Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 522
Filter
1.
PeerJ Comput Sci ; 10: e2091, 2024.
Article in English | MEDLINE | ID: mdl-38983196

ABSTRACT

With the increasing demand for the use of technology in all matters of daily life and business, the demand has increased dramatically to transform business electronically especially regards COVID-19. The Internet of Things (IoT) has greatly helped in accomplishing tasks. For example, at a high temperature, it would be possible to switch on the air conditioner using a personal mobile device while the person is in the car. The Internet of Things (IoT) eases lots of tasks. A wireless sensor network is an example of IoT. Wireless sensor network (WSN) is an infrastructure less self-configured that can monitor environmental conditions such as vibration, temperature, wind speed, sound, pressure, and vital signs. Thus, WSNs can occur in many fields. Smart homes give a good example of that. The security concern is important, and it is an essential requirement to ensure secure data. Different attacks and privacy concerns can affect the data. Authentication is the first defence line against threats and attacks. This study proposed a new protocol based on using four factors of authentication to improve the security level in WSN to secure communications. The simulation results prove the strength of the proposed method which reflects the importance of the usage of such protocol in authentication areas.

2.
Sci Rep ; 14(1): 16223, 2024 Jul 13.
Article in English | MEDLINE | ID: mdl-39003319

ABSTRACT

Advancements in cloud computing, flying ad-hoc networks, wireless sensor networks, artificial intelligence, big data, 5th generation mobile network and internet of things have led to the development of smart cities. Owing to their massive interconnectedness, high volumes of data are collected and exchanged over the public internet. Therefore, the exchanged messages are susceptible to numerous security and privacy threats across these open public channels. Although many security techniques have been designed to address this issue, most of them are still vulnerable to attacks while some deploy computationally extensive cryptographic operations such as bilinear pairings and blockchain. In this paper, we leverage on biometrics, error correction codes and fuzzy commitment schemes to develop a secure and energy efficient authentication scheme for the smart cities. This is informed by the fact that biometric data is cumbersome to reproduce and hence attacks such as side-channeling are thwarted. We formally analyze the security of our protocol using the Burrows-Abadi-Needham logic logic, which shows that our scheme achieves strong mutual authentication among the communicating entities. The semantic analysis of our protocol shows that it mitigates attacks such as de-synchronization, eavesdropping, session hijacking, forgery and side-channeling. In addition, its formal security analysis demonstrates that it is secure under the Canetti and Krawczyk attack model. In terms of performance, our scheme is shown to reduce the computation overheads by 20.7% and hence is the most efficient among the state-of-the-art protocols.

3.
Animals (Basel) ; 14(13)2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38997962

ABSTRACT

Aquaculture requires precise non-invasive methods for biomass estimation. This research validates a novel computer vision methodology that uses a signature function-based feature extraction algorithm combining statistical morphological analysis of the size and shape of fish and machine learning to improve the accuracy of biomass estimation in fishponds and is specifically applied to tilapia (Oreochromis niloticus). These features that are automatically extracted from images are put to the test against previously manually extracted features by comparing the results when applied to three common machine learning methods under two different lighting conditions. The dataset for this analysis encompasses 129 tilapia samples. The results give promising outcomes since the multilayer perceptron model shows robust performance, consistently demonstrating superior accuracy across different features and lighting conditions. The interpretable nature of the model, rooted in the statistical features of the signature function, could provide insights into the morphological and allometric changes at different developmental stages. A comparative analysis against existing literature underscores the competitiveness of the proposed methodology, pointing to advancements in precision, interpretability, and species versatility. This research contributes significantly to the field, accelerating the quest for non-invasive fish biometrics that can be generalized across various aquaculture species in different stages of development. In combination with detection, tracking, and posture recognition, deep learning methodologies such as the one provided in the latest studies could generate a powerful method for real-time fish morphology development, biomass estimation, and welfare monitoring, which are crucial for the effective management of fish farms.

