Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 47
Filter
1.
J Biopharm Stat ; : 1-20, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38888933

ABSTRACT

We consider a dose-optimization design for a first-in-human oncology trial that aims to identify a suitable dose for late-phase drug development. The proposed approach, called the Pharmacometrics-Enabled DOse OPtimization (PEDOOP) design, incorporates observed patient-level pharmacokinetics (PK) measurements and latent pharmacodynamics (PD) information for trial decision-making and dose optimization. PEDOOP consists of two seamless phases. In phase I, patient-level time-course drug concentrations, derived PD effects, and the toxicity outcomes from patients are integrated into a statistical model to estimate the dose-toxicity response. A simple dose-finding design guides dose escalation in phase I. At the end of the phase I dose finding, a graduation rule is used to assess the safety and efficacy of all the doses and select those with promising efficacy and acceptable safety for a randomized comparison against a control arm in phase II. In phase II, patients are randomized to the selected doses based on a fixed or adaptive randomization ratio. At the end of phase II, an optimal biological dose (OBD) is selected for late-phase development. We conduct simulation studies to assess the PEDOOP design in comparison to an existing seamless design that also combines phases I and II in a single trial.

2.
J Biopharm Stat ; 34(3): 379-393, 2024 May.
Article in English | MEDLINE | ID: mdl-37114985

ABSTRACT

With the emergence of molecular targeted agents and immunotherapies in anti-cancer treatment, a concept of optimal biological dose (OBD), accounting for efficacy and toxicity in the framework of dose-finding, has been widely introduced into phase I oncology clinical trials. Various model-assisted designs with dose-escalation rules based jointly on toxicity and efficacy are now available to establish the OBD, where the OBD is generally selected at the end of the trial using all toxicity and efficacy data obtained from the entire cohort. Several measures to select the OBD and multiple methods to estimate the efficacy probability have been developed for the OBD selection, leading to many options in practice; however, their comparative performance is still uncertain, and practitioners need to take special care of which approaches would be the best for their applications. Therefore, we conducted a comprehensive simulation study to demonstrate the operating characteristics of the OBD selection approaches. The simulation study revealed key features of utility functions measuring the toxicity-efficacy trade-off and suggested that the measure used to select the OBD could vary depending on the choice of the dose-escalation procedure. Modelling the efficacy probability might lead to limited gains in OBD selection.


Subject(s)
Neoplasms , Research Design , Humans , Bayes Theorem , Dose-Response Relationship, Drug , Computer Simulation , Neoplasms/drug therapy , Maximum Tolerated Dose
3.
Pharm Stat ; 22(5): 797-814, 2023.
Article in English | MEDLINE | ID: mdl-37156731

ABSTRACT

Recently, the US Food and Drug Administration Oncology Center of Excellence initiated Project Optimus to reform the dose optimization and dose selection paradigm in oncology drug development. The agency pointed out that the current paradigm for dose selection-based on the maximum tolerated dose (MTD)-is not sufficient for molecularly targeted therapies and immunotherapies, for which efficacy may not increase after the dose reaches a certain level. In these cases, it is more appropriate to identify the optimal biological dose (OBD) that optimizes the risk-benefit tradeoff of the drug. Project Optimus has spurred tremendous interest and urgent need for guidance on designing dose optimization trials. In this article, we review several representative dose optimization designs, including model-based and model-assisted designs, and compare their operating characteristics based on 10,000 randomly generated scenarios with various dose-toxicity and dose-efficacy curves and some fixed representative scenarios. The results show that, compared with model-based designs, model-assisted methods have advantages of easy-to-implement, robustness, and high accuracy to identify OBD. Some guidance is provided to help biostatisticians and clinicians to choose appropriate dose optimization methods in practice.


Subject(s)
Antineoplastic Agents , Neoplasms , Humans , Neoplasms/drug therapy , Dose-Response Relationship, Drug , Medical Oncology , Research Design , Immunotherapy , Maximum Tolerated Dose , Computer Simulation , Bayes Theorem , Antineoplastic Agents/adverse effects
4.
Contemp Clin Trials ; 127: 107113, 2023 04.
Article in English | MEDLINE | ID: mdl-36758934

ABSTRACT

For molecularly targeted therapy and immunotherapy, the targeted dose in the early phase clinical trial has been shifted from the maximum tolerated dose for the cytotoxic drug to the optimal biological dose where both toxicity and efficacy are considered. In this paper, we consider the situation that the responses of toxicity and efficacy are mixed in binary and continuous types, respectively, where the continuous endpoint bears more magnitude information than the binary endpoint after dichotomization. We propose combining two model-based designs to sequentially identify the most efficacious and tolerably safe dose. The employed designs both take the dose level information into account to achieve high estimation efficiency. We demonstrate the superiority of the proposed method to some existing methods by simulation.


