Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 46
Filter
1.
Insects ; 15(1)2024 Jan 07.
Article in English | MEDLINE | ID: mdl-38249047

ABSTRACT

In urban community gardens, cultivated vegetation provides variable levels of habitat complexity, which can suppress pests by promoting predator diversity and improving pest control. In this study, we examine three components of the structural complexity of garden vegetation (cover, diversity, and connectivity) to investigate whether higher garden vegetation complexity leads to fewer herbivores, more predators, and higher predation. We worked in eight community gardens where we quantified vegetation complexity, sampled the arthropod community, and measured predation on corn earworm eggs. We found that plots with high vegetation cover supported higher species richness and greater abundance of predatory insects. High vegetation cover also supported a greater abundance and species richness of spiders. In contrast, high vegetation diversity was negatively associated with predator abundance. While high predator abundance was positively associated with egg predation, greater predator species richness had a negative impact on egg predation, suggesting that antagonism between predators may limit biological control. Community gardeners may thus manipulate vegetation cover and diversity to promote higher predator abundance and diversity in their plots. However, the species composition of predators and the prevalence of interspecific antagonism may ultimately determine subsequent impacts on biological pest control.

2.
Life (Basel) ; 13(10)2023 Sep 26.
Article in English | MEDLINE | ID: mdl-37895345

ABSTRACT

At the end of the 20th century, the common vole (Microtus arvalis) colonized the practical totality of agricultural ecosystems in the northern sub-plateau of the Iberian Peninsula. To prevent crop damage, chemical control campaigns using anticoagulant rodenticides have been employed. This approach has a high environmental impact, and it has been banned in most countries in the European Union, including Spain. It is therefore essential to analyze alternative methods with lower environmental impacts. Here we explored the efficacy of biological control by avian predators to reduce vole abundance by providing nest-boxes in croplands. We used an indirect index based on the presence/absence of vole activity signs to measure the effect of nest-boxes on common vole abundance. We found that vole abundance was significantly lower near occupied nest-boxes at distances less than 180 m, where vole abundance increases progressively with increasing distance to the nearest nest-box. We also observed that the predatory pressure negatively affects the vole abundance at the end of the breeding period, considering the total number of fledglings. However, the effect of nest-boxes was highly variable depending on the study area and more limited in alfalfa fields, the optimal habitat for voles in agrarian ecosystems. Thus, nest-box supplementation would be a feasible measure for the biological control of the common vole in Mediterranean ecosystems, but it needs improvements for vole control in alfalfa fields within an integrated pest control program. We provide several recommendations to improve the performance of biological control in alfalfa fields.

3.
Ecol Appl ; 33(5): e2886, 2023 07.
Article in English | MEDLINE | ID: mdl-37166162

ABSTRACT

Bird- and bat-mediated biocontrol benefits the productivity of tropical commodity crops such as cacao, but the ecological interactions driving these ecosystem services remain poorly understood. Whereas birds and bats prey on herbivorous arthropods, they may also prey on arthropod mesopredators such as ants, with poorly understood consequences for pest biocontrol. We used a full-factorial experiment excluding birds, bats, and ants to assess their effects on (a) the abundance of multiple arthropod groups; (b) predation pressure on arthropods evaluated through artificial sentinel caterpillars; and (c) cacao yield over 1 year in shaded agroforestry systems of native cacao varieties in Peru. Birds and bats increased cacao yield by 118%, which translates in smallholder benefits of ca. US $959 ha-1 year-1 . Birds and bats decreased predation by ants and other arthropods, but contributed to the control of phytophagous taxa such as aphids and mealybugs. By contrast, ant presence increased the abundance of these sap-sucking insects, with negative impacts for cacao yield. Notably, high abundances of the dominant ant Nylanderia sp., known to attend sap-sucking insects, were associated with lower cacao yield along a distance gradient from the closest forest edge. According to these results, arthropod predation by birds and bats, rather than mesopredation by arthropods, was most responsible for increases in cacao yield. Moving forward, detailed research about their trophic interactions will be necessary to identify the cause of such benefits. Retaining and restoring the large benefits of birds and bats as well as minimizing disservices by other taxa in cacao agroforests can benefit from management schemes that prioritize preservation of shade trees and adjacent forests within agroforestry landscapes.