4.
PeerJ Comput Sci ; 10: e2086, 2024.
Article in English | MEDLINE | ID: mdl-38983219

ABSTRACT

User authentication is a fundamental aspect of information security, requiring robust measures against identity fraud and data breaches. In the domain of keystroke dynamics research, a significant challenge lies in the reliance on imposter datasets, particularly evident in real-world scenarios where obtaining authentic imposter data is exceedingly difficult. This article presents a novel approach to keystroke dynamics-based authentication, utilizing unsupervised outlier detection techniques, notably exemplified by the histogram-based outlier score (HBOS), eliminating the necessity for imposter samples. A comprehensive evaluation, comparing HBOS with 15 alternative outlier detection methods, highlights its superior performance. This departure from traditional dependence on imposter datasets signifies a substantial advancement in keystroke dynamics research. Key innovations include the introduction of an alternative outlier detection paradigm with HBOS, increased practical applicability by reducing reliance on extensive imposter data, resolution of real-world challenges in simulating fraudulent keystrokes, and addressing critical gaps in existing authentication methodologies. Rigorous testing on Carnegie Mellon University's (CMU) keystroke biometrics dataset validates the effectiveness of the proposed approach, yielding an impressive equal error rate (EER) of 5.97%, a notable area under the ROC curve of 97.79%, and a robust accuracy (ACC) of 89.23%. This article represents a significant advancement in keystroke dynamics-based authentication, offering a reliable and efficient solution characterized by substantial improvements in accuracy and practical applicability.

5.
Front Bioeng Biotechnol ; 12: 1398888, 2024.
Article in English | MEDLINE | ID: mdl-39027407

ABSTRACT

This study proposes a small one-dimensional convolutional neural network (1D-CNN) framework for individual authentication, considering the hypothesis that a single heartbeat as input is sufficient to create a robust system. A short segment between R to R of electrocardiogram (ECG) signals was chosen to generate single heartbeat samples by enforcing a rigid length thresholding procedure combined with an interpolation technique. Additionally, we explored the benefits of the synthetic minority oversampling technique (SMOTE) to tackle the imbalance in sample distribution among individuals. The proposed framework was evaluated individually and in a mixture of four public databases: MIT-BIH Normal Sinus Rhythm (NSRDB), MIT-BIH Arrhythmia (MIT-ARR), ECG-ID, and MIMIC-III which are available in the Physionet repository. The proposed framework demonstrated excellent performance, achieving a perfect score (100%) across all metrics (i.e., accuracy, precision, sensitivity, and F1-score) on individual NSRDB and MIT-ARR databases. Meanwhile, the performance remained high, reaching more than 99.6% on mixed datasets that contain larger populations and more diverse conditions. The impressive performance demonstrated in both small and large subject groups emphasizes the model's scalability and potential for widespread implementation, particularly in security contexts where timely authentication is crucial. For future research, we need to examine the incorporation of multimodal biometric systems and extend the applicability of the framework to real-time environments and larger populations.

6.
Front Sociol ; 9: 1339834, 2024.
Article in English | MEDLINE | ID: mdl-38912311

ABSTRACT

With growing commercial, regulatory and scholarly interest in use of Artificial Intelligence (AI) to profile and interact with human emotion ("emotional AI"), attention is turning to its capacity for manipulating people, relating to factors impacting on a person's decisions and behavior. Given prior social disquiet about AI and profiling technologies, surprisingly little is known on people's views on the benefits and harms of emotional AI technologies, especially their capacity for manipulation. This matters because regulators of AI (such as in the European Union and the UK) wish to stimulate AI innovation, minimize harms and build public trust in these systems, but to do so they should understand the public's expectations. Addressing this, we ascertain UK adults' perspectives on the potential of emotional AI technologies for manipulating people through a two-stage study. Stage One (the qualitative phase) uses design fiction principles to generate adequate understanding and informed discussion in 10 focus groups with diverse participants (n = 46) on how emotional AI technologies may be used in a range of mundane, everyday settings. The focus groups primarily flagged concerns about manipulation in two settings: emotion profiling in social media (involving deepfakes, false information and conspiracy theories), and emotion profiling in child oriented "emotoys" (where the toy responds to the child's facial and verbal expressions). In both these settings, participants express concerns that emotion profiling covertly exploits users' cognitive or affective weaknesses and vulnerabilities; additionally, in the social media setting, participants express concerns that emotion profiling damages people's capacity for rational thought and action. To explore these insights at a larger scale, Stage Two (the quantitative phase), conducts a UK-wide, demographically representative national survey (n = 2,068) on attitudes toward emotional AI. Taking care to avoid leading and dystopian framings of emotional AI, we find that large majorities express concern about the potential for being manipulated through social media and emotoys. In addition to signaling need for civic protections and practical means of ensuring trust in emerging technologies, the research also leads us to provide a policy-friendly subdivision of what is meant by manipulation through emotional AI and related technologies.