Subject(s)
Models, Statistical , Neoplasms , Humans , Neoplasms/drug therapy , Bayes Theorem , Dose-Response Relationship, Drug , Computer Simulation , Research Design , Maximum Tolerated Dose
5.
Biostatistics ; 24(2): 277-294, 2023 04 14.
Article in English | MEDLINE | ID: mdl-34296266

ABSTRACT

Identification of the optimal dose presents a major challenge in drug development with molecularly targeted agents, immunotherapy, as well as chimeric antigen receptor T-cell treatments. By casting dose finding as a Bayesian model selection problem, we propose an adaptive design by simultaneously incorporating the toxicity and efficacy outcomes to select the optimal biological dose (OBD) in phase I/II clinical trials. Without imposing any parametric assumption or shape constraint on the underlying dose-response curves, we specify curve-free models for both the toxicity and efficacy endpoints to determine the OBD. By integrating the observed data across all dose levels, the proposed design is coherent in dose assignment and thus greatly enhances efficiency and accuracy in pinning down the right dose. Not only does our design possess a completely new yet flexible dose-finding framework, but it also has satisfactory and robust performance as demonstrated by extensive simulation studies. In addition, we show that our design enjoys desirable coherence properties, while most of existing phase I/II designs do not. We further extend the design to accommodate late-onset outcomes which are common in immunotherapy. The proposed design is exemplified with a phase I/II clinical trial in chronic lymphocytic leukemia.


Subject(s)
Antineoplastic Agents , Humans , Bayes Theorem , Dose-Response Relationship, Drug , Maximum Tolerated Dose , Computer Simulation , Research Design
6.
Stat Methods Med Res ; 32(3): 443-464, 2023 03.
Article in English | MEDLINE | ID: mdl-36217826

ABSTRACT

For novel molecularly targeted agents and immunotherapies, the objective of dose-finding is often to identify the optimal biological dose, rather than the maximum tolerated dose. However, optimal biological doses may not be the same for different indications, challenging the traditional dose-finding framework. Therefore, we proposed a Bayesian phase I/II basket trial design, named "shotgun-2," to identify indication-specific optimal biological doses. A dose-escalation part is conducted in stage I to identify the maximum tolerated dose and admissible dose sets. In stage II, dose optimization is performed incorporating both toxicity and efficacy for each indication. Simulation studies under both fixed and random scenarios show that, compared with the traditional "phase I + cohort expansion" design, the shotgun-2 design is robust and can improve the probability of correctly selecting the optimal biological doses. Furthermore, this study provides a useful tool for identifying indication-specific optimal biological doses and accelerating drug development.


Subject(s)
Antineoplastic Agents , Humans , Bayes Theorem , Computer Simulation , Probability , Research Design , Dose-Response Relationship, Drug
7.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-965374

ABSTRACT

@#A large number of people would be exposed to irradiation in large-scale nuclear and radiation accidents or nuclear terrorist attacks. Therefore, it is urgent to establish rapid and high-throughput biodosimetry for in triage, providing a basis for emergency management. Imaging flow cytometry (IFC) possesses the high through put advantages of traditional flow cytometry and the sensitivity and specificity of microscope, and has a good application prospect in the research and development of rapid, automated, and high-throughput biological dose estimation technology. This article reviews the application progress of IFC in biodosimetry, and provides a reference for the development of biological dose estimation and detection equipment for large-scale nuclear and radiation accidents.

