Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
Add more filters










Publication year range
1.
Medicina (Kaunas) ; 59(11)2023 Nov 01.
Article in English | MEDLINE | ID: mdl-38003985

ABSTRACT

Background and Objectives: One's quality of life depends on overall health, and in particular, oral health, which has been and continues to become a public health issue through frequent manifestations in various forms, from simple oral stomatitis (inflammations of the oral cavity) to the complicated oral health pathologies requiring medical interventions and treatments (caries, pulp necrosis and periodontitis). The aim of this study focused on the preparation and evaluation of vitamins (vitamin A, B1 and B6) incorporated into several silicone-based lining materials as a new alternative to therapeutically loaded materials designed as oral cavity lining materials in prosthodontics. Materials and Methods: Silicone-based liners containing vitamins were prepared by mixing them in solution and becoming crosslinked, and then they were characterized using Fourier-transform infrared (FT-IR) spectroscopy to confirm the incorporation of the vitamins into the silicone network; scanning electron microscopy (SEM) to evidence the morphology of the liner materials; dynamic vapor sorption (DVS) to evaluate their internal hydrophobicity, swelling in environments similar to biological fluids and mechanical test to demonstrate tensile strength; MTT to confirm their biocompatibility on normal cell cultures (fibroblast) and mucoadhesivity; and histopathological tests on porcine oral mucosa to highlight their potential utility as soft lining materials with improved efficiency. Results: FT-IR analysis confirmed the structural peculiarities of the prepared lining materials and the successful incorporation of vitamins into the silicone matrix. The surface roughness of the materials was lower than 0.2 µm, while in cross-section, the lining materials showed a compact morphology. It was found that the presence of vitamins induced a decrease in the main mechanical parameters (strength and elongation at break, Young's modulus) and hydrophobicity, which varied from one vitamin to another. A swelling degree higher than 8% was found in PBS 6.8 (artificial saliva) and water. Hydrolytic stability studies in an artificial saliva medium showed the release of low concentrations of silicone and vitamin fragments in the first 24 h, which increased the swelling behavior of the materials, diffusion and solubility of the vitamins. The microscopic images of fibroblast cells incubated with vitamin liners revealed very good biocompatibility. Also, the silicone liners incorporating the vitamins showed good mucoadhesive properties. The appearance of some pathological disorders with autolysis processes was more pronounced in the case of vitamin A liners. Conclusions: The addition of the vitamins was shown to have a beneficial effect that was mainly manifested as increased biocompatibility, hydrolytic stability and mucoadhesiveness with the mucosa of the oral cavity and less of an effect on the mechanical strength. The obtained lining materials showed good resistance in simulated biological media but caused a pronounced autolysis phenomenon, as revealed by histopathological examination, showing that these materials may have broad implications in the treatment of oral diseases.


Subject(s)
Denture Liners , Silicone Elastomers , Animals , Swine , Silicone Elastomers/chemistry , Vitamins , Vitamin A , Mouth Mucosa , Quality of Life , Saliva, Artificial , Spectroscopy, Fourier Transform Infrared , Materials Testing , Vitamin K
2.
Toxics ; 11(8)2023 Aug 04.
Article in English | MEDLINE | ID: mdl-37624177

ABSTRACT

The removal yield of organic substances present in water depends on the environmental conditions, on the chemical composition of the water and on the chemical substance dissolved in the water, which constitutes the substrate of the metabolic activities of the microalgae that use these substances in the biochemical reactions of cellular enzyme complexes. o-Chlorobenzylidene malononitrile (CS, to use its military designation) was synthesized in-house, for research purposes, by a condensing reaction between o-chlorobenzaldehide and malononitrilein the presence of diethylamine. The detection, identification and confirmation of o-chlorobenzylidenemalononitrile (coded CBM in this experimental study) was performed using gas chromatography-mass spectrometry (GC-MS) and the purity of CBM was 99%. The biodegradation capacity in the samples that contained the biological suspension, after 24 h and 96 h of incubation, was determined via GC-MS analysis, and no evidence of the presence of CBM or some metabolites of CBM was detected. In the parallel samples, a hydrolysis process of CBM at room temperature, without biological treatment, revealed two main metabolites, malononitrile and o-chlorobenzaldehyde, respectively. This study is focused on evaluating the biodegradation capacity of o-chlorobenzylidene malononitrile in the presence of a biological material, culture of Chlorella sp., in comparison with a classical hydrolysis process. The tests performed indicate that the suspension of Chlorella sp. consumed the entire amount of CBM and metabolites from the analyzed samples. The tests prove that the biological material can be used to decontaminate the affected areas.