7.
Metabolites ; 14(6)2024 May 28.
Article in English | MEDLINE | ID: mdl-38921443

ABSTRACT

Glycerin contributes to the animal's energy metabolism as an important structural component of triglycerides and phospholipids. The present study was carried out to evaluate the effect of replacing corn with 0, 5, 10, and 15% of glycerin in terms of performance, digestibility, carcass yield, relative weights of gastrointestinal tract (GIT) organs, and nutrient metabolism. Four hundred chickens (40.0 g ± 0.05 g) were distributed in a completely randomized design with four treatments and five replicates. Growth parameters were measured at 7, 14, 21, and 42 days. Digestibility of crude protein and fat, carcass yield, relative weights of GIT organs, and biochemical blood profile were measured. The results were subject to an analysis of variance by Tukey's HSD test (p > 0.05). The inclusion of 5%, 10%, or 15% of glycerin did not influence performance or affect the crude protein and fat digestibility in broilers (p > 0.05) when compared to that of the basal (0%) diet. Similarly, the supplementation of glycerin levels showed no significant influence (p > 0.05) on the relative GIT organ weights, carcass yield, or nutrient metabolism. Thus, we concluded that glycerin may be included in the broilers' diets in rations of up to 15%.

8.
Sensors (Basel) ; 24(11)2024 May 30.
Article in English | MEDLINE | ID: mdl-38894315

ABSTRACT

This paper addresses issues concerning biometric authentication based on handwritten signatures. Our research aimed to check whether a handwritten signature acquired with a mobile device can effectively verify a user's identity. We present a novel online signature verification method using coordinates of points and pressure values at each point collected with a mobile device. Convolutional neural networks are used for signature verification. In this paper, three neural network models are investigated, i.e., two self-made light SigNet and SigNetExt models and the VGG-16 model commonly used in image processing. The convolutional neural networks aim to determine whether the acquired signature sample matches the class declared by the signer. Thus, the scenario of closed set verification is performed. The effectiveness of our method was tested on signatures acquired with mobile phones. We used the subset of the multimodal database, MobiBits, that was captured using a custom-made application and consists of samples acquired from 53 people of diverse ages. The experimental results on accurate data demonstrate that developed architectures of deep neural networks can be successfully used for online handwritten signature verification. We achieved an equal error rate (EER) of 0.63% for random forgeries and 6.66% for skilled forgeries.

9.
Forensic Sci Int ; 361: 112108, 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38908069

ABSTRACT

Mass disaster events can result in high levels of casualties that need to be identified. Whilst disaster victim identification (DVI) relies on primary identifiers of DNA, fingerprints, and dental, these require ante-mortem data that may not exist or be easily obtainable. Facial recognition technology may be able to assist. Automated facial recognition has advanced considerably and access to ante-mortem facial images are readily available. Facial recognition could therefore be used to expedite the DVI process by narrowing down leads before primary identifiers are made available. This research explores the feasibility of using automated facial recognition technology to support DVI. We evaluated the performance of a commercial-off-the-self facial recognition algorithm on post-mortem images (representing images taken after a mass disaster) against ante-mortem images (representing a database that may exist within agencies who hold face databases for identity documents (such as passports or driver's licenses). We explored facial recognition performance for different operational scenarios, with different levels of face image quality, and by cause of death. Our research is the largest facial recognition evaluation of post-mortem and ante-mortem images to date. We demonstrated that facial recognition technology would be valuable for DVI and that the performance varies by image quality and cause of death. We provide recommendations for future research.