Subject(s)
Ants , Aphids , Arthropods , Cacao , Chiroptera , Animals , Ecosystem , Tropical Climate , Insecta , Birds , Predatory Behavior
4.
Microb Ecol ; 86(3): 2060-2072, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37020129

ABSTRACT

Many arthropod species harbor a diverse range of viruses. While much is known about pathogenic viruses of some economically important insects and arthropods involved in disease transmission, viruses associated with mites have rarely been studied. The main objective of this study was to characterize the virome of Phytoseiulus persimilis (Phytoseiidae), a predatory mite commercially used worldwide for the biological control of the key pest Tetranychus urticae (Tetranichidae). A combination of de novo transcriptome assembly and virion sequencing, revealed that RNA viruses are highly prevalent and active tenants of commercial populations of P. persimilis, comprising on average 9% of the mite's total mRNA. Seventeen RNA viruses dominated the mite's virome (i.e., were highly transcribed) with over half (n = 10) belonging to the order Picornavirales, + ssRNA viruses that infect a large range of hosts, including arthropods. Screening of the 17 dominant virus sequences in P. persimilis and T. urticae revealed that three viruses (two Picornavirales of the families Iflaviridae and Dicistroviridae, and one unclassified Riboviria) are unique to P. persimilis and three others (two unclassified Picornavirales and one unclassified Riboviria) are present in both mite species. Most of the sequences were related to viruses previously documented in economically important arthropods, while others have rarely been documented before in arthropods. These findings demonstrate that P. persimilis, like many other arthropods, harbors a diverse RNA virome, which might affect the mite's physiology and consequently its efficiency as a biological control agent.


Subject(s)
Mites , RNA Viruses , Tetranychidae , Humans , Animals , Pest Control, Biological , RNA Viruses/genetics , Predatory Behavior
5.
Int J Mol Sci ; 24(4)2023 Feb 05.
Article in English | MEDLINE | ID: mdl-36834550

ABSTRACT

The stability of symbiotic flora is an important indicator of the health of an organism. Symbiotic bacteria have been proven to be closely involved in the immune process of organisms. The pathogenicity of Beauveria bassiana was studied in relation to symbiotic bacteria on the surface and inside of the migratory locust (Locusta migratoria). The results showed that the surface disinfection of test locusts contributed to the pathogenicity of B. bassiana to locusts. Most of the surface bacteria of L. migratoria caused some inhibition of B. bassiana growth, and LM5-4 (Raoultella ornithinolytica), LM5-2 (Enterobacter aerogenes), and LM5-13 (Citrobacter freundii) showed the highest inhibitory effect on the growth of B. bassiana. The inoculation of locusts with additional surface symbiotic bacteria reduced the virulence of B. bassiana to L. migratoria. Infection by different strains of B. bassiana caused similar changes in the symbiotic flora of migratory locusts. The inoculation of locusts with additional intestinal symbiotic bacteria (Enterobacter sp.) reduced the virulence of B. bassiana to L. migratoria. These findings illustrate the effect of bacterial communities on fungal infections in L. migratoria when seen from the perspective of ecology in a microenvironment. The active antifungal substances of such bacteria and their mechanisms of action need further study.