3.
Int J Mol Sci ; 24(4)2023 Feb 08.
Article in English | MEDLINE | ID: mdl-36834775

ABSTRACT

Metal-organic frameworks (MOFs) attract growing interest in biomedical applications. Among thousands of MOF structures, the mesoporous iron(III) carboxylate MIL-100(Fe) (MIL stands for the Materials of Lavoisier Institute) is among the most studied MOF nanocarrier, owing to its high porosity, biodegradability, and lack of toxicity. Nanosized MIL-100(Fe) particles (nanoMOFs) readily coordinate with drugs leading to unprecedented payloads and controlled release. Here, we show how the functional groups of the challenging anticancer drug prednisolone influence their interactions with the nanoMOFs and their release in various media. Molecular modeling enabled predicting the strength of interactions between prednisolone-bearing or not phosphate or sulfate moieties (PP and PS, respectively) and the oxo-trimer of MIL-100(Fe) as well as understanding the pore filling of MIL-100(Fe). Noticeably, PP showed the strongest interactions (drug loading up to 30 wt %, encapsulation efficiency > 98%) and slowed down the nanoMOFs' degradation in simulated body fluid. This drug was shown to bind to the iron Lewis acid sites and was not displaced by other ions in the suspension media. On the contrary, PS was entrapped with lower efficiencies and was easily displaced by phosphates in the release media. Noticeably, the nanoMOFs maintained their size and faceted structures after drug loading and even after degradation in blood or serum after losing almost the totality of the constitutive trimesate ligands. Scanning electron microscopy with high annular dark field (STEM-HAADF) in conjunction with X-Ray energy-dispersive spectrometry (XEDS) was a powerful tool enabling the unraveling of the main elements to gain insights on the MOF structural evolution after drug loading and/or upon degradation.


Subject(s)
Antineoplastic Agents , Metal-Organic Frameworks , Iron/chemistry , Metal-Organic Frameworks/chemistry , Prednisolone
4.
Angew Chem Int Ed Engl ; 62(10): e202215427, 2023 03 01.
Article in English | MEDLINE | ID: mdl-36479797

ABSTRACT

Bioorthogonal chemistry has inspired a new subarea of chemistry providing a powerful tool to perform novel biocompatible chemospecific reactions in living systems. Following the premise that they do not interfere with biological functions, bioorthogonal reactions are increasingly applied in biomedical research, particularly with respect to genetic encoding systems, fluorogenic reactions for bioimaging, and cancer therapy. This Minireview compiles recent advances in the use of heterogeneous catalysts for bioorthogonal reactions. The synthetic strategies of Pd-, Au-, and Cu-based materials, their applicability in the activation of caged fluorophores and prodrugs, and the possibilities of using external stimuli to release therapeutic substances at a specific location in a diseased tissue are discussed. Finally, we highlight frontiers in the field, identifying challenges, and propose directions for future development in this emerging field.


Subject(s)
Nanostructures , Prodrugs , Fluorescent Dyes/chemistry , Catalysis
5.
Bioengineering (Basel) ; 9(10)2022 Oct 10.
Article in English | MEDLINE | ID: mdl-36290508

ABSTRACT

Following an earlier study, we reexamined the latent heat of fusion during freezing at 5 K/min of twelve different pre-nucleated solute-laden aqueous solutions using a Differential Scanning Calorimeter (DSC) and correlated it with the amount of initially dissolved solids or solutes in the solution. In general, a decrease in DSC-measured heat release (in comparison to that of pure water, 335 mJ/mg) was observed with an increasing fraction of dissolved solids or solutes, as observed in the earlier study. In addition, the kinetics of ice crystallization was also obtained in three representative biological media by performing additional experiments at 1, 5 and 20 K/min. A model of ice crystallization based on the phase diagram of a water-NaCl binary solution and a modified Avrami-like model of kinetics was then developed and fit to the experimental data. Concurrently, a heat and mass transfer model of the freezing of a salt solution in a small container is also presented to account for the effect of the cooling rate as well as the solute concentration on the measured latent of freezing. This diffusion-based model of heat and mass transfer was non-dimensionalized, solved using a numerical scheme and compared with experimental results. The simulation results show that the heat and mass transfer model can predict (± 10%) the experimental results.

