engineering/methods , Animals , Biocompatible Materials/metabolism , Bone Regeneration , Ceramics/metabolism , Humans , Materials Testing , Metals/chemistry , Metals/metabolism , Nanostructures/chemistry , Polymers/chemistry , Polymers/metabolism , Tissue Scaffolds/chemistry
9.
J Tissue Eng ; 6: 2041731415609448, 2015.
Article in English | MEDLINE | ID: mdl-26668709

ABSTRACT

Sucrose acetate isobutyrate (SAIB) is a sugar-based carrier. We have previously applied SAIB as a minimally invasive system for the co-delivery of recombinant human bone morphogenetic protein-2 (rhBMP-2) and found synergy when co-delivering zoledronic acid (ZA) and hydroxyapatite (HA) nanoparticles. Alternative bioceramics were investigated in a murine SAIB/rhBMP-2 injection model. Neither beta-tricalcium phosphate (TCP) nor Bioglass (BG) 45S5 had a significant effect on bone volume (BV) alone or in combination with the ZA. (14)C-labelled ZA binding assays showed particle size and ceramic composition affected binding with nano-HA > micro-HA > TCP > BG. Micro-HA and nano-HA increased BV in a rat model of rhBMP-2/SAIB injection (+278% and +337%), and BV was further increased with ZA-adsorbed micro-HA and nano-HA (+530% and +889%). These data support the use of ZA-adsorbed nanoparticle-sized HA as an optimal additive for the SAIB/rhBMP-2 injectable system for bone tissue engineering.

10.
Acta Odontol Scand ; 72(8): 607-17, 2014 Nov.
Article in English | MEDLINE | ID: mdl-24490642

ABSTRACT

OBJECTIVE: Evaluating microtensile bond strength (µTBS) and Knoop micro-hardness (KHN) of resin bonded-dentine interfaces created with two methacrylate-based systems either incorporating Bioglass 45S5 (3-E&RA/BG) or MTA (3-E&RA/WMTA). MATERIALS AND METHODS: Solvated resins (50% ethanol/50% co-monomers) were used as primers while their neat counterparts were filled with the two calcium-silicate compounds. Application of neat resin adhesive with no filler served as control (3-E&RA). µTBS, KHN analysis and confocal tandem scanning microscopy (TSM) micropermeability were carried out after 24 h and 10 months of storage in phosphate buffer solution (DPBS). Scanning electron microscopy (SEM) was also performed after debonding. RESULTS: High µTBS values were achieved in all groups after 24 h of DPBS storage. On the contrary, solely the specimens created using 3-E&RA/BG and 3-E&RA/WMTA agents showed no significant reduction in terms of µTBS even after 10 months in DPBS; similarly, they did not restore the average superficial micro-hardness to the level of sound dentine, but maintained unchanged KHN values, and no statistical decrease was found following 10 months of DPBS storage. The only statistically significant changes occurred in the resin-dentine interfaces bonded with 3-E&RA that were subjected to a reduction of both µTBS and KHN values with ageing. In terms of micropermeability, adverse results were obtained with 3-E&RA while 3-E&RA/BG and 3-E&RA/WMTA demonstrated a beneficial effect after prolonged DPBS storage. CONCLUSION: Calcium-silicate filled composite resins performed better than a current etch-and-rinse adhesive and had a therapeutic/protective effect on the micro-mechanical properties of mineral-depleted resin-dentine interfaces. CLINICAL SIGNIFICANCE: The incorporation of calcium-silicates into dental restorative and bonding agents can create more biomimetic (life-like) restorations. This will not only enable these materials to mimic the physical characteristics of the tooth structure, but will also stabilize and protect the remaining dental hard tissues.


Subject(s)
Aluminum Compounds/chemistry , Apatites/chemistry , Calcium Compounds/chemistry , Ceramics/chemistry , Dental Bonding , Dentin/ultrastructure , Glass/chemistry , Oxides/chemistry , Resin Cements/chemistry , Silicates/chemistry , Adult , Benzoates/chemistry , Biomechanical Phenomena , Bisphenol A-Glycidyl Methacrylate/chemistry , Composite Resins/chemistry , Dentin/chemistry , Dentin-Bonding Agents/chemistry , Drug Combinations , Hardness , Humans , Materials Testing , Methacrylates/chemistry , Microscopy, Confocal , Microscopy, Electron, Scanning , Permeability , Stress, Mechanical , Surface Properties , Tensile Strength , Time Factors , Young Adult
11.
Dent Mater ; 29(12): 1256-64, 2013 Dec.
Article in English | MEDLINE | ID: mdl-24157243

ABSTRACT

OBJECTIVE: Amorphous bioglass 45S5 has been used for many years as bone substitute material. Bioactive glasses are also suitable as coating materials for implants in order to improve the bone ongrowth behavior. We hypothesize that both the apatite formation on the surface and the chemical stability can be improved by crystallization of the bioglass. METHODS: Synthesized amorphous bioglass 45S5 specimens as well as samples which were crystallized at 1000 °C were stored in simulated body fluid for 1, 7, and 14 days. The respective apatite formation was gravimetrically determined and characterized by SEM and XRD analysis. Moreover, the degradation behavior was studied after storage in distilled water. RESULTS: The weight of the crystallized samples decreased 6.3% less than that of the amorphous samples. Calcium silica and calcium carbonate layers were found on amorphous bioglass after 7 and 14 days. However, apatite formation was observed only on the crystallized 45S5 samples after storage. SIGNIFICANCE: We conclude that the chemical resistance can be improved and, in parallel, a pronounced apatite formation on the surface of 45S5 can be obtained by controlled crystallization of the material for the particular test setup. Therefore, crystallized bioactive glasses should be considered to be promising coating material for dental implants.


Subject(s)
Apatites/chemical synthesis , Ceramics/chemistry , Glass/chemistry , Body Fluids , Calorimetry, Differential Scanning , Crystallization , Microscopy, Electron, Scanning
SELECTION OF CITATIONS
SEARCH DETAIL
...