Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 122
Filter
1.
BMC Chem ; 18(1): 164, 2024 Sep 09.
Article in English | MEDLINE | ID: mdl-39252071

ABSTRACT

Recently, phytochemicals play an important role in cancer management. Curcumin (CUR), a natural phytochemical, has been co-administered with widespread chemotherapeutic agents such as doxorubicin (DOX) due to its excellent antitumor activity and the ability to lower the adverse reactions and drug resistance cells associated with DOX use. The present study aims to determine DOX and CUR utilizing a label-free, selective, sensitive, and precise synchronous spectrofluorimetric method. The obvious overlap between the emission spectra of DOX and CUR prevents simultaneous estimation of both analytes by conventional spectrofluorimetry. To solve such a problem, synchronous spectrofluorimetric measurements were recorded at Δλ = 20 nm, utilizing ethanol as a diluting solvent. Curcumin was recorded at 442.5 nm, whereas DOX was estimated at 571.5 nm, each at the zero-crossing point of the other one. The developed method exhibited linearity over a concentration range of 0.04-0.40 µg/mL for CUR and 0.05-0.50 µg/mL for DOX, respectively. The values of limit of detection (LOD) were 0.009 and 0.012 µg/mL, while the values of limit of quantitation (LOQ) were 0.028 and 0.037 µg/mL for CUR and DOX, respectively. The adopted approach was carefully validated according to the guidelines of ICH Q2R1. The method was utilized to estimate CUR and DOX in laboratory-prepared mixtures and human biological matrices. It showed a high percentage of recoveries with minimal RSD values. Additionally, three different tools were utilized to evaluate the greenness of the proposed approach.

2.
Arch Toxicol ; 98(10): 3337-3350, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39115690

ABSTRACT

Synthetic cannabinoid receptor agonists (SCRAs) are a class of synthetic drugs that mimic and greatly surpass the effect of recreational cannabis. Acute SCRA intoxications are in general difficult to assess due to the large number of compounds involved, differing widely in both chemical structure and pharmacological properties. The rapid pace of emergence of unknown SCRAs hampers on one hand the timely availability of methods for identification and quantification to confirm and estimate the extent of the SCRA intoxication. On the other hand, lack of knowledge about the harm potential of emerging SCRAs hampers adequate interpretation of serum concentrations in intoxication cases. In the present study, a novel comparative measure for SCRA intoxications was evaluated, focusing on the cannabinoid activity (versus serum concentrations), which can be measured in serum extracts with an untargeted bioassay assessing ex vivo CB1 activity. Application of this principle to a series of SCRA intoxication cases (n = 48) allowed for the determination of activity equivalents, practically entailing a conversion from different SCRA serum concentrations to a JWH-018 equivalent. This allowed for the interpretation of both mono- (n = 34) and poly-SCRA (n = 14) intoxications, based on the intrinsic potential of the present serum levels to exert cannabinoid activity (cf. pharmacological/toxicological properties). A non-distinctive toxidrome was confirmed, showing no relation to CB1 activity. The JWH-018 equivalent was partly related to the poison severity score (PSS) and causality of the clinical intoxication elicited by the SCRA. Altogether, this equivalent concept allows to comparatively and timely interpret (poly-)SCRA intoxications based on CB1 activity.


Subject(s)
Cannabinoid Receptor Agonists , Indoles , Naphthalenes , Humans , Indoles/blood , Indoles/toxicity , Naphthalenes/toxicity , Naphthalenes/blood , Cannabinoid Receptor Agonists/toxicity , Cannabinoid Receptor Agonists/blood , Adult , Male , Female , Receptor, Cannabinoid, CB1/agonists , Cannabinoids/toxicity , Cannabinoids/blood , Young Adult , Illicit Drugs/blood , Illicit Drugs/toxicity , Biological Assay , Middle Aged
3.
Nutrients ; 16(16)2024 Aug 21.
Article in English | MEDLINE | ID: mdl-39203924