10.
BioData Min ; 17(1): 15, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38863014

ABSTRACT

The development of neuroscientific techniques enabling the recording of brain and peripheral nervous system activity has fueled research in cognitive science. Recent technological advancements offer new possibilities for inducing behavioral change, particularly through cost-effective Internet-based interventions. However, limitations in laboratory equipment volume have hindered the generalization of results to real-life contexts. The advent of Internet of Things (IoT) devices, such as wearables, equipped with sensors and microchips, has ushered in a new era in behavior change techniques. Wearables, including smartwatches, electronic tattoos, and more, are poised for massive adoption, with an expected annual growth rate of 55% over the next five years. These devices enable personalized instructions, leading to increased productivity and efficiency, particularly in industrial production. Additionally, the healthcare sector has seen a significant demand for wearables, with over 80% of global consumers willing to use them for health monitoring. This research explores the primary biometric applications of wearables and their impact on users' well-being, focusing on the integration of behavior change techniques facilitated by IoT devices. Wearables have revolutionized health monitoring by providing real-time feedback, personalized interventions, and gamification. They encourage positive behavior changes by delivering immediate feedback, tailored recommendations, and gamified experiences, leading to sustained improvements in health. Furthermore, wearables seamlessly integrate with digital platforms, enhancing their impact through social support and connectivity. However, privacy and data security concerns must be addressed to maintain users' trust. As technology continues to advance, the refinement of IoT devices' design and functionality is crucial for promoting behavior change and improving health outcomes. This study aims to investigate the effects of behavior change techniques facilitated by wearables on individuals' health outcomes and the role of wearables in promoting a healthier lifestyle.

11.
Heliyon ; 10(10): e31196, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38784561

ABSTRACT

In this era of climate change, some biological conservationists' concerns are based on seasonal studies that highlight how wild birds' physiological fitness are interconnected with the immediate environment to avoid population decline. We investigated how seasonal biometrics correlated to stress parameters of the adult Village Weavers (Ploceus cucullatus) during breeding and post-breeding seasons of the Weaver birds in Amurum Forest Reserve. Specifically, we explored the following objectives: (i) the seasonal number of birds captured; (ii) whether seasonal baseline corticosterone (CORT), packed cell volume (PCV), and heterophil to lymphocytes ratio (H:L) were sex-dependent; (iii) whether H:L ratio varied with baseline (CORT); (iv) whether phenotypic condition (post-breeding moult) and brood patch varied with baseline (CORT) and H:L ratio; and (v) how body biometrics co-varied birds' seasonal baseline (CORT), (PCV) and (H:L) ratio. Trapping of birds (May-November) coincided with breeding and post-breeding seasons. The birds (n = 53 males, 39 females) were ringed, morphologically assessed (body mass, wing length, moult, brood patch) and blood collected from their brachial vein was used to assess CORT, PCV and H:L ratio. Although our results indicated more male birds trapped during breeding, the multiple analyses of variance (MANOVA) indicated that the seasonal temperature of the trapping sites correlated (P < 0.05) significantly to baseline (CORT). The general linear mixed model analyses (GLMMs) indicated that the baseline (CORT) also correlated significantly to H:L ratio of the male and female birds. However, PCV correlated significantly to body size of the birds (wing length) and not body mass. Haematological parameters such as the baseline CORT and the H:L ratio as indicators of stress in wild birds. Hence, there is the possibility that the Village Weaver birds suffered from seasonally induced stress under the constrained effect of environmental temperature. Hence, future studies should investigate whether the effect observed is also attributable to other passerine species.

12.
Animals (Basel) ; 14(10)2024 May 15.
Article in English | MEDLINE | ID: mdl-38791683

ABSTRACT

The cellulose present in the cell wall of vegetables prevents the greater release of nutrients to the animal. Therefore, the use of the cellulase enzyme is a viable strategy as it is capable of breaking cellulose bonds, releasing nutrients such as glucose, increasing dietary energy, and thus improving the productive performance of birds. Trichoderma reesei is efficient in the production of cellulase, which is produced via submerged fermentation followed by purification, formulation, and drying. Therefore, an experiment was carried out using 240 male broilers of the Cobb-500® lineage to verify the effects resulting from the addition of powdered (500 g/t and 1000 g/t) and liquid (500 mL/t) cellulase over a period of 1 to 21 days. A completely randomized experimental design was used, consisting of four treatments with six replications and ten birds per replication that were housed in an experimental cage. It was observed that performance and digestibility results were significantly different with cellulase supplementation. Also, the relative weight of the large intestine in the period between one and seven days increased when cellulase was added at 1000 g/t. In the period of between eight and 14 days of life, the birds that consumed only the basal diet obtained higher levels of liver protein than those that received the treatments with the addition of the enzyme. However, 15 and 21 days, the consumed feed effect did not occur between thus, it is not conclusive whether hepatotoxicity occurs with the addition of cellulase. For the blood parameters, at 21 days, the diets with added cellulase were not significantly different regarding electrolytes. It was concluded that this cellulase produced by Trichoderma reesei can be included in the animals' diet.