8.
Contemp Clin Trials Commun ; 30: 100990, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36203850

ABSTRACT

Background: Phase I and/or I/II oncology trials are conducted to find the maximum tolerated dose (MTD) and/or optimal biological dose (OBD) of a new drug or treatment. In these trials, for cytotoxic agents, the primary aim of the single-agent or drug-combination is to find the MTD with a certain target toxicity rate, while for the cytostatic agents, a more appropriate target is the OBD, which is often defined by considering of toxicity and efficacy simultaneously. Accessible software packages to achieve both these aims are needed. Results: The objective of this study is to develop a software package that can provide tools for both MTD- and OBD-finding trials, which implements the Keyboard design for single-agent MTD-finding trials as reported by Yan et al. (2017), the Keyboard design for drug-combination MTD-finding trials by Pan et al. (2020), and a phase I/II OBD-finding method by Li et al. (2017) in a single R package, called Keyboard. For each of the designs, the Keyboard package provides corresponding functions such as get.boundary ( ⋯ ) for deriving the optimal dose escalation and de-escalation boundaries, select.mtd ( ⋯ ) for selecting the MTD when the trial is completed, select.obd ( ⋯ ) for selecting the OBD at the end of a trial, and get.oc ( ⋯ ) for generating the operating characteristics. Conclusion: The Keyboard R package developed herein provides convenient tools for designing, conducting and analyzing single-agent, drug-combination, phase I/II OBD-finding trials.

9.
Contemp Clin Trials Commun ; 30: 101005, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36186542

ABSTRACT

Immunotherapeutics have revolutionized the treatment of metastatic cancers and are expected to play an increasingly prominent role in the treatment of cancer patients. Recent advances in checkpoint inhibition show promising early results in a number of malignancies, and several treatments have been approved for use. However, the immunotherapeutic agents have been shown to have different mechanisms of antitumor activity from cytotoxic agents, and many limitations and challenges encountered in the traditional paradigm were recently pointed out for immunotherapy. I propose a desirability-based method to determine the optimal biological dose of immunotherapeutics by effectively using toxicity, immune response, and tumor response. Moreover, a new dose allocation algorithm of interval designs is proposed to incorporate immune response in addition to toxicity and tumor response. Simulation studies show that the proposed design has desirable operating characteristics compared to existing dose-finding designs. It also inherits the strengths of interval designs for dose-finding trials, yielding good performance with ease of implementation.

10.
Cancers (Basel) ; 14(7)2022 Mar 25.
Article in English | MEDLINE | ID: mdl-35406438

ABSTRACT

For the evaluation of the biological effects, Monte Carlo toolkits were used to provide an RBE-weighted dose using databases of survival fraction coefficients predicted through biophysical models. Biophysics models, such as the mMKM and NanOx models, have previously been developed to estimate a biological dose. Using the mMKM model, we calculated the saturation corrected dose mean specific energy z1D* (Gy) and the dose at 10% D10 for human salivary gland (HSG) cells using Monte Carlo Track Structure codes LPCHEM and Geant4-DNA, and compared these with data from the literature for monoenergetic ions. These two models were used to create databases of survival fraction coefficients for several ion types (hydrogen, carbon, helium and oxygen) and for energies ranging from 0.1 to 400 MeV/n. We calculated α values as a function of LET with the mMKM and the NanOx models, and compared these with the literature. In order to estimate the biological dose for SOBPs, these databases were used with a Monte Carlo toolkit. We considered GATE, an open-source software based on the GEANT4 Monte Carlo toolkit. We implemented a tool, the BioDoseActor, in GATE, using the mMKM and NanOx databases of cell survival predictions as input, to estimate, at a voxel scale, biological outcomes when treating a patient. We modeled the HIBMC 320 MeV/u carbon-ion beam line. We then tested the BioDoseActor for the estimation of biological dose, the relative biological effectiveness (RBE) and the cell survival fraction for the irradiation of the HSG cell line. We then tested the implementation for the prediction of cell survival fraction, RBE and biological dose for the HIBMC 320 MeV/u carbon-ion beamline. For the cell survival fraction, we obtained satisfying results. Concerning the prediction of the biological dose, a 10% relative difference between mMKM and NanOx was reported.

11.
Stat Methods Med Res ; 31(6): 1051-1066, 2022 06.
Article in English | MEDLINE | ID: mdl-35238697

ABSTRACT

Recent revolution in oncology treatment has witnessed emergence and fast development of the targeted therapy and immunotherapy. In contrast to traditional cytotoxic agents, these types of treatment tend to be more tolerable and thus efficacy is of more concern. As a result, seamless phase I/II trials have gained enormous popularity, which aim to identify the optimal biological dose (OBD) rather than the maximum tolerated dose (MTD). To enhance the accuracy and robustness for identification of OBD, we develop a calibration-free odds (CFO) design. For toxicity monitoring, the CFO design casts the current dose in competition with its two neighboring doses to obtain an admissible set. For efficacy monitoring, CFO selects the dose that has the largest posterior probability to achieve the highest efficacy under the Bayesian paradigm. In contrast to most of the existing designs, the prominent merit of CFO is that its main dose-finding component is model-free and calibration-free, which can greatly ease the burden on artificial input of design parameters and thus enhance the robustness and objectivity of the design. Extensive simulation studies demonstrate that the CFO design strikes a good balance between efficiency and safety for MTD identification under phase I trials, and yields comparable or sometimes slightly better performance for OBD identification than the competing methods under phase I/II trials.