6.
ACS Appl Mater Interfaces ; 13(31): 36948-36957, 2021 Aug 11.
Article in English | MEDLINE | ID: mdl-34338517

ABSTRACT

This work is focused on the rational structural design of two isostructural Cu(II) nano-coordination polymers (NCPs) with uracil-1-acetic acid (UAcOH) (CP1n) and 5-fluorouracil-1-acetic acid (CP2n). Suitable single crystals for X-ray diffraction studies of CP1 and CP2 were prepared under hydrothermal conditions, enabling their structural determination as 1D-CP ladder-like polymeric structures. The control of the synthetic parameters allows their processability into water colloids based on nanoplates (CP1n and CP2n). These NCPs are stable in water at physiological pHs for long periods. However, interestingly, CP1n is chemically altered in culture media. These transformations provoke the partial release of its building blocks and the formation of new species, such as [Cu(UAcO)2(H2O)4]·2H2O (Cu(II)-complex), and species corresponding to the partial reduction of the Cu(II) centers. The cytotoxic studies of CP1n versus human pancreatic adenocarcinoma and human uveal melanoma cells show that CP1n produces a decrease in the cell viability, while their UAcOH and Cu(II)-complex are not cytotoxic under similar conditions. The copper reduction species detected in the hydrolysis of CP1n are closely related to the formation of the reactive oxygen species (ROS) detected in the cytotoxic studies. These results prompted us to prepare CP2n that was designed to improve the cytotoxicity by the substitution of UAcO by 5-FUAcO, taking into account the anticancer activity of the 5-fluorouracil moiety. The new CP2n has a similar behavior to CP1n both in water and in biological media. However, its subtle structural differences are vital in improving its cytotoxic activity. Indeed, the release during the hydrolysis of species containing the 5-fluorouracil moiety provokes a remarkable increase in cellular toxicity and a significant increase in ROS species formation.


Subject(s)
Antineoplastic Agents/pharmacology , Coordination Complexes/pharmacology , Polymers/pharmacology , Uracil/analogs & derivatives , Uracil/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Cell Line, Tumor , Cell Survival/drug effects , Coordination Complexes/chemical synthesis , Coordination Complexes/chemistry , Copper/chemistry , Humans , Polymers/chemical synthesis , Polymers/chemistry , Reactive Oxygen Species/metabolism , Uracil/chemical synthesis
7.
Beilstein J Nanotechnol ; 12: 665-679, 2021.
Article in English | MEDLINE | ID: mdl-34327112

ABSTRACT

The exploitation of silver nanoparticles (AgNPs) in biomedicine represents more than one third of their overall application. Despite their wide use and significant amount of scientific data on their effects on biological systems, detailed insight into their in vivo fate is still lacking. This study aimed to elucidate the biotransformation patterns of AgNPs following oral administration. Colloidal stability, biochemical transformation, dissolution, and degradation behaviour of different types of AgNPs were evaluated in systems modelled to represent biological environments relevant for oral administration, as well as in cell culture media and tissue compartments obtained from animal models. A multimethod approach was employed by implementing light scattering (dynamic and electrophoretic) techniques, spectroscopy (UV-vis, atomic absorption, nuclear magnetic resonance) and transmission electron microscopy. The obtained results demonstrated that AgNPs may transform very quickly during their journey through different biological conditions. They are able to degrade to an ionic form and again reconstruct to a nanoparticulate form, depending on the biological environment determined by specific body compartments. As suggested for other inorganic nanoparticles by other research groups, AgNPs fail to preserve their specific integrity in in vivo settings.

8.
J Appl Toxicol ; 41(12): 1980-1997, 2021 12.
Article in English | MEDLINE | ID: mdl-33982300

ABSTRACT

Despite the widespread use of silver nanoparticles (AgNPs) in different fields and the amount of investigations available, to date, there are many contradictory results on their potential toxicity. In the present study, extensively characterized 20-nm AgNPs were investigated using optimized protocols and standardized methods to test several toxicological endpoints in different cell lines. The agglomeration/aggregation state of AgNPs in culture media was measured by dynamic light scattering (DLS). DNA and chromosomal damage on BEAS-2B and RAW 264.7 cells were evaluated by comet and micronucleus assays, while oxidative DNA damage by modified comet assay and 8-oxodG/8-oxodA detection. We also investigated immunotoxicity and immunomodulation by cytokine release and NO production in RAW 264.7 and MH-S cells, with or without lipopolysaccharide (LPS) stimulus. Transmission electron microscope (TEM) analysis was used to analyze cellular uptake of AgNPs. Our results indicate different values of AgNPs hydrodynamic diameter depending on the medium, some genotoxic effect just on BEAS-2B and no or slight effects on function of RAW 264.7 and MH-S in absence or presence of LPS stimulus. This study highlights the relevance of using optimized protocols and multiple endpoints to analyze the potential toxicity of AgNPs and to obtain reliable and comparable results.