ABSTRACT

Essential trace minerals are vital for general human health and athletic performance. Zinc (Zn) plays critical roles in several biochemical processes in exercise physiology, especially during intense physical exercise. This research aimed to analyze erythrocyte, platelet, plasma and urine Zn concentrations among men's and female soccer players over a sports season. A total of 22 male soccer players (20.61 ± 2.66 years; 71.50 ± 5.93 kg) and 24 female soccer players (23.37 ± 3.95 years; 59.58 ± 7.17 kg) participated in this longitudinal quasi-experimental study. Three assessments were carried out over the season: 1st evaluation: first week of training (August); 2nd assessment: middle of the season, between the end of the first and second round (January) and 3rd assessment: last week of training (May/June). In all evaluations extracellular (plasma and urine) and intracellular (erythrocytes and platelets) Zn concentrations were determined, as well as physical fitness and several blood parameters. Inductively coupled plasma mass spectrometry was used to measure Zn concentrations. Plasma and urinary concentrations were higher among male soccer players (p < 0.05) while erythrocyte and platelet Zn concentrations were higher in the female soccer players (p < 0.05). Additionally, variations in urinary and platelet Zn concentrations were observed over the season. The differences could be related to muscle mass, muscle damage or the specific sport's physical demands.


Subject(s)
Blood Platelets , Erythrocytes , Soccer , Zinc , Humans , Soccer/physiology , Zinc/blood , Zinc/urine , Female , Male , Young Adult , Erythrocytes/metabolism , Erythrocytes/chemistry , Blood Platelets/metabolism , Adult , Athletes , Longitudinal Studies , Adolescent , Physical Fitness/physiology
4.
Crit Rev Anal Chem ; : 1-27, 2024 Aug 18.
Article in English | MEDLINE | ID: mdl-39155524

ABSTRACT

Psychoactive substances pose significant challenges and dangers to society due to their impact on perception, mood, and behavior, leading to health and life disturbances. The consumption of these substances is largely influenced by their legal status, cultural norms, and religious beliefs. Continuous development and chemical modifications of psychoactive substances complicate their control, detection, and determination in the human body. This paper addresses the terminological distinctions between psychoactive and psychotropic substances and drugs. It provides a comprehensive review of analytical methods used to identify and quantify 25 psychoactive substances in various biological matrices, including blood, urine, saliva, hair, and nails. The analysis categorizes these substances into four primary groups: stimulants, neuroleptics, depressants, and hallucinogens. The study specifically focuses on chromatographic and spectrophotometric methods, as well as other novel analytical techniques. Methodology includes a review of scientific articles containing validation studies of these methods and innovative approaches to psychoactive substance determination. Articles were sourced from the PubMed database, with most research originating from the twenty first century. The paper discusses the limits of detection and quantitation for each method, along with current trends and challenges in the analytical determination of evolving psychoactive substances.

5.
Article in English | MEDLINE | ID: mdl-38980477

ABSTRACT

Pollutant biomonitoring demands analytical methods to cover a wide range of target compounds, work with minimal sample amounts, and apply least invasive and reproducible sampling procedures. We developed a method to analyse 68 bioaccumulative organic pollutants in three seabird matrices: plasma, liver, and stomach oil, representing different exposure phases. Extraction efficiency was assessed based on recoveries of spiked surrogate samples, then the method was applied to environmental samples collected from Scopoli's shearwater (Calonectris diomedea). Extraction was performed in an ultrasonic bath, purification with Florisil cartridges (5 g, 20 mL), and analysis by GC-Orbitrap-MS. Quality controls at 5 ng yielded satisfactory recoveries (80-120%) although signal intensification was found for some compounds. The method permitted the detection of 28 targeted pollutants in the environmental samples. The mean sum of organic pollutants was 4.25 ± 4.83 ng/g in plasma, 1634 ± 2990 ng/g in liver, and 233 ± 111 ng/g in stomach oil (all wet weight). Pollutant profiles varied among the matrices, although 4,4'-DDE was the dominant compound overall. This method is useful for pollutant biomonitoring in seabirds and discusses the interest of analysing different matrices.