Subject(s)
Beauveria , Locusta migratoria , Mycoses , Animals , Locusta migratoria/physiology , Antifungal Agents , Bacteria
6.
Anim Cogn ; 26(1): 189-197, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36526865

ABSTRACT

Crop pest management is a global challenge. Increases in agricultural intensity due to anthropogenic demands, alongside the need to reduce the reliance on pesticides to minimize environmental harm, have resulted in an urgent need to improve and expand other methods of pest control. One increasingly utilized method is biological pest control, in which natural pest predators are used to regulating crop pests. Current approaches to biological pest regulation assess the importance of a pest controller by examining its ability to maintain pest populations over an extended period. However, this approach lacks efficiency, specificity, and efficacy because it does not take into account crucial factors which determine how predators find, evaluate and remember food sources-the cognitive processes underlying their behavior. This review will investigate the cognitive factors involved in biological pest control and examine how these factors may be manipulated to impact pest behavior and pest controller performance.


Subject(s)
Cognition , Pest Control, Biological , Animals , Agriculture , Pest Control, Biological/methods
7.
Conserv Lett ; 16(1): e12936, 2023.
Article in English | MEDLINE | ID: mdl-38440357

ABSTRACT

In the tropics, combining food security with biodiversity conservation remains a major challenge. Tropical agroforestry systems are among the most biodiversity-friendly and productive land-use systems, and 70% of cocoa is grown by >6 million smallholder farmers living on <2$ per day. In cacao's main centre of diversification, the western Amazon region, interest is growing to achieve premium prices with the conversion of high-yielding, but mostly bulk-quality cacao to native fine-flavor cacao varieties, culturally important since pre-Columbian times. Conversion to native cacao can be expected to favor adaptation to regional climate and growth conditions, and to enhance native biodiversity and ecosystem services such as biological pest control and pollination, but possibly also imply susceptibility to diseases. Experience from successful conversion of non-native cacao plantations to fine-flavor cacao agroforestry with rejuvenation by grafting and under medium-canopy cover levels (30%-40%) can ensure a smooth transition with only minor temporary productivity gaps. This includes ongoing selection programs of high yielding and disease resistant native fine-flavor cacao genotypes and organizing in cooperatives to buffer the high market volatility. In conclusion, the recent interest on converting bulk cacao to a diversity of native fine-flavor varieties in countries like Peru is a challenge, but offers promising socio-ecological perspectives.

8.
Environ Sci Pollut Res Int ; 29(56): 84076-84095, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36258111

ABSTRACT

The notion of food security is a global phenomenon that impinges on every human. Efforts to increase productivity and yields have historically degraded the environment and reduced biodiversity and ecosystem services, with the significant impact on the poor. Sustainable agriculture-farming in sustainable ways based on an understanding of ecosystem services-is a practical option for achieving global food security while minimizing further environmental degradation. Sustainable agricultural systems offer ecosystem services, such as pollination, biological pest control, regulation of soil and water quality, maintenance of soil structure and fertility, carbon sequestration and mitigation of greenhouse gas emissions, nutrient cycling, hydrological services, and biodiversity conservation. In this review, we discuss the potential of sustainable agriculture for achieving global food security alongside healthy ecosystems that provide other valuable services to humankind. Too often, agricultural production systems are considered separate from other natural ecosystems, and insufficient attention has been paid to how services can flow to and from agricultural production systems to surrounding ecosystems. This review also details the trade-offs and synergies between ecosystem services, highlights current knowledge gaps, and proposes areas for future research.


Subject(s)
Agriculture , Ecosystem , Humans , Biodiversity , Soil , Food Security , Conservation of Natural Resources , Food Supply
9.
Viruses ; 14(10)2022 09 30.
Article in English | MEDLINE | ID: mdl-36298712

ABSTRACT

Drosophila suzukii (Ds) is an invasive pest insect that causes severe and widespread damage to soft fruit crops. Chemical control based on topical insecticides is inefficient and harmful to consumers and the environment, prompting interest in the development of biological control measures such as insect viruses with narrow host specificity. We previously described a strain of La Jolla virus (LJV) found in moribund Ds specimens in Germany. We demonstrated a pathogenic effect following the intrathoracic injection of LJV into adult Ds flies. However, the development of an effective biocontrol product based on LJV would require the characterization of (1) virulence following oral delivery, particularly in larvae, and (2) stability under different pH and temperature conditions reflecting realistic exposure scenarios. Here we describe the pathogenicity of LJV following oral delivery to Ds adults and larvae. The oral infection of Ds adults with LJV reduced survival in a concentration-dependent manner, whereas the oral infection of Ds larvae caused the arrest of development during pupation. LJV remained stable and infectious following exposure to a broad pH range and different temperatures. We, therefore, demonstrated that LJV is promising as a candidate biological control agent against Ds.