Subject(s)
In Vitro Techniques/methods , Metal Nanoparticles/toxicity , Silver/toxicity , Toxicity Tests/methods , Cell Line , Comet Assay , Micronucleus Tests
9.
Molecules ; 25(11)2020 Jun 02.
Article in English | MEDLINE | ID: mdl-32498254

ABSTRACT

The development of solid materials that deliver nitric oxide (NO) are of interest for several therapeutic applications. Nevertheless, due to NO's reactive nature, rapid diffusion and short half-life, reporting their NO delivery characteristics is rather complex. The full knowledge of this parameter is fundamental to discuss the therapeutic utility of these materials, and thus, the NO quantification strategy must be carefully considered according to the NO-releasing scaffold type, to the expected NO-releasing amounts and to the medium of quantification. In this work, we explore and discuss three different ways of quantifying the release of NO in different biological fluids: haemoglobin assay, Griess assay and NO electrochemical detection. For these measurements, different porous materials, namely zeolites and titanosilicates were used as models for NO-releasing platforms. The oxyhaemoglobin assay offers great sensitivity (nanomolar levels), but it is only possible to monitor the NO release while oxyhaemoglobin is not fully converted. On the other hand, Griess assay has low sensitivity in complex biological media, namely in blood, and interferences with media make NO measurements questionable. Nevertheless, this method can measure micromolar amounts of NO and may be useful for an initial screening for long-term release performance. The electrochemical sensor enabled real-time measurements in a variety of biological settings. However, measured NO is critically low in oxygenated and complex media, giving transient signals, which makes long-term quantification impossible. Despite the disadvantages of each method, the combination of all the results provided a more comprehensive NO release profile for these materials, which will help to determine which formulations are most promising for specific therapeutic applications. This study highlights the importance of using appropriate NO quantification tools to provide accurate reports.


Subject(s)
Nitric Oxide/analysis , Silicates/chemistry , Zeolites/chemistry , Molecular Structure , Nitric Oxide/metabolism , Oxyhemoglobins/chemistry , Porosity , Titanium/chemistry
10.
J Magn Reson ; 309: 106621, 2019 12.
Article in English | MEDLINE | ID: mdl-31669794

ABSTRACT

In frozen biological media and molecular glasses only restricted motions exist; because of the weakness and disorder of intermolecular bonds these motions may have stochastic nature. Electron spin echo (ESE) spectroscopy of spin-labeled molecules allows detecting their restricted stochastic rotations (stochastic molecular librations). As in molecular disordered media motions may be highly cooperative, it would be desirable to investigate their spectroscopic manifestation also in the systems where cooperative effects would be certainly ruled out. In this work, ESE of spin-labeled molecules adsorbed on inorganic SiO2 surface was investigated in a wide temperature range. The rate of motion-induced spin relaxation was found to become measurable above 130 K, increasing with temperature and attaining then a saturating behavior with a well-defined maximum near 250 K. For two types of molecules differing remarkably in their size and polarity (a small highly-polar nitroxide radical and a large spin-labeled peptide), quite similar results were obtained. This saturating behavior was quantitatively reproduced in simulations within a simple model of jump between two close orientations. Comparison with experiment allowed estimate that at 250 K the correlation time of the motion τc is of the order of several tens of nanoseconds and the angle α between two orientations is around 0.02 rad. As the found saturating behavior is a property of individual motions, for any other molecular system an excess of the spin relaxation rate above the maximum found here for adsorbed molecules may be ascribed to cooperative motions. Comparison with literature data on molecular systems of different origin has shown that effects of cooperativity indeed are present and, moreover, may be very essential.