6.
J Biomed Mater Res B Appl Biomater ; 112(8): e35449, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39032135

ABSTRACT

The limited availability of a healthy donor cornea and the incidence of allograft failure led researchers to seek other corneal substitutes via tissue engineering. Exploring the trend of clinical trials of the cornea with the vision of tissue engineering provides an opportunity to reveal future potential corneal substitutes. The results of this clinical trial are beneficial for future study designs to overcome the limitations of current therapeutic approaches. In this study, registered clinical trials of bio-based approaches were reviewed for corneal regeneration on March 22, 2024. Among the 3955 registered trials for the cornea, 392 trials were included in this study, which categorized in three main bio-based scaffolds, stem cells, and bioactive macromolecules. In addition to the acellular cornea and human amniotic membrane, several bio-based materials have been introduced as corneal substrates such as collagen, fibrin, and agarose. However, some synthetic materials have been introduced in recent studies to improve the desired properties of bio-based scaffolds for corneal substitutes. Nevertheless, new insights into corneal regenerative medicine have recently emerged from cell sheets with autologous and allogeneic cell sources. In addition, the future perspective of corneal regeneration is described through a literature review of recent experimental models.


Subject(s)
Clinical Trials as Topic , Cornea , Corneal Diseases , Tissue Engineering , Humans , Corneal Diseases/therapy , Cornea/metabolism , Tissue Scaffolds/chemistry , Regeneration , Animals , Regenerative Medicine , Corneal Transplantation
7.
J Pharm Biomed Anal ; 248: 116275, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-38959760

ABSTRACT

In this study we report on efforts to develop an enantioselective method for the detection of the drug of abuse clephedrone (1-(4-chlorophenyl)-2-(methylamino)-1-propanone (4-chloromethcathinone, also known as 4-CMC or para-chloro-methcathinone)) and its phase-1 metabolites in human biological fluids. The major goal is not to only report results, but primarily to emphasize the various challenges encountered when developing a reliable analytical method for the detection and quantification of novel psychoactive substances (NPS) and their metabolites in the matrix of interest. Such challenges start with the lack of chemical stability of some NPS in biological matrices. Additionally, most often metabolites are unavailable in pure form to serve as analytical standards, just as deuterated standards for native drugs and metabolites are frequently not commercially available. Furthermore, if the NPS is chiral, enantiomerically pure standards with known absolute stereochemistry are required, as well as a stereochemical stability of a drug and its metabolites becomes an issue. In addition, the chirality of a NPS significantly increases the number of species to be detected in the sample and thus challenges the development of an adequate separation method. These issues are shortly addressed, and some solutions offered in this manuscript.


Subject(s)
Psychotropic Drugs , Stereoisomerism , Psychotropic Drugs/analysis , Psychotropic Drugs/chemistry , Humans , Propiophenones/chemistry , Propiophenones/analysis , Illicit Drugs/analysis , Illicit Drugs/chemistry , Substance Abuse Detection/methods
8.
Arch Toxicol ; 98(10): 3231-3240, 2024 Oct.
Article in English | MEDLINE | ID: mdl-38918214

ABSTRACT

The toxicologist ascertains drug assumptions in case of paediatric intoxications and death for overdose. The analytical approach consists of initially screening and consequently confirming drug positivity. We developed a toxicological screening method and validated its use comparing the results with a LC-MS/MS analysis. The method identifies 751 drugs and metabolites (704 in positive and 47 in negative mode). Chromatographic separation was achieved eluting mobile phase A (10 mM ammonium formate) and B (0.05% formic acid in methanol) in gradient on Kinetex Phenyl-Hexyl (50 × 4.6 mm, 2.6 µm) with 0.7 mL/min flow rate for 11 min. Multiple Reaction Monitoring (MRM) was adopted as survey scan and, after an Information-Dependent Analysis (IDA) (threshold of 30,000 for positive and 1000 cps for negative mode), the Enhanced Product Ion (scan range: 50-700 amu) was triggered. The MS/MS spectrum generated was compared with one of the libraries for identification. Data processing was optimised through creation of rules. Sample preparation, mainly consisting of deproteinization and enzymatic hydrolysis, was set up for different matrices (blood, urine, vitreous humor, synovial fluid, cadaveric tissues and larvae). Cut-off for most analytes resulted in the lowest concentration tested. When the results from the screening and LC-MS/MS analysis were compared, an optimal percentage of agreement (100%) was assessed for all matrices. Method applicability was evaluated on real paediatric intoxications and forensic cases. In conclusion, we proposed a multi-targeted, fast, sensitive and specific MRM-IDA-EPI screening having an extensive use in different toxicological fields.