Subject(s)
Insecticides , RNA Viruses , Animals , Drosophila , Insecticides/pharmacology , Insect Control , Virulence , Biological Control Agents/pharmacology , Larva , Fruit , Administration, Oral
10.
Bull Entomol Res ; 112(3): 343-353, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35543298

ABSTRACT

Insect crop pests are a major threat to food security in sub-Saharan Africa. Configuration of semi-natural habitat within agricultural landscapes has the potential to enhance biological pest control, helping to maintain yields whilst minimising the negative effects of pesticide use. Fall armyworm (Spodoptera frugiperda, J. E. Smith) is an increasingly important pest of maize in sub-Saharan Africa, with reports of yield loss between 12 and 45%. We investigated the patterns of fall armyworm leaf damage in maize crops in Ghana, and used pitfall traps and dummy caterpillars to assess the spatial distribution of potential fall armyworm predators. Crop damage from fall armyworm at our study sites increased significantly with distance from the field edge, by up to 4% per m. We found evidence that Araneae activity, richness and diversity correspondingly decreased with distance from semi-natural habitat, although Hymenoptera richness and diversity increased. Our preliminary findings suggest that modifying field configuration to increase the proximity of maize to semi-natural habitat may reduce fall armyworm damage and increase natural enemy activity within crops. Further research is required to determine the level of fall armyworm suppression achievable through natural enemies, and how effectively this could safeguard yields.


Subject(s)
Crops, Agricultural , Zea mays , Animals , Ecosystem , Ghana , Spodoptera
11.
Ecol Appl ; 32(3): e2533, 2022 04.
Article in English | MEDLINE | ID: mdl-35044027

ABSTRACT

Intensification of agriculture and increased insecticide use have been implicated in global losses of farmland biodiversity and ecosystem services. We hypothesized that increased insecticide applications (proportion of area treated with insecticides) in Canada's expansive agricultural landscapes are due, in part, to shifts toward more simplified landscapes. To assess this relationship, we analyzed data from the Canadian Census of Agriculture spanning 20 years including five census periods (1996-2016) and across 225 census units within the four major agricultural regions of Pacific, Prairie, Central, and Atlantic Canada. Generalized mixed effects models were used to evaluate if changes in landscape simplification - defined as the proportion of farmland in crops (cereals, oilseeds, pulses and fruit/vegetables) - alongside other farming and climatic variables, influenced insecticide applications over time. Bayesian spatial-temporal models were further used to estimate the strength of the relationship with landscape simplification over time. We found that landscape simplification increased in 89% and insecticide applications increased in 70% of the Census Division spatial units during the 1996-2016 period. Nationally, significant increases in landscape simplification were observed in the two most agriculturally intensive regions of Prairie (from 55% to 63%) and Central (from 51% to 60%) Canada. For both regions, landscape simplification was a strong and significant predictor of higher insecticide applications, even after accounting for other factors such as climate, farm economics, farm size and land use practices (e.g., area in cash crops and tillage). If current trends continue, we estimated that insecticide applications will increase another 10%-20% by 2036 as a result of landscape simplification alone. To avoid increased reliance on toxic insecticides, agri-environmental policies need to consider that losing diverse natural habitat can increase insect pest pressure and resistance with negative environmental consequences extending beyond the field.