Subject(s)
Electron Spin Resonance Spectroscopy/methods , Stochastic Processes , Surface Properties , Computer Simulation , Freezing , Microwaves , Motion , Silicon Dioxide/chemistry , Spin Labels , Temperature
11.
Chem Asian J ; 14(19): 3320-3328, 2019 Oct 01.
Article in English | MEDLINE | ID: mdl-31407483

ABSTRACT

The supramolecular complexation of 5,10,15,20-tetrakis(4-sulfonatophenyl)porphyrin (TPPS) with heptakis(2,3,6-tri-O-methyl)-ß-cyclodextrin (TMCD) has been known to be highly specific in aqueous media. In this study, we have used NMR spectroscopy to reveal that this supramolecular system also works even in biologically crowded media such as serum, blood, and urine. A 13 C-labeled heptakis(2,3,6-tri-O-methyl-13 C)-ß-cyclodextrin (13 C-TMCD) was synthesized and studied using one-dimensional (1D) HMQC spectroscopy in serum and blood. The 1D HMQC spectrum of 13 C-TMCD showed clear signals due to the 2-, 3-, and 6-O13 CH3 groups, whose chemical shifts changed upon addition of TPPS due to quantitative formation of the 13 C-TMCD/TPPS=2/1 inclusion complex in such biological media. The 1 H NMR signals of non-isotope-labeled TPPS included by 13 C-TMCD were detected using the 13 C-filtered ROESY technique. A pharmacokinetic study of 13 C-TMCD and its complex with TPPS was carried out in mice using the 1D HMQC method. The results indicated that (1) 1D HMQC is an effective technique for monitoring the inclusion phenomena of 13 C-labeled cyclodextrin in biological media and (2) the intermolecular interaction between 13 C-TMCD and TPPS is highly selective even in contaminated media like blood, serum, and urine.


Subject(s)
Porphyrins/chemistry , beta-Cyclodextrins/chemistry , Animals , Anions/chemistry , Carbon Isotopes/chemistry , Magnetic Resonance Spectroscopy , Male , Mice , Mice, Inbred C57BL , Porphyrins/blood , Porphyrins/urine , beta-Cyclodextrins/blood , beta-Cyclodextrins/urine
12.
Nanomaterials (Basel) ; 9(4)2019 Mar 29.
Article in English | MEDLINE | ID: mdl-30934927

ABSTRACT

DNA nanopores offer a unique nano-scale foothold at the membrane interface that can help advance the life sciences as biophysical research tools or gate-keepers for drug delivery. Biological applications require sufficient physiological stability and membrane activity for viable biological action. In this report, we determine essential parameters for efficient nanopore folding and membrane binding in biocompatible cell media. The parameters are identified for an archetypal DNA nanopore composed of six interwoven strands carrying cholesterol lipid anchors. Using gel electrophoresis and fluorescence spectroscopy, the nanostructures are found to assemble efficiently in cell media, such as LB and DMEM, and remain structurally stable at physiological temperatures. Furthermore, the pores' oligomerization state is monitored using fluorescence spectroscopy and confocal microscopy. The pores remain predominately water-soluble over 24 h in all buffer systems, and were able to bind to lipid vesicles after 24 h to confirm membrane activity. However, the addition of fetal bovine serum to DMEM causes a significant reduction in nanopore activity. Serum proteins complex rapidly to the pore, most likely via ionic interactions, to reduce the effective nanopore concentration in solution. Our findings outline crucial conditions for maintaining lipidated DNA nanodevices, structurally and functionally intact in cell media, and pave the way for biological studies in the future.

13.
AAPS PharmSciTech ; 20(2): 55, 2019 Jan 07.
Article in English | MEDLINE | ID: mdl-30618013

ABSTRACT

Superparamagnetic iron oxide nanoparticles (SPIONs) have been extensively studied in biomedical applications for therapeutic or diagnostic purposes. Stability is one of the key determinants dictating successful application of these nanoparticles (NPs) in biological systems. In this study, SPIONs were synthesized and coated with two protective shells-poly(methacrylic acid) (PMAA) or citric acid (CA)-and the stability was evaluated in biologically relevant media together with effect of serum protein supplementation. The stabilities of SPION, SPION-PMAA and SPION-CA in water, DMEM, RPMI, DMEM with 10% (v v-1), and RPMI with 10% (v v-1) fetal bovine serum were determined. Without protective shells, the NPs were not stable and formed large aggregates in all media tested. CA improved the stability of the NPs in water, but was not very effective in improving stability in cell culture media. Addition of serum slightly improved colloidal stability of SPION-CA, whereas inclusion of serum significantly improved the colloidal stability of SPION-PMAA. Serum proteins also found to enhance cellular viability of MCF-7 breast cancer cells after exposure to high concentrations of SPION-PMAA and SPION-CA. Different patterns of serum proteins binding to the NPs were observed, and cellular uptake in MCF-7 cells were investigated. The stabilized SPION-PMAA and SPION-CA NPs showed uptake activity with minimal background attachment. Therefore, the importance of colloidal stability of SPIONs for utilizing in future therapeutic or diagnostic purposes is illustrated.