Subject(s)
Clinical Trials, Phase I as Topic , Clinical Trials, Phase II as Topic , Neoplasms , Research Design , Bayes Theorem , Computer Simulation , Dose-Response Relationship, Drug , Humans , Maximum Tolerated Dose , Neoplasms/drug therapy , Probability
12.
Stat Med ; 41(2): 374-389, 2022 01 30.
Article in English | MEDLINE | ID: mdl-34730248

ABSTRACT

There is a growing trend to combine a new targeted or immunotherapy agent with the cancer-specific standard of care to treat different types of cancers. We propose a master-protocol-based, Bayesian phase I/II platform design to co-develop combination (BPCC) therapies in multiple indications. Under the BPCC design, only a single master protocol is needed, and the combined drug is evaluated in different indications in a concurrent or staggered fashion. For each indication, we jointly model dose-toxicity and -efficacy relationships and employ Bayesian hierarchical models to borrow information across them for more efficient indication-specific decision-making. To account for the characteristic of targeted or immunotherapy agents that their efficacy may not monotonically increase with the dose, and often plateau at high doses, we use the utility to quantify the risk-benefit tradeoff of the treatment. At each interim, we update the toxicity and efficacy model, as well as the estimate of the utility, based on the observed data across indications to inform the indication-specific decision of dose escalation and de-escalation and identify the optimal biological dose for each indication. Simulation study shows that the BPCC design has desirable operating characteristics, and that it provides an efficient approach to accelerate the development of combination therapies.


Subject(s)
Research Design , Bayes Theorem , Computer Simulation , Dose-Response Relationship, Drug , Drug Combinations , Humans
13.
Radiat Oncol ; 16(1): 220, 2021 Nov 14.
Article in English | MEDLINE | ID: mdl-34775975

ABSTRACT

OBJECTIVE: The purpose of this study was to develop a model using dose volume histogram (DVH) and dosiomic features to predict the risk of radiation pneumonitis (RP) in the treatment of esophageal cancer with radiation therapy and to compare the performance of DVH and dosiomic features after adjustment for the effect of fractionation by correcting the dose to the equivalent dose in 2 Gy (EQD2). MATERIALS AND METHODS: DVH features and dosiomic features were extracted from the 3D dose distribution of 101 esophageal cancer patients. The features were extracted with and without correction to EQD2. A predictive model was trained to predict RP grade ≥ 1 by logistic regression with L1 norm regularization. The models were then evaluated by the areas under the receiver operating characteristic curves (AUCs). RESULT: The AUCs of both DVH-based models with and without correction of the dose to EQD2 were 0.66 and 0.66, respectively. Both dosiomic-based models with correction of the dose to EQD2 (AUC = 0.70) and without correction of the dose to EQD2 (AUC = 0.71) showed significant improvement in performance when compared to both DVH-based models. There were no significant differences in the performance of the model by correcting the dose to EQD2. CONCLUSION: Dosiomic features can improve the performance of the predictive model for RP compared with that obtained with the DVH-based model.


Subject(s)
Esophageal Neoplasms/radiotherapy , Organs at Risk/radiation effects , Radiation Pneumonitis/pathology , Radiotherapy, Intensity-Modulated/adverse effects , Adult , Aged , Aged, 80 and over , Esophageal Neoplasms/pathology , Female , Humans , Male , Middle Aged , Prognosis , Radiation Pneumonitis/etiology , Radiotherapy Dosage , Retrospective Studies
14.
J Med Phys ; 46(3): 135-139, 2021.
Article in English | MEDLINE | ID: mdl-34703096

ABSTRACT

The inverse planning simulated annealing optimization engine was used to develop a new method of incorporating biological parameters into radiation treatment planning. This method integrates optimization of a radiation schedule over multiple types of delivery methods into a single algorithm. We demonstrate a general procedure of incorporating a functional biological dose model into the calculation of physical dose prescriptions. This paradigm differs from current practice in that it combines biology-informed dose constraints with a physical dose optimizer allowing for the comparison of treatment plans across multiple different radiation types and fractionation schemes.