Subject(s)
Insecticides , Agriculture , Bayes Theorem , Biodiversity , Canada , Ecosystem
12.
J Allergy Clin Immunol Pract ; 9(11): 4130-4137.e1, 2021 11.
Article in English | MEDLINE | ID: mdl-34303018

ABSTRACT

BACKGROUND: Mites and insects are widely used as biologic pest control in greenhouses. A few studies have reported sensitization to mites among greenhouse workers, but the prevalence of sensitization to pest control insects is not known. OBJECTIVE: We aimed to determine the prevalence of IgE-mediated sensitization to pests and their control organisms in the population of exposed greenhouse workers and the relationship between sensitization and allergic symptoms. METHODS: In a cross-sectional study, we interviewed 117 tomato and cucumber greenhouse workers from eight companies that use biologic pest control. Sensitization to nine organisms was assessed by serum-specific IgE measurement. We also measured fractional exhaled nitric oxide. RESULTS: The prevalence of specific sensitization to pests and pest control organisms was 50%; to mites, 29%; and to insects, 46%. Of the individual species, Macrolophus pygmaeus insect sensitization had the highest prevalence (46%). Asthma symptoms were significantly associated with sensitization to pest and pest control organisms (odds ratio [OR] = 3.9; 95% confidence interval [CI], 1.2-12.5) and with a fractional exhaled nitric oxide level of 25 ppb or greater (OR = 4.8; 95% CI, 1.7-13.8), indicating eosinophilic airway inflammation. Southeast Asian origin was significantly associated with sensitization (OR = 5.1; 95% CI, 2.1-12.1) and rhinitis (OR = 2.8; 95% CI, 1.2-6.3). CONCLUSIONS: Tomato and cucumber greenhouse workers were commonly sensitized to predatory insect M pygmaeus and pest control mites. Our findings stress the importance of surveilling and preventing work-related allergic diseases among greenhouse workers.


Subject(s)
Mites , Animals , Cross-Sectional Studies , Fractional Exhaled Nitric Oxide Testing , Humans , Insecta , Pest Control, Biological , Prevalence
13.
Vet Pathol ; 58(6): 1152-1157, 2021 11.
Article in English | MEDLINE | ID: mdl-34256622

ABSTRACT

European gypsy moths (Lymantria dispar dispar) are an invasive species in North America, and are listed by the International Union for the Conservation of Nature as one of the 100 most destructive invasive species worldwide. They have several known viruses, some of which are used as biological control agents. However, there are no detailed descriptions of many entomopathogenic viral infections, including in European gypsy moths, using bright-field microscopy. In this study, 11 European gypsy moth caterpillars were evaluated histologically: 4 were experimentally infected with Lymantria dispar multicapsid nucleopolyhedrovirus (LdMNPV; Baculoviridae); 4 were experimentally infected with Lymantria dispar cytoplasmic polyhedrosis virus (LdCPV; Reoviridae); 3 control animals were uninfected. A complete tissue set was evaluated in all animals from all groups using bright-field microscopy, including epidermis, cuticle, striated muscle, tracheae, foregut, midgut, hindgut, Malpighian tubules, hemocytes, fat body, and nervous system. LdMNPV-infected caterpillars had marked karyomegaly and intranuclear viral inclusions in cells of the epidermis, tracheae, fat body, and hemocytes. LdMNPV-infected caterpillars also had hyperplasia and hypertrophy of epidermal and tracheal epithelial cells. LdCPV-infected caterpillars had numerous granular eosinophilic intracytoplasmic viral inclusions in midgut epithelial cells. Both LdMNPV-infected and LdCPV-infected caterpillars had atrophy of fat body adipocytes; this change was more pronounced in LdCPV-infected caterpillars. This work provides the first detailed descriptions of these viral infections in European gypsy moth caterpillars using bright-field light microscopy and provides images of normal histology from control caterpillars.