Subject(s)
Blood Proteins/metabolism , Breast Neoplasms/metabolism , Colloids/metabolism , Magnetite Nanoparticles , Blood Proteins/chemistry , Cell Survival/drug effects , Cell Survival/physiology , Colloids/chemistry , Drug Stability , Female , Human Umbilical Vein Endothelial Cells/drug effects , Human Umbilical Vein Endothelial Cells/metabolism , Humans , MCF-7 Cells , Magnetite Nanoparticles/chemistry , Particle Size , Surface Properties
14.
Colloids Surf B Biointerfaces ; 175: 65-72, 2019 Mar 01.
Article in English | MEDLINE | ID: mdl-30522009

ABSTRACT

A multifunctional envelope-type mesoporous silica nanoparticle (MSN) was delicately designed for subcellular co-delivery of drug and therapeutic peptide to tumor cells. Firstly, a kind of cell apoptosis peptide (KLAKLAK)2 (KLA) was anchored on surface of MSN via disulfide bond to obtain MSN-SS-KLA. Subsequently, anticancer drug doxorubicin hydrochloride (DOX) was loaded into the pores of MSN-SS-KLA. Then, the drug loaded MSN-SS-KLA (DOX@MSN-SS-KLA) was further coated with bovine serum albumin (BSA) to obtain a biological media stable MSN based drug delivery system (DDS), DOX@MSN-SS-KLA/BSA, for cancer synergetic therapy. The results show that stability of the DOX@MSN-SS-KLA/BSA is much better than that of DOX@MSN-SS-KLA and it could keep well dispersed in serum for more than 24 h. After accumulating at tumor site by EPR effect, the DOX@MSN-SS-KLA/BSA could be effectively phagocytosed by HeLa cells and release apoptotic peptide KLA as well as DOX simultaneously responding to reductive stimulus inside the cells. In vitro cell experiment results show that the DOX@MSN-SS-KLA/BSA complex exhibits much better inhibition on HeLa cells compared with pure DOX, indicating that co-delivery of KLA and DOX is expected to achieve synergetic therapy of cancer.


Subject(s)
Doxorubicin/administration & dosage , Drug Carriers/chemistry , Drug Delivery Systems/methods , Nanoparticles/chemistry , Peptides/administration & dosage , Silicon Dioxide/chemistry , Antineoplastic Combined Chemotherapy Protocols/pharmacokinetics , Antineoplastic Combined Chemotherapy Protocols/pharmacology , Cell Survival/drug effects , Doxorubicin/pharmacokinetics , Drug Liberation , Drug Synergism , HeLa Cells , Humans , Intercellular Signaling Peptides and Proteins , Microscopy, Electron, Transmission , Nanoparticles/ultrastructure , Neoplasms/drug therapy , Neoplasms/pathology , Peptides/pharmacokinetics , Porosity
15.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-850879

ABSTRACT

Objective: To develop and optimize the silybin supersaturated self-microemulsion drug delivery system (SLB-SSMEDDS) and improve the oral bioavailability of SLB in the biological medium. Methods: The formulation of SLB-SMEDDS was selected by solubility test, emulsifying ability of emulsifier and pseudo-ternary phase diagram. The analytic hierarchy process (AHP) was used to evaluate the performance of each prescription to screen the optimal ratio. The type and dosage of precipitation inhibitors (PPIs) was optimized to maintain the supersaturation and duration of drugs in biological media in vitro; Finally, the emulsification effect, emulsion size and surface morphology of SLB-SSMEDDS was comprehensively evaluated in terms of in vitro release and in vitro supersaturation. Results: The SLB-SSMEDDS prescription was Capryol 90-Cremophor RH-Transcutol HP-HPMC-AS MF (10:67.5:22.5:2). The self-microemulsion with a drug loading of 50.19 mg/g was uniform and the emulsion droplets were spherical in shape and uniform in size. And the emulsification time was (30.67 ± 4.16) s, the average particle size was (11.67 ± 0.81) nm, and the PDI was (0.15 ± 0.04). The dissolution rate of SLB-SSMEDDS in FaSSGF and FaSSIF-V2 was significantly increased. And the in vitro dilution and supersaturation could be maintained above 10 within 120 min. Conclusion: SLB-SSMEDDS has a simple preparation process and can improve the stability of traditional SMEDDS, maintain supersaturation effectively and enhance the dissolution of SLB in vitro.