Subject(s)
Forensic Toxicology , Tandem Mass Spectrometry , Tandem Mass Spectrometry/methods , Forensic Toxicology/methods , Humans , Animals , Chromatography, Liquid/methods , Zebrafish , Pharmaceutical Preparations/analysis , Pharmaceutical Preparations/chemistry , Reproducibility of Results , Drug Overdose/diagnosis
9.
J Pharm Biomed Anal ; 246: 116203, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38759320

ABSTRACT

The ubiquity of perfluoroalkyl substances has raised concerns about the unintended consequences of PFAS exposure on human health. In the present study, an eco-friendly ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) method was developed for the simultaneous determination of 17 PFAS in human serum and semen samples. QuEChERS salts MgSO4:NaCl 4:1 (w/w) were used for the extraction. The separation of analytes was performed on an ACQUITY BEH C18 column (100 × 2.1 mm, 1.7 µm), using water:methanol 95:5 and methanol as mobile phases A and B, respectively, both containing 2 mM ammonium acetate. Multiple reaction monitoring (MRM) in negative ion mode was used, selecting two transitions for each analyte, except for perfluorobutanoic acid (PFBA) and perfluoropentanoic acid (PFPeA). The analytical method was validated according to the Organization of Scientific Area Committees (OSAC) for Forensic Sciences guidelines and AGREE approach software was used to evaluate the greenness of the method. The developed procedure was applied to the analysis of 10 paired human serum and semen samples, proving the suitability in high throughput laboratories due to the easy preparation and the reduced volume of toxic solvents. Moreover, it allows to perform further investigation on the correlation between serum and semen PFAS concentration, focusing on male reproductive system correlated pathologies, such as male infertility.


Subject(s)
Fluorocarbons , Semen , Tandem Mass Spectrometry , Humans , Tandem Mass Spectrometry/methods , Fluorocarbons/blood , Fluorocarbons/analysis , Chromatography, High Pressure Liquid/methods , Male , Semen/chemistry , Green Chemistry Technology/methods , Reproducibility of Results , Environmental Pollutants/blood , Environmental Pollutants/analysis , Limit of Detection , Liquid Chromatography-Mass Spectrometry
10.
Phytochem Anal ; 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38623624

ABSTRACT

INTRODUCTION: Skin cancer poses a significant health risk globally, necessitating effective and safe therapeutic interventions. Epigallocatechin-3-gallate (EGCG) from green tea and rosmarinic acid (RA) from herbs like rosemary offer promising anticancer properties. Combining these compounds may enhance their effectiveness, prompting the need for a reliable analytical method to quantify them. OBJECTIVE: Herein, we present the development and validation of a high-performance thin-layer chromatography (HPTLC) method for concurrent quantification of EGCG and RA in lipid-based nanoparticles and biological samples. METHODOLOGY: The method underwent optimisation through design of experiments (DoE), resulting in the establishment of robust chromatographic conditions. The separation process utilised aluminium HPTLC plates coated with silica gel 60 F254 as the stationary phase, with the mobile phase comprising ethyl acetate, toluene, formic acid, and methanol in a ratio of 4:4:1:1 v/v. RESULTS: The retention factor (Rf) values obtained were 0.38 for EGCG and 0.61 for RA. The method demonstrated linearity over a range of 100-500 ng/band for both compounds with excellent correlation coefficients. Limits of detection and quantification were determined, indicating high sensitivity. Precision evaluations revealed relative standard deviation below 2%, ensuring method reproducibility. Recovery assays in lipid-based nanoparticles, plasma, and urine samples demonstrated excellent recoveries (96.2%-102.1%). Forced degradation studies revealed minimal degradation under various stress conditions, with photolytic degradation showing the least impact. CONCLUSION: The developed HPTLC method offers a rapid, sensitive, and reliable approach for quantifying EGCG and RA, laying the groundwork for their further investigation as anticancer agents alone and in combination therapies.