Subject(s)
Moths , Nucleopolyhedroviruses , Reoviridae , Animals , Larva , North America
14.
PeerJ ; 9: e11540, 2021.
Article in English | MEDLINE | ID: mdl-34123600

ABSTRACT

Biological control of pest insects by natural enemies may be an effective, cheap and environmentally friendly alternative to synthetic pesticides. The cosmopolitan parasitoid wasp species Bracon brevicornis Wesmael and B. hebetor Say (Hymenoptera: Braconidae) use lepidopteran species as hosts, including insect pests like Ephestia kuehniella or Ostrinia nubilalis. Here, we compare the reproductive success of both Bracon species on E. kuehniella in a laboratory experiment. We asked (1) how the reproductive success on a single host larva changes with temperature, (2) how it changes with temperature when more host larvae are present and (3) how temperature and availability of host larvae influence the efficacy of Bracon species as biological control agents. In general, differences between B. brevicornis and B. hebetor have been small. For rearing both Bracon species in the laboratory on one host larva, a temperature between 20-27 °C seems appropriate to obtain the highest number of offspring with a female-biased sex ratio. Rearing the braconid wasps on more than one host larva revealed a higher number of total offspring but less offspring per host larva on average. Again, highest numbers of offspring hatched at 27 °C and the sex ratio was independent from temperature. Although no parasitoids hatched at 12 °C and only few at 36 °C, host larvae were still paralyzed. The efficacy of B. brevicornis was higher than 80% at all numbers of host larvae presented at all temperatures while the efficacy of B. hebetor was less than 80% at 12 °C and 27 °C at low numbers of host larvae presented. In conclusion, practitioners can use either B. brevicornis or B. hebetor at low and high temperatures and at varying host densities to achieve high pest control efficacy.

15.
Rev. salud pública ; 23(3): 1-mayo-jun. 2021. tab, graf
Article in Spanish | LILACS-Express | LILACS | ID: biblio-1424384

ABSTRACT

RESUMEN Objetivo Evaluar el efecto larvicida en éter de petróleo de los extractos de Allium sativum (ajo) y Annona muricata (guanábana) sobre larvas en IV estadio de Aedes aegypti en condiciones de laboratorio. Métodos Se realizaron diferentes bioensayos (tratamientos) en 6 concentraciones para Annona muricata y 7 concentraciones de Allium sativum, con cuatro repeticiones y un control. Se tuvo lecturas de mortalidad a las 2, 12, 24, 36 y 48 horas. Se validaron los datos obtenidos estadísticamente (corrección de Abbott y Análisis ANOVA). Además, se determinaron las concentraciones y tiempos letales para ambos extractos con un análisis Probit. Resultados Se obtuvo que, en un periodo de 48 horas, el tratamiento de 500 ppm del extracto de Annona muricata logró una mortalidad del 97%, mientras que el tratamiento de 2000 ppm con Allium sativum logró alcanzar una mortalidad del 85%. El tiempo letal 50 (50% de mortalidad) para Annona muricata, se obtuvo en el tratamiento de 200 ppm antes de 24 horas, para el caso de Allium sativum fue en el tratamiento de 1200 ppm antes de 48 horas. Para el tiempo letal 90 (90% de mortalidad) para Annona muricata, se obtuvo en el tratamiento de 400 ppm antes de 40 horas. Para el caso de Allium sativum, el tiempo letal 90 no fue posible obtenerlo experimentalmente. Se determinó por medio de un modelo matemático lineal, que dio como resultado 51 horas. Conclusión Ambas especies poseen efecto larvicida. Sin embargo, el extracto más eficiente y efectivo como larvicida es el de Annona muricata, lo que permite dar una alternativa natural, viable, económica y biodegradable para el control de larvas de esta especie.