16.
Molecules ; 23(11)2018 Nov 10.
Article in English | MEDLINE | ID: mdl-30423832

ABSTRACT

Deficient stability towards nuclease-mediated degradation is one of the most relevant tasks in the development of oligonucleotide-derived biomedical agents. This hurdle can be overcome through modifications to the native oligonucleotide backbone structure, with the goal of simultaneously retaining the unique hybridization properties of nucleic acids. The nucleosyl amino acid (NAA)-modification is a recently introduced artificial cationic backbone linkage. Partially zwitterionic NAA-modified oligonucleotides had previously shown hybridization with DNA strands with retained base-pairing fidelity. In this study, we report the significantly enhanced stability of NAA-modified oligonucleotides towards 3'- and 5'-exonuclease-mediated degradation as well as in complex biological media such as human plasma and whole cell lysate. This demonstrates the potential versatility of the NAA-motif as a backbone modification for the development of biomedically active oligonucleotide analogues.


Subject(s)
Nucleic Acid Hybridization , Oligodeoxyribonucleotides/chemistry , Base Sequence , DNA/chemistry , DNA Cleavage , Humans , Hydrolysis , Molecular Structure , Structure-Activity Relationship
17.
Curr Med Chem ; 25(35): 4553-4586, 2018.
Article in English | MEDLINE | ID: mdl-29852857

ABSTRACT

Within the last two decades, the field of nanomedicine has not developed as successfully as has widely been hoped for. The main reason for this is the immense complexity of the biological systems, including the physico-chemical properties of the biological fluids as well as the biochemistry and the physiology of living systems. The nanoparticles' physicochemical properties are also highly important. These differ profoundly from those of freshly synthesized particles when applied in biological/living systems as recent research in this field reveals. The physico-chemical properties of nanoparticles are predefined by their structural and functional design (core and coating material) and are highly affected by their interaction with the environment (temperature, pH, salt, proteins, cells). Since the coating material is the first part of the particle to come in contact with the environment, it does not only provide biocompatibility, but also defines the behavior (e.g. colloidal stability) and the fate (degradation, excretion, accumulation) of nanoparticles in the living systems. Hence, the coating matters, particularly for a nanoparticle system for biomedical applications, which has to fulfill its task in the complex environment of biological fluids, cells and organisms. In this review, we evaluate the performance of different coating materials for nanoparticles concerning their ability to provide colloidal stability in biological media and living systems.


Subject(s)
Coated Materials, Biocompatible/chemistry , Colloids/chemistry , Nanoparticles/chemistry , Coated Materials, Biocompatible/metabolism , Dextrans/chemistry , Humans , Polyelectrolytes/chemistry , Polyethylene Glycols/chemistry , Polyvinyl Alcohol/chemistry , Protein Corona/chemistry , Protein Corona/metabolism
18.
Article in English | MEDLINE | ID: mdl-29132023

ABSTRACT

The determination of regional blood flow via the accumulation of fluorescent microspheres is a concept regularly used in medical research. Typically, the microbeads get extracted from the tissue of interest and are then quantified by measuring the absorption or fluorescence of the incorporated dyes without further separation from the medium. However, in that case the absorption spectra of different dyes can overlap when used simultaneously, leading to an overestimation of the concentration. Additionally, background absorption from the medium can be problematic. Therefore, a high performance liquid chromatography method for the simultaneous detection of four dyes (orange, crimson, yellow-green and red) incorporated in different microbeads in samples from biological media such as organ tissue (brain, heart and kidneys) was developed. Since for biological samples often a large sample size is required for sufficient statistics, the method was optimized to yield very short run times. With this method it was possible to detect very low concentrations of only one microsphere per gram of organ tissue. By applying this sensitive quantification technique, it was demonstrated that the application of microbeads for perfusion measurements might not be reliable due to different organ distributions in each animal.