11.
Environ Geochem Health ; 46(5): 150, 2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38578528

ABSTRACT

This study examined levels of lead (Pb), cadmium (Cd), chromium (Cr), copper (Cu), mercury (Hg), and arsenic (As) in blood, hair, and nails of 18 brick kiln workers from three brick kiln units located around a metropolitan city, Lahore, Pakistan. All the trace elements except Hg and As were detected in the studied matrices of Brick kiln workers. In general, brick kiln workers reflect the highest concentration of Pb, followed by Cd, Cr, and Cu. Of the pollutants analyzed, Pb has the highest mean (min-max) concentrations at 0.35 (0.09-0.65) in blood (µg/mL), 0.34 (0.14-0.71) in hairs (µg/g), and 0.44 (0.32-0.59) in nails (µg/g) of brick kiln workers. Following Pb, the trend was Cd 0.17 (0.10-0.24), Cu 0.11(0.03-0.27), and Cr 0.07 (0.04-0.08) in blood (µg/mL), followed by Cr 0.11(0.05-0.20), Cd 0.09 (0.03-0.13), and Cu 0.08 (0.04-0.16) in hairs (µg/g) and Cu 0.16 (0.05-0.36), Cd 0.13 (0.11-0.17), and Cr 0.10 (0.05-0.14) in nails (µg/g) respectively. Relatively higher concentrations of metals and other trace elements in blood depicts recent dietary exposure. The difference of trace elements except Pb was non-significant (P > 0.05) among studied matrices of workers as well as between Zigzag and traditional exhaust-based brick kilns. The concentrations of Pb, Cd and Cr in blood of brick kilns workers are higher than the values reported to cause health problems in human populations. It is concluded that chronic exposure to metals and other trace elements may pose some serious health risks to brick kiln workers which needs to be addressed immediately to avoid future worst-case scenarios.


Subject(s)
Arsenic , Mercury , Metals, Heavy , Trace Elements , Humans , Trace Elements/analysis , Metals, Heavy/analysis , Cadmium/analysis , Pakistan , Lead , Chromium/analysis , Arsenic/toxicity , Arsenic/analysis , Environmental Monitoring
12.
Pharmaceuticals (Basel) ; 17(2)2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38399464

ABSTRACT

In 2023, hexahydrocannabinol (HHC) attracted the attention of international agencies due to its rapid spread in the illegal market. Although it was discovered in 1940, less is known about the pharmacology of its two naturally occurring epimers, 9(R)-HHC and 9(S)-HHC. Thus, we aimed to investigate the disposition of hexahydrocannabinol epimers and their metabolites in whole blood, urine and oral fluid following a single controlled administration of a 50:50 mixture of 9(R)-HHC and 9(S)-HHC smoked with tobacco. To this end, six non-user volunteers smoked 25 mg of the HHC mixture in 500 mg of tobacco. Blood and oral fluid were sampled at different time points up to 3 h after the intake, while urine was collected between 0 and 2 h and between 2 and 6 h. The samples were analyzed with a validated HPLC-MS/MS method to quantify 9(R)-HHC, 9(S)-HHC and eight metabolites. 9(R)-HHC showed the highest Cmax and AUC0-3h in all the investigated matrices, with an average concentration 3-fold higher than that of 9(S)-HHC. In oral fluid, no metabolites were detected, while they were observed as glucuronides in urine and blood, but with different profiles. Indeed, 11nor-9(R)-HHC was the most abundant metabolite in blood, while 8(R)OH-9(R) HHC was the most prevalent in urine. Interestingly, 11nor 9(S) COOH HHC was detected only in blood, whereas 8(S)OH-9(S) HHC was detected only in urine.

13.
Talanta ; 270: 125613, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38159351

ABSTRACT

Solid-phase microextraction (SPME) has gained attention as a simple, fast, and non-exhaustive extraction technique, as its unique features enable its use for the extraction of many classes of drugs from biological matrices. This sample-preparation approach consolidates sampling and sample preparation into a single step, in addition to providing analyte preconcentration and sample clean-up. These features have helped SPME become an integral part of several analytical protocols for monitoring drug concentrations in human matrices in clinical, toxicological, and forensic medicine studies. Over the years, researchers have continued to develop the SPME technique, resulting in the introduction of novel sorbents and geometries, which have resulted in improved extraction efficiencies. This review summarizes developments and applications of SPME published between 2016 and 2022, specifically in relation to the analysis of central nervous system drugs, drugs used to treat cardiovascular disorders and bacterial infections, and drugs used in immunosuppressive and anticancer therapies.