ABSTRACT Objective To evaluate the larvicidal effect in petroleum ether of the extracts of Allium sativum (garlic) and Annona muricata (soursop) on larvae in stage IV of Aedes aegypti under laboratory conditions. Methods Different bioassays (treatments) were performed in 6 factors for Annona muricata and 7 concentrations of Allium sativum, with four replications and one control. Mortality readings were taken at 2, 12, 24, 36 and 48 hours. The data obtained statistically (Abbott correction and ANOVA analysis) were validated, in addition, the concentrations and lethal times for both extracts were determined with a Probit analysis. Results It was obtained that, in a 48 hour period, the treatment of 500 ppm of the extract of Annona muricata resulted in a mortality of 97%, while the treatment of 2000 ppm with Allium sativum reached a mortality of 85%. The lethal time 50 (50% mortality) for Annona muricata, was obtained in the treatment of 200 ppm within 24 hours, in the case of Allium sativum it was in the treatment of 1200 ppm before 48 hours. For the lethal time 90 for Annona muricata, obtain the treatment of 400 ppm before 40 hours, for the case of Allium sativum, the lethal time 90 (90% mortality) could not be obtained experimentally, it was determined by means of a linear mathematical model, resulting in 51 hours. Conclusion Both species affected larvicidal effect. However, the most efficient and effective extract as a larvicide is that of Annona muricata, which allows giving a natural, viable, economical and biodegradable alternative for the control of larvae of this species.

16.
Ecology ; 102(7): e03376, 2021 07.
Article in English | MEDLINE | ID: mdl-33937985

ABSTRACT

While top-down control plays an important role in shaping both natural and agricultural food webs, we lack insights into how top-down control effects vary across spatial scales. We used a multi-scale survey of top-down control of coffee pests and diseases by arboreal ants to examine if colony location creates a small-scale mosaic in top-down control around trees and if the strength of that control varies between sites at the landscape scale. We investigated pest and disease levels on coffee shrubs at different distances from shade trees with and without a Crematogaster spp. ant colony in 59 sites along a coffee management intensity gradient in southwestern Ethiopia. Within sites, ants significantly suppressed herbivory and coffee leaf rust at distances less than 10 m from nesting trees. Top-down control varied between sites, with stronger top-down control of free-feeding herbivory near ant colonies at sites with lower management intensity and stronger top-down control of a skeletonizer at sites with higher canopy cover. We conclude that the strength of top-down control by ants is highly heterogeneous across spatial scales, as a consequence of the biology of the predator at the small scale and herbivore density or changes in herbivore-ant interactions at the landscape scale.


Subject(s)
Coffee , Forests , Herbivory , Pest Control , Trees
17.
Insects ; 12(2)2021 Feb 19.
Article in English | MEDLINE | ID: mdl-33669755

ABSTRACT

Viticultural practices and landscape composition are the main drivers influencing biological pest control in vineyards. Predatory mites, mainly phytoseiid (Phytoseiidae) and tydeoid mites (Tydeidae), are important to control phytophagous mites (Tetranychidae and Eriophyidae) on vines. In the absence of arthropod prey, pollen is an important food source for predatory mites. In 32 paired vineyards located in Burgenland/Austria, we examined the effect of landscape composition, management type (organic/integrated), pesticide use, and cover crop diversity of the inter-row on the densities of phytoseiid, tydeoid, and phytophagous mites. In addition, we sampled pollen on vine leaves. Typhlodromus pyri Scheuten was the main phytoseiid mite species and Tydeus goetzi Schruft the main tydeoid species. Interestingly, the area-related acute pesticide toxicity loading was higher in organic than in integrated vineyards. The densities of phytoseiid and tydeoid mites was higher in integrated vineyards and in vineyards with spontaneous vegetation. Their population also profited from an increased viticultural area at the landscape scale. Eriophyoid mite densities were extremely low across all vineyards and spider mites were absent. Biological pest control of phytophagous mites benefits from less intensive pesticide use and spontaneous vegetation cover in vineyard inter-rows, which should be considered in agri-environmental schemes.