15.
Phys Med ; 88: 148-157, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34265549

ABSTRACT

BACKGROUND AND PURPOSE: Accelerator-Based Boron Neutron Capture Therapy is a radiotherapy based on compact accelerator neutron sources requiring an epithermal neutron field for tumour irradiations. Neutrons of 10 keV are considered as the maximum optimised energy to treat deep-seated tumours. We investigated, by means of Monte Carlo simulations, the epithermal range from 10 eV to 10 keV in order to optimise the maximum epithermal neutron energy as a function of the tumour depth. METHODS: A Snyder head phantom was simulated and mono-energetic neutrons with 4 different incident energies were used: 10 eV, 100 eV, 1 keV and 10 keV. 10B capture rates and absorbed dose composition on every tissue were calculated to describe and compare the effects of lowering the maximum epithermal energy. The Therapeutic Gain (TG) was estimated considering the whole brain volume. RESULTS: For tumours seated at 4 cm depth, 10 eV, 100 eV and 1 keV neutrons provided respectively 54%, 36% and 18% increase on the TG compared to 10 keV neutrons. Neutrons with energies between 10 eV and 1 keV provided higher TG than 10 keV neutrons for tumours seated up to 6.4 cm depth inside the head. The size of the tumour does not change these results. CONCLUSIONS: Using lower epithermal energy neutrons for AB-BNCT tumour irradiation could improve treatment efficacy, delivering more therapeutic dose while reducing the dose in healthy tissues. This could lead to new Beam Shape Assembly designs in order to optimise the BNCT irradiation.


Subject(s)
Boron Neutron Capture Therapy , Neoplasms , Humans , Monte Carlo Method , Neutrons , Phantoms, Imaging
16.
Stat Med ; 40(11): 2626-2649, 2021 05 20.
Article in English | MEDLINE | ID: mdl-33650708

ABSTRACT

Unlike chemotherapy, the maximum tolerated dose (MTD) of molecularly targeted agents and immunotherapy may not pose significant clinical benefit over the lower doses. By simultaneously considering both toxicity and efficacy endpoints, phase I/II trials can identify a more clinically meaningful dose for subsequent phase II trials than traditional toxicity-based phase I trials in terms of risk-benefit tradeoff. To strengthen and simplify the current practice of phase I/II trials, we propose a utility-based toxicity probability interval (uTPI) design for finding the optimal biological dose, based on a numerical utility that provides a clinically meaningful, one-dimensional summary representation of the patient's bivariate toxicity and efficacy outcome. The uTPI design does not rely on any parametric specification of the dose-response relationship, and it directly models the dose desirability through a quasi binomial likelihood. Toxicity probability intervals are used to screen out overly toxic dose levels, and then the dose escalation/de-escalation decisions are made adaptively by comparing the posterior desirability distributions of the adjacent levels of the current dose. The uTPI design is flexible in accommodating various dose desirability formulations, while only requiring minimum design parameters. It has a clear decision structure such that a dose-assignment decision table can be calculated before the trial starts and can be used throughout the trial, which simplifies the practical implementation of the design. Extensive simulation studies demonstrate that the proposed uTPI design yields desirable as well as robust performance under various scenarios.


Subject(s)
Antineoplastic Agents , Bayes Theorem , Clinical Trials, Phase I as Topic , Clinical Trials, Phase II as Topic , Computer Simulation , Dose-Response Relationship, Drug , Humans , Maximum Tolerated Dose , Models, Statistical , Probability , Research Design
17.
BMC Cancer ; 21(1): 60, 2021 Jan 13.
Article in English | MEDLINE | ID: mdl-33441097