13.
Sci Rep ; 14(1): 10871, 2024 05 13.
Article in English | MEDLINE | ID: mdl-38740777

ABSTRACT

Reinforcement of the Internet of Medical Things (IoMT) network security has become extremely significant as these networks enable both patients and healthcare providers to communicate with each other by exchanging medical signals, data, and vital reports in a safe way. To ensure the safe transmission of sensitive information, robust and secure access mechanisms are paramount. Vulnerabilities in these networks, particularly at the access points, could expose patients to significant risks. Among the possible security measures, biometric authentication is becoming a more feasible choice, with a focus on leveraging regularly-monitored biomedical signals like Electrocardiogram (ECG) signals due to their unique characteristics. A notable challenge within all biometric authentication systems is the risk of losing original biometric traits, if hackers successfully compromise the biometric template storage space. Current research endorses replacement of the original biometrics used in access control with cancellable templates. These are produced using encryption or non-invertible transformation, which improves security by enabling the biometric templates to be changed in case an unwanted access is detected. This study presents a comprehensive framework for ECG-based recognition with cancellable templates. This framework may be used for accessing IoMT networks. An innovative methodology is introduced through non-invertible modification of ECG signals using blind signal separation and lightweight encryption. The basic idea here depends on the assumption that if the ECG signal and an auxiliary audio signal for the same person are subjected to a separation algorithm, the algorithm will yield two uncorrelated components through the minimization of a correlation cost function. Hence, the obtained outputs from the separation algorithm will be distorted versions of the ECG as well as the audio signals. The distorted versions of the ECG signals can be treated with a lightweight encryption stage and used as cancellable templates. Security enhancement is achieved through the utilization of the lightweight encryption stage based on a user-specific pattern and XOR operation, thereby reducing the processing burden associated with conventional encryption methods. The proposed framework efficacy is demonstrated through its application on the ECG-ID and MIT-BIH datasets, yielding promising results. The experimental evaluation reveals an Equal Error Rate (EER) of 0.134 on the ECG-ID dataset and 0.4 on the MIT-BIH dataset, alongside an exceptionally large Area under the Receiver Operating Characteristic curve (AROC) of 99.96% for both datasets. These results underscore the framework potential in securing IoMT networks through cancellable biometrics, offering a hybrid security model that combines the strengths of non-invertible transformations and lightweight encryption.


Subject(s)
Computer Security , Electrocardiography , Internet of Things , Electrocardiography/methods , Humans , Algorithms , Signal Processing, Computer-Assisted , Biometric Identification/methods
14.
Sensors (Basel) ; 24(9)2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38732856

ABSTRACT

Biometric authentication plays a vital role in various everyday applications with increasing demands for reliability and security. However, the use of real biometric data for research raises privacy concerns and data scarcity issues. A promising approach using synthetic biometric data to address the resulting unbalanced representation and bias, as well as the limited availability of diverse datasets for the development and evaluation of biometric systems, has emerged. Methods for a parameterized generation of highly realistic synthetic data are emerging and the necessary quality metrics to prove that synthetic data can compare to real data are open research tasks. The generation of 3D synthetic face data using game engines' capabilities of generating varied realistic virtual characters is explored as a possible alternative for generating synthetic face data while maintaining reproducibility and ground truth, as opposed to other creation methods. While synthetic data offer several benefits, including improved resilience against data privacy concerns, the limitations and challenges associated with their usage are addressed. Our work shows concurrent behavior in comparing semi-synthetic data as a digital representation of a real identity with their real datasets. Despite slight asymmetrical performance in comparison with a larger database of real samples, a promising performance in face data authentication is shown, which lays the foundation for further investigations with digital avatars and the creation and analysis of fully synthetic data. Future directions for improving synthetic biometric data generation and their impact on advancing biometrics research are discussed.