18.
Biophysics (Oxf) ; 66(6): 974-991, 2021.
Article in English | MEDLINE | ID: mdl-35194226

ABSTRACT

Abstract-This article focuses on the modeling of crisis and threshold development of the population process during the formation of a new population in a competitive environment. As a population spreads, a deep population crisis may arise as a result an abrupt triggering of biotic countermeasures before resources for a further increase in population size are exhausted. A bottleneck occurred in the history of many populations, including humans at the time of the Neolithic crash in Europe. Invaders with high reproductive potential often exert deleterious effects on biosystems. The emergence of efficient competition can not only cause classical cyclical fluctuations, but also lead to a complete extinction of the population after a series of high peaks in its abundance. Two alternative scenarios provide classical examples of induced population crises. One was observed in Gause's experiments where an introduction of a predatory ciliate drove another ciliate species to extinction. The other scenario was observed in a series of experiments where bacteriophages were introduced into colonies of actively dividing bacteria that had a dynamically adapting antiviral mechanism. In this work, modifications to the model were proposed to describe the actual scenarios of crisis effects in population dynamics. Equations with deviating arguments in the time variable allowed a threshold effect of conditions on reproduction of the invasive species and an aggregated nature of the lagging regulation with two time factors. The computational scenarios described both completion of the process after a repeated outbreak and successful elimination of the population crisis via rapid adaptation. Deep crisis phenomena are characteristic of local population dynamics when organisms interact with viruses that are new to them.

19.
Article in English | MEDLINE | ID: mdl-33374532

ABSTRACT

The expansion of agriculture and intensive mechanized production have resulted in the loss of habitats and biodiversity, which has led to the loss of ecological services such as the biological control of pests and diseases, and insect-borne pollination. Current studies mainly focus on the impact of small-scale crop diversity (such as intercropping) on ecological service but lack research on the effects of crop diversity at the landscape scale. In this study, vegetation-dwelling arthropods in naked oat (Avena chinensis) fields under different planting patterns were collected at different growth stages by standardized sweep netting sampling, and the differences in arthropod communities and temporal dynamics were analyzed. Taking this information as an example, the effects of crop diversity at the landscape scale caused by different planting patterns on arthropod communities were studied. It was found that herbivores were the most abundant functional group in the arthropod community in naked oat fields, accounting for 70.13% of the total abundance, followed by natural enemies, accounting for 23.45%, and, finally, other insects. The abundance and species richness of natural enemies in naked oat fields under diversified planting pattern were significantly higher than those under intensive planting pattern, while the abundance and species richness of herbivorous pests showed no significant difference between the two planting patterns. Planting patterns significantly affected the composition and structure of arthropod communities in naked oat fields. Significantly higher ratio of natural enemy to pest and more diverse natural enemies under the diversified planting pattern have shown better biological control potential and the significance of biodiversity protection.


Subject(s)
Arthropods/classification , Avena , Biodiversity , Animals , Ecosystem , Herbivory
20.
Insects ; 11(12)2020 Dec 07.
Article in English | MEDLINE | ID: mdl-33297293

ABSTRACT

Endosymbionts are widely distributed in insects and can strongly affect their host ecology. The common green lacewing (Chrysoperla carnea) is a neuropteran insect which is widely used in biological pest control. However, their endosymbionts and their interactions with their hosts have not been very well studied. Therefore, we screened for endosymbionts in natural and laboratory populations of Ch. carnea using diagnostic PCR amplicons. We found the endosymbiont Rickettsia to be very common in all screened natural and laboratory populations, while a hitherto uncharacterized Sodalis strain was found only in laboratory populations. By establishing lacewing lines with no, single or co-infections of Sodalis and Rickettsia, we found a high vertical transmission rate for both endosymbionts (>89%). However, we were only able to estimate these numbers for co-infected lacewings. Sodalis negatively affected the reproductive success in single and co-infected Ch. carnea, while Rickettsia showed no effect. We hypothesize that the fitness costs accrued by Sodalis infections might be more tolerable in the laboratory than in natural populations, as the latter are also prone to fluctuating environmental conditions and natural enemies. The economic and ecological importance of lacewings in biological pest control warrants a more profound understanding of its biology, which might be influenced by symbionts.

SELECTION OF CITATIONS
SEARCH DETAIL
...