ABSTRACT

BACKGROUND: Classical phase 1 dose-finding designs based on a single toxicity endpoint to assess the maximum tolerated dose were initially developed in the context of cytotoxic drugs. With the emergence of molecular targeted agents and immunotherapies, the concept of optimal biological dose (OBD) was subsequently introduced to account for efficacy in addition to toxicity. The objective was therefore to provide an overview of published phase 1 cancer clinical trials relying on the concept of OBD. METHODS: We performed a systematic review through a computerized search of the MEDLINE database to identify early phase cancer clinical trials that relied on OBD. Relevant publications were selected based on a two-step process by two independent readers. Relevant information (phase, type of therapeutic agents, objectives, endpoints and dose-finding design) were collected. RESULTS: We retrieved 37 articles. OBD was clearly mentioned as a trial objective (primary or secondary) for 22 articles and was traditionally defined as the smallest dose maximizing an efficacy criterion such as biological target: biological response, immune cells count for immunotherapies, or biological cell count for targeted therapies. Most trials considered a binary toxicity endpoint defined in terms of the proportion of patients who experienced a dose-limiting toxicity. Only two articles relied on an adaptive dose escalation design. CONCLUSIONS: In practice, OBD should be a primary objective for the assessment of the recommended phase 2 dose (RP2D) for a targeted therapy or immunotherapy phase I cancer trial. Dose escalation designs have to be adapted accordingly to account for both efficacy and toxicity.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Neoplasms/drug therapy , Adult , Aged , Aged, 80 and over , Biomarkers, Tumor , Case-Control Studies , Combined Modality Therapy , Female , Follow-Up Studies , Gene Expression Regulation, Neoplastic , Humans , Lymphatic Metastasis , Male , Middle Aged , Neoplasm Invasiveness , Neoplasm Recurrence, Local/drug therapy , Neoplasm Recurrence, Local/pathology , Neoplasms/pathology , Prognosis , Retrospective Studies , Survival Rate , Tumor Cells, Cultured
18.
J Appl Clin Med Phys ; 22(1): 165-173, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33326695

ABSTRACT

OBJECTIVES: To evaluate the effect of interruption in radiotherapy due to machine failure in patients and medical institutions using machine failure risk analysis (MFRA). MATERIAL AND METHODS: The risk of machine failure during treatment is assigned to three scores (biological effect, B; occurrence, O; and cost of labor and repair parts, C) for each type of machine failure. The biological patient risk (BPR) and the economic institution risk (EIR) are calculated as the product of B and O ( B × O ) and C and O ( C × O ), respectively. The MFRA is performed in two linear accelerators (linacs). RESULT: The multileaf collimator (MLC) fault has the highest BPR and second highest EIR. In particular, TrueBeam has a higher BPR and EIR for MLC failures. The total EIR in TrueBeam was significantly higher than that in Clinac iX. The minor interlock had the second highest BPR, whereas a smaller EIR. Meanwhile, the EIR for the LaserGuard fault was the highest, and that for the monitor chamber fault was the second highest. These machine failures occurred in TrueBeam. The BPR and EIR should be evaluated for each linac. Further, the sensitivity of the BPR, it decreased with higher T 1 / 2 and α/ß values. No relative difference is observed in the BPR for each machine failure when T 1 / 2 and α/ß were varied. CONCLUSION: The risk faced by patients and institutions in machine failure may be reduced using MFRA. ADVANCES IN KNOWLEDGE: For clinical radiotherapy, interruption can occur from unscheduled downtime with machine failures. Interruption causes sublethal damage repair. The current study evaluated the effect of interruption in radiotherapy owing to machine failure on patients and medical institutions using a new method, that is, machine failure risk analysis.


Subject(s)
Particle Accelerators , Radiotherapy, Intensity-Modulated , Humans , Radiotherapy Dosage , Radiotherapy Planning, Computer-Assisted , Risk Assessment
19.
Stat Methods Med Res ; 30(3): 892-903, 2021 03.
Article in English | MEDLINE | ID: mdl-33349166

ABSTRACT

The delayed outcome issue is common in early phase dose-finding clinical trials. This problem becomes more intractable in phase I/II clinical trials because both toxicity and efficacy responses are subject to the delayed outcome issue. The existing methods applying for the phase I trials cannot be used directly for the phase I/II trial due to a lack of capability to model the joint toxicity-efficacy distribution. In this paper, we propose a conditional weighted likelihood (CWL) method to circumvent this issue. The key idea of the CWL method is to decompose the joint probability into the product of marginal and conditional probabilities and then weight each probability based on each patient's actual follow-up time. The CWL method makes no parametric model assumption on either the dose-response curve or the toxicity-efficacy correlation and therefore can be applied to any existing phase I/II trial design. Numerical trial applications show that the proposed CWL method yields desirable operating characteristics.


Subject(s)
Research Design , Bayes Theorem , Dose-Response Relationship, Drug , Humans , Likelihood Functions , Maximum Tolerated Dose
SELECTION OF CITATIONS
SEARCH DETAIL
...