Subject(s)
Forensic Medicine , Solid Phase Microextraction , Humans , Solid Phase Microextraction/methods , Specimen Handling
14.
Mar Pollut Bull ; 199: 115967, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38159385

ABSTRACT

In the last years, progestins have raised special concerns for their documented negative effects on aquatic species, yet little is known about their environmental levels in surface waters and bioaccumulation in the trophic web. This study aimed to 1) adapt an extraction method for quantifying progestins in freeze-dried matrices, 2) validate the analytical procedure for three matrices: bivalve, polychaete, and crustacean, and 3) characterize levels of the four most prescribed synthetic progestins in key species across three Portuguese estuaries. Through the validated method, progestins were only quantifiable for the crustacean. Values were generally low, peaking with drospirenone values in Ria de Aveiro (1.33 ± 0.26 ng/g ww) and Tagus estuary (1.42 ± 0.55 ng/g ww), while Ria Formosa exhibited the lowest progestin concentrations (< 1 ng/g ww). This study enabled the development of a precise extraction and analytical method for quantifying steroid hormones in three distinct biological matrices.


Subject(s)
Progestins , Water Pollutants, Chemical , Environmental Monitoring/methods , Estuaries , Portugal , Water Pollutants, Chemical/analysis , Steroids
16.
J Pharm Anal ; 13(5): 442-462, 2023 May.
Article in English | MEDLINE | ID: mdl-37305786

ABSTRACT

Benzodiazepines (BDZs) are used in clinics for anxiolysis, anticonvulsants, sedative hypnosis, and muscle relaxation. They have high consumptions worldwide because of their easy availability and potential addiction. They are often used for suicide or criminal practices such as abduction and drug-facilitated sexual assault. The pharmacological effects of using small doses of BDZs and their detections from complex biological matrices are challenging. Efficient pretreatment methods followed by accurate and sensitive detections are necessary. Herein, pretreatment methods for the extraction, enrichment, and preconcentration of BDZs as well as the strategies for their screening, identification, and quantitation developed in the past five years have been reviewed. Moreover, recent advances in various methods are summarized. Characteristics and advantages of each method are encompassed. Future directions of the pretreatment and detection methods for BDZs are also reviewed.

17.
Curr Pharm Des ; 29(15): 1166-1172, 2023 06 06.
Article in English | MEDLINE | ID: mdl-37190804

ABSTRACT

Moxifloxacin (MOX) is a fourth-generation fluoroquinolone used in the form of tablets, infusion solutions and ophthalmic solutions. It does not have a physical-chemical or microbiological analytical method described in an official compendium. However, the literature shows some analysis methods for pharmaceuticals and biological matrices. In this context, the objective is to show the analytical methods present in the literature for the investigation of MOX by physical-chemical and microbiological techniques, as well as discussing them according to the requirements of current pharmaceutical analyses and green analytical chemistry. Among the physical-chemical methods present in the literature for MOX evaluation, 33% are HPLC, 21% are UV-Vis and 17% are capillary electrophoresis. On the other hand, among the microbiological methods, all of them are based on diffusion in agar. There is still scope in the literature to incorporate new and improved analytical methods for MOX evaluation, which adopt the concepts of green and sustainable analytical chemistry, either by using less (or not using) toxic organic solvents, reducing waste generation or even reducing the analysis time according to the intended objectives.


Subject(s)
Microbiological Techniques , Humans , Moxifloxacin , Chromatography, High Pressure Liquid
18.
Article in English | MEDLINE | ID: mdl-37209457