Subject(s)
Chromatography, High Pressure Liquid/methods , Fluorescent Dyes/analysis , Animals , Brain/metabolism , Fluorescent Dyes/pharmacokinetics , Kidney/metabolism , Limit of Detection , Linear Models , Male , Microspheres , Myocardium/metabolism , Regional Blood Flow , Swine , Tissue Distribution
19.
Crit Rev Anal Chem ; 47(6): 474-489, 2017 Nov 02.
Article in English | MEDLINE | ID: mdl-28548867

ABSTRACT

The use of electroanalytical techniques for the determination of statins (Atorvastatin, Fluvastatin, Lovastatin, Pitavastatin, Pravastatin, Rosuvastatin and Simvastatin) is reviewed covering the period from 1997 to 2016. Among all of the published electrochemical methods, voltammetry and polarography are the most popular techniques for the determination of statins, and both are used for the analysis of pharmaceutical dosage forms and biological samples. The determination of statins by a potentiometric method using ion-selective electrodes is reported in only few papers. Сoulometry and conductometry have been not used for the determination of statins till date. Current trends in developing new electrochemical methods for the analysis of statins are discussed.


Subject(s)
Electrochemical Techniques , Hydroxymethylglutaryl-CoA Reductase Inhibitors/analysis , Electric Conductivity , Electrodes
20.
Environ Monit Assess ; 188(10): 548, 2016 10.
Article in English | MEDLINE | ID: mdl-27591985

ABSTRACT

The emergence of a new form of chronic kidney disease of unknown etiology (CKDu) in Sri Lanka's North Central Province (NCP) has become a catastrophic health crisis. CKDu is characterized as slowly progressing, irreversible, and asymptomatic until late stages and, importantly, not attributed to diabetes, hypertension, or other known risk factors. It is postulated that the etiology of CKDu is multifactorial, involving genetic predisposition, nutritional and dehydration status, exposure to one or more environmental nephrotoxins, and lifestyle factors. The objective of this limited geochemical laboratory analysis was to determine the concentration of a suite of heavy metals and trace element nutrients in biological samples (human whole blood and hair) and environmental samples (drinking water, rice, soil, and freshwater fish) collected from two towns within the endemic NCP region in 2012 and 2013. This broad panel, metallomics/mineralomics approach was used to shed light on potential geochemical risk factors associated with CKDu. Based on prior literature documentation of potential nephrotoxins that may play a role in the genesis and progression of CKDu, heavy metals and fluoride were selected for analysis. The geochemical concentrations in biological and environmental media areas were quantified. Basic statistical measurements were subsequently used to compare media against applicable benchmark values, such as US soil screening levels. Cadmium, lead, and mercury were detected at concentrations exceeding US reference values in many of the biological samples, suggesting that study participants are subjected to chronic, low-level exposure to these elements. Within the limited number of environmental media samples, arsenic was determined to exceed initial risk screening and background concentration values in soil, while data collected from drinking water samples reflected the unique hydrogeochemistry of the region, including the prevalence of hard or very hard water, and fluoride, iron, manganese, sodium, and lead exceeding applicable drinking water standards in some instances. Current literature suggests that the etiology of CKDu is likely multifactorial, with no single biological or hydrogeochemical parameter directly related to disease genesis and progression. This preliminary screening identified that specific constituents may be present above levels of concern, but does not compare results against specific kidney toxicity values or cumulative risk related to a multifactorial disease process. The data collected from this limited investigation are intended to be used in the subsequent study design of a comprehensive and multifactorial etiological study of CKDu risk factors that includes sample collection, individual surveys, and laboratory analyses to more fully evaluate the potential environmental, behavioral, genetic, and lifestyle risk factors associated with CKDu.


Subject(s)
Environmental Exposure , Renal Insufficiency, Chronic/epidemiology , Soil Pollutants/analysis , Water Pollutants, Chemical/analysis , Adult , Animals , Drinking Water/analysis , Environmental Monitoring , Fishes , Food Contamination/analysis , Hair/chemistry , Humans , Male , Metals, Heavy/analysis , Metals, Heavy/blood , Middle Aged , Oryza/chemistry , Renal Insufficiency, Chronic/chemically induced , Risk Factors , Soil Pollutants/blood , Soil Pollutants/metabolism , Sri Lanka/epidemiology , Trace Elements/analysis , Trace Elements/blood , Water Pollutants, Chemical/blood , Water Pollutants, Chemical/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...