Subject(s)
Face , Video Games , Humans , Face/anatomy & histology , Face/physiology , Biometry/methods , Biometric Identification/methods , Imaging, Three-Dimensional/methods , Male , Female , Algorithms , Reproducibility of Results
15.
IEEE Open J Eng Med Biol ; 5: 281-295, 2024.
Article in English | MEDLINE | ID: mdl-38766538

ABSTRACT

Goal: FetSAM represents a cutting-edge deep learning model aimed at revolutionizing fetal head ultrasound segmentation, thereby elevating prenatal diagnostic precision. Methods: Utilizing a comprehensive dataset-the largest to date for fetal head metrics-FetSAM incorporates prompt-based learning. It distinguishes itself with a dual loss mechanism, combining Weighted DiceLoss and Weighted Lovasz Loss, optimized through AdamW and underscored by class weight adjustments for better segmentation balance. Performance benchmarks against prominent models such as U-Net, DeepLabV3, and Segformer highlight its efficacy. Results: FetSAM delivers unparalleled segmentation accuracy, demonstrated by a DSC of 0.90117, HD of 1.86484, and ASD of 0.46645. Conclusion: FetSAM sets a new benchmark in AI-enhanced prenatal ultrasound analysis, providing a robust, precise tool for clinical applications and pushing the envelope of prenatal care with its groundbreaking dataset and segmentation capabilities.

16.
Comput Struct Biotechnol J ; 24: 281-291, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38644928

ABSTRACT

All people have a fingerprint that is unique to them and persistent throughout life. Similarly, we propose that people have a gaitprint, a persistent walking pattern that contains unique information about an individual. To provide evidence of a unique gaitprint, we aimed to identify individuals based on basic spatiotemporal variables. 81 adults were recruited to walk overground on an indoor track at their own pace for four minutes wearing inertial measurement units. A total of 18 trials per participant were completed between two days, one week apart. Four methods of pattern analysis, a) Euclidean distance, b) cosine similarity, c) random forest, and d) support vector machine, were applied to our basic spatiotemporal variables such as step and stride lengths to accurately identify people. Our best accuracy (98.63%) was achieved by random forest, followed by support vector machine (98.40%), and the top 10 most similar trials from cosine similarity (98.40%). Our results clearly demonstrate a persistent walking pattern with sufficient information about the individual to make them identifiable, suggesting the existence of a gaitprint.

17.
Sensors (Basel) ; 24(7)2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38610479

ABSTRACT

In recent years, the advancement of generative techniques, particularly generative adversarial networks (GANs), has opened new possibilities for generating synthetic biometric data from different modalities, including-among others-images of irises, fingerprints, or faces in different representations. This study presents the process of generating synthetic images of human irises, using the recent StyleGAN3 model. The novelty presented in this work consists in producing generated content in both Cartesian and polar coordinate representations, typically used in iris recognition pipelines, such as the foundational work proposed by John Daugman, but hitherto not used in generative AI experiments. The main objective of this study was to conduct a qualitative analysis of the synthetic samples and evaluate the iris texture density and suitability for meaningful feature extraction. During this study, a total of 1327 unique irises were generated, and experimental results carried out using the well-known OSIRIS open-source iris recognition software and the equivalent software, wordlcoin-openiris, newly published at the end of 2023 to prove that (1) no "identity leak" from the training set was observed, and (2) the generated irises had enough unique textural information to be successfully differentiated between both themselves and between them and real, authentic iris samples. The results of our research demonstrate the promising potential of synthetic iris data generation as a valuable tool for augmenting training datasets and improving the overall performance of iris recognition systems. By exploring the synthetic data in both Cartesian and polar representations, we aim to understand the benefits and limitations of each approach and their implications for biometric applications. The findings suggest that synthetic iris data can significantly contribute to the advancement of iris recognition technology, enhancing its accuracy and robustness in real-world scenarios by greatly augmenting the possibilities to gather large and diversified training datasets.