ABSTRACT

Alterations in reduced and oxidized glutathione (GSH/GSSG) levels represent an important marker for oxidative stress and potential disease progression in toxicological research. Since GSH can be oxidized rapidly, using a stable and reliable method for sample preparation and GSH/GSSG quantification is essential to obtain reproducible data. Here we describe an optimised sample processing combined with a liquid chromatography-tandem mass spectrometry (LC-MS/MS) method, validated for different biological matrices (lysates from HepG2 cells, C. elegans, and mouse liver tissue). To avoid autoxidation of GSH, samples were treated with the thiol-masking agent N-ethylmaleimide (NEM) and sulfosalicylic acid (SSA) in a single step. With an analysis time of 5 min, the developed LC-MS/MS method offers simultaneous determination of GSH and GSSG at high sample throughput with high sensitivity. This is especially interesting with respect of screening for oxidative and protective properties of substances in in vitro and in vivo models, e.g. C. elegans. In addition to method validation parameters (linearity, limit of detection (LOD), limit of quantification (LOQ), recovery, interday, intraday), we verified the method by using menadione and L-buthionine-(S,R)-sulfoximine (BSO) as well established modulators of cellular GSH and GSSG concentrations. Thereby menadione proved to be a reliable positive control also in C. elegans.


Subject(s)
Glutathione , Tandem Mass Spectrometry , Mice , Animals , Glutathione/metabolism , Glutathione Disulfide/metabolism , Chromatography, Liquid/methods , Tandem Mass Spectrometry/methods , Vitamin K 3/analysis , Caenorhabditis elegans/metabolism , Oxidation-Reduction
19.
Int J Toxicol ; 42(4): 352-364, 2023.
Article in English | MEDLINE | ID: mdl-36630687

ABSTRACT

Depression is one of the most prevalent but severe of mental disorders, affecting thousands of individuals across the globe. Depression, in its most extreme form, may result in self-harm and an increased likelihood of suicide. Antidepressant drugs are first-line medications to treat mental disorders. Unfortunately, these medications are also prescribed for other in- and off-label conditions, such as deficit/hyperactivity disorders, attention disorders, migraine, smoking cessation, eating disorders, fibromyalgia, pain, and insomnia. This results in an increase in the use of antidepressant medications, leading to clinical and forensic overdose cases that could be either accidental or deliberate. The findings revealed that people who used antidepressants had a 33% greater chance of dying sooner than expected, compared to those who did not take the medications. Analytical techniques for precisely identifying and detecting antidepressants and their metabolic products in a variety of biological matrices are greatly needed to be developed and made available. Hence, this study attempts to discuss various analytical techniques used to identify and determine antidepressants in various biological matrices, which include urine, blood, oral fluid (saliva), and tissues, which are commonly encountered in clinical and forensic science laboratories.


Subject(s)
Antidepressive Agents , Humans , Antidepressive Agents/analysis , Antidepressive Agents/pharmacokinetics , Forensic Sciences
20.
Molecules ; 28(2)2023 Jan 14.
Article in English | MEDLINE | ID: mdl-36677902

ABSTRACT

Benzisothiazolinone (BIT), a biocide widely used as a preservative in household cleaning and personal care products, is cytotoxic to lung cells and a known skin allergen in humans, which highlights the importance of assessing its toxicity and pharmacokinetics. In this study, a simple, sensitive, and accurate LC−MS/MS method for the quantification of BIT in rat plasma, urine, or tissue homogenates (50 µL) using phenacetin as an internal standard was developed and validated. Samples were extracted with ethyl acetate and separated using a Kinetex phenyl−hexyl column (100 × 2.1 mm, 2.6 µm) with isocratic 0.1% formic acid in methanol and distilled water over a run time of 6 min. Positive electrospray ionization with multiple reaction monitoring transitions of m/z 152.2 > 134.1 for BIT and 180.2 > 110.1 for phenacetin was used for quantification. This assay achieved good linearity in the calibration ranges of 2−2000 ng/mL (plasma and urine) and 10−1000 ng/mL (tissue homogenates), with r ≥ 0.9929. All validation parameters met the acceptance criteria. BIT pharmacokinetics was evaluated via an intravenous and dermal application. This is the first study that evaluated BIT pharmacokinetics in rats, providing insights into the relationship between BIT exposure and toxicity and a basis for future risk assessment studies in humans.


Subject(s)
Disinfectants , Tandem Mass Spectrometry , Humans , Rats , Animals , Chromatography, Liquid/methods , Tandem Mass Spectrometry/methods , Phenacetin , Reproducibility of Results
SELECTION OF CITATIONS
SEARCH DETAIL