Subject(s)
Biometry , Iris , Humans , Recognition, Psychology , Software , Technology
18.
PeerJ Comput Sci ; 10: e1887, 2024.
Article in English | MEDLINE | ID: mdl-38660197

ABSTRACT

Emotion detection (ED) involves the identification and understanding of an individual's emotional state through various cues such as facial expressions, voice tones, physiological changes, and behavioral patterns. In this context, behavioral analysis is employed to observe actions and behaviors for emotional interpretation. This work specifically employs behavioral metrics like drawing and handwriting to determine a person's emotional state, recognizing these actions as physical functions integrating motor and cognitive processes. The study proposes an attention-based transformer model as an innovative approach to identify emotions from handwriting and drawing samples, thereby advancing the capabilities of ED into the domains of fine motor skills and artistic expression. The initial data obtained provides a set of points that correspond to the handwriting or drawing strokes. Each stroke point is subsequently delivered to the attention-based transformer model, which embeds it into a high-dimensional vector space. The model builds a prediction about the emotional state of the person who generated the sample by integrating the most important components and patterns in the input sequence using self-attentional processes. The proposed approach possesses a distinct advantage in its enhanced capacity to capture long-range correlations compared to conventional recurrent neural networks (RNN). This characteristic makes it particularly well-suited for the precise identification of emotions from samples of handwriting and drawings, signifying a notable advancement in the field of emotion detection. The proposed method produced cutting-edge outcomes of 92.64% on the benchmark dataset known as EMOTHAW (Emotion Recognition via Handwriting and Drawing).

19.
Sensors (Basel) ; 24(8)2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38676006

ABSTRACT

Due to their user-friendliness and reliability, biometric systems have taken a central role in everyday digital identity management for all kinds of private, financial and governmental applications with increasing security requirements. A central security aspect of unsupervised biometric authentication systems is the presentation attack detection (PAD) mechanism, which defines the robustness to fake or altered biometric features. Artifacts like photos, artificial fingers, face masks and fake iris contact lenses are a general security threat for all biometric modalities. The Biometric Evaluation Center of the Institute of Safety and Security Research (ISF) at the University of Applied Sciences Bonn-Rhein-Sieg has specialized in the development of a near-infrared (NIR)-based contact-less detection technology that can distinguish between human skin and most artifact materials. This technology is highly adaptable and has already been successfully integrated into fingerprint scanners, face recognition devices and hand vein scanners. In this work, we introduce a cutting-edge, miniaturized near-infrared presentation attack detection (NIR-PAD) device. It includes an innovative signal processing chain and an integrated distance measurement feature to boost both reliability and resilience. We detail the device's modular configuration and conceptual decisions, highlighting its suitability as a versatile platform for sensor fusion and seamless integration into future biometric systems. This paper elucidates the technological foundations and conceptual framework of the NIR-PAD reference platform, alongside an exploration of its potential applications and prospective enhancements.


Subject(s)
Biometric Identification , Humans , Biometric Identification/methods , Skin/diagnostic imaging , Biometry/methods , Computer Security , Reproducibility of Results , Infrared Rays , Spectroscopy, Near-Infrared/methods , Dermatoglyphics , Signal Processing, Computer-Assisted
20.
Sensors (Basel) ; 24(8)2024 Apr 11.
Article in English | MEDLINE | ID: mdl-38676053

ABSTRACT

Wearable Biosensor Technology (WBT) has emerged as a transformative tool in the educational system over the past decade. This systematic review encompasses a comprehensive analysis of WBT utilization in educational settings over a 10-year span (2012-2022), highlighting the evolution of this field to address challenges in education by integrating technology to solve specific educational challenges, such as enhancing student engagement, monitoring stress and cognitive load, improving learning experiences, and providing real-time feedback for both students and educators. By exploring these aspects, this review sheds light on the potential implications of WBT on the future of learning. A rigorous and systematic search of major academic databases, including Google Scholar and Scopus, was conducted in accordance with the PRISMA guidelines. Relevant studies were selected based on predefined inclusion and exclusion criteria. The articles selected were assessed for methodological quality and bias using established tools. The process of data extraction and synthesis followed a structured framework. Key findings include the shift from theoretical exploration to practical implementation, with EEG being the predominant measurement, aiming to explore mental states, physiological constructs, and teaching effectiveness. Wearable biosensors are significantly impacting the educational field, serving as an important resource for educators and a tool for students. Their application has the potential to transform and optimize academic practices through sensors that capture biometric data, enabling the implementation of metrics and models to understand the development and performance of students and professors in an academic environment, as well as to gain insights into the learning process.


Subject(s)
Biosensing Techniques , Wearable Electronic Devices , Biosensing Techniques/instrumentation , Humans , Electroencephalography/methods , Electroencephalography/instrumentation , Education , Students , Learning
SELECTION OF CITATIONS
SEARCH DETAIL
...