Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
Add more filters











Publication year range
1.
Proc Biol Sci ; 291(2026): 20240868, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38955327

ABSTRACT

Biotic interactions play a critical role in shaping patterns of global biodiversity. While several macroecological studies provide evidence for stronger predation in tropical regions compared with higher latitudes, results are variable even within the tropics, and the drivers of this variability are not well understood. We conducted two complementary standardized experiments on communities of sessile marine invertebrate prey and their associated predators to test for spatial and seasonal differences in predation across the tropical Atlantic and Pacific coastlines of Panama. We further tested the prediction that higher predator diversity contributes to stronger impacts of predation, using both direct observations of predators and data from extensive reef surveys. Our results revealed substantially higher predation rates and stronger effects of predators on prey in the Pacific than in the Atlantic, demonstrating striking variation within tropical regions. While regional predator diversity was high in the Atlantic, functional diversity at local scales was markedly low. Peak predation strength in the Pacific occurred during the wet, non-upwelling season when ocean temperatures were warmer and predator communities were more functionally diverse. Our results highlight the importance of regional biotic and abiotic drivers that shape interaction strength and the maintenance of tropical communities, which are experiencing rapid environmental change.


Subject(s)
Food Chain , Predatory Behavior , Seasons , Tropical Climate , Animals , Biodiversity , Panama , Atlantic Ocean , Pacific Ocean , Invertebrates/physiology
2.
Ecol Lett ; 27(1): e14360, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38183675

ABSTRACT

Communities worldwide are losing multiple species at an unprecedented rate, but how communities reassemble after these losses is often an open question. It is well established that the order and timing of species arrival during community assembly shapes forthcoming community composition and function. Yet, whether the order and timing of species losses can lead to divergent community trajectories remains largely unexplored. Here, we propose a novel framework that sets testable hypotheses on the effects of the order and timing of species losses-inverse priority effects-and suggests its integration into the study of community assembly. We propose that the order and timing of species losses within a community can generate alternative reassembly trajectories, and suggest mechanisms that may underlie these inverse priority effects. To formalize these concepts quantitatively, we used a three-species Lotka-Volterra competition model, enabling to investigate conditions in which the order of species losses can lead to divergent reassembly trajectories. The inverse priority effects framework proposed here promotes the systematic study of the dynamics of species losses from ecological communities, ultimately aimed to better understand community reassembly and guide management decisions in light of rapid global change.


Subject(s)
Biota , Ecosystem
3.
Nat Prod Res ; 37(5): 769-775, 2023 Mar.
Article in English | MEDLINE | ID: mdl-35617490

ABSTRACT

Despite its worldwide relevance as an invasive plant, there are few studies on Ulex europaeus (gorse) and its allelopathic activity is almost unexplored. The allelochemical profile of gorse was analysed through methanolic extract of pods and roots, and its phytotoxic effects on Lactuca sativa germination. The methanolic extract of pods had no effect in germination, while extract of roots resulted in a U-shaped dose-response curve: reducing the germination at concentration 0.5 mg mL-1. GC-MS analysis detected compounds with proven antimicrobial and antioxidant activities in the pods and cytotoxic compounds in the roots, which could explain the bioassay results. The quinolizidine alkaloids (QAs) composition was evaluated to predict possible biological functions. It showed the presence of QAs in gorse that are absent in their native range, indicating broad defense strategies against bacteria, fungi, plants, and insects in the Chilean ecosystem. This could explain the superiority of gorse in the invaded areas.


Subject(s)
Alkaloids , Ecosystem , Ulex/chemistry , Chile , Pheromones/pharmacology , Plants , Alkaloids/pharmacology , Plant Extracts/pharmacology , Allelopathy
4.
Data Brief ; 45: 108720, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36426048

ABSTRACT

This dataset reports the diet composition of a highly diverse anuran assemblage in the Ecuadorian Amazon region. In 2001 we examined the diet of an assemblage of frogs from Yasuní National Park. We describe the diet of 396 adult individuals, belonging to 35 species, based on their gastrointestinal contents. Using a stereoscopic microscope, we were able to identify 4085 prey items, and classified them in 71 categories. Also, we used a digital caliper to measure the size and estimate the volume of prey items that were found intact. In addition to diet composition, we provide information of all specimens that were examined including, museum number, family name, species name, and place and date of collection. Finally, we present an anuran-prey interaction network figure to visualize species interactions. This is the first report of the diet composition of an anuran assemblage from Yasuní National Park. It contributes to the understanding of trophic ecology of frog assemblages and the functional role of frogs in Amazonian ecosystems. In addition, our dataset helps to fill the great knowledge gap that exists about ecological interactions in the tropics.

5.
J Anim Ecol ; 91(11): 2220-2234, 2022 11.
Article in English | MEDLINE | ID: mdl-36097677

ABSTRACT

Human habitat disturbance affects both species diversity and intraspecific genetic diversity, leading to correlations between these two components of biodiversity (termed species-genetic diversity correlation, SGDC). However, whether SGDC predictions extend to host-associated communities, such as the intestinal parasite and gut microbial diversity, remains largely unexplored. Additionally, the role of dominant generalist species is often neglected despite their importance in shaping the environment experienced by other members of the ecological community, and their role as source, reservoir and vector of zoonotic diseases. New analytical approaches (e.g. structural equation modelling, SEM) can be used to assess SGDC relationships and distinguish among direct and indirect effects of habitat characteristics and disturbance on the various components of biodiversity. With six concrete and biologically sound models in mind, we collected habitat characteristics of 22 study sites from four distinct landscapes located in central Panama. Each landscape differed in the degree of human disturbance and fragmentation measured by several quantitative variables, such as canopy cover, canopy height and understorey density. In terms of biodiversity, we estimated on the one hand, (a) small mammal species diversity, and, on the other hand, (b) genome-wide diversity, (c) intestinal parasite diversity and (d) gut microbial heterogeneity of the most dominant generalist species (Tome's spiny rat, Proechimys semispinosus). We used SEMs to assess the links between habitat characteristics and biological diversity measures. The best supported SEM suggested that habitat characteristics directly and positively affect the richness of small mammals, the genetic diversity of P. semispinosus and its gut microbial heterogeneity. Habitat characteristics did not, however, directly impact intestinal parasite diversity. We also detected indirect, positive effects of habitat characteristics on both host-associated assemblages via small mammal richness. For microbes, this is likely linked to cross species transmission, particularly in shared and/or anthropogenically altered habitats, whereas host diversity mitigates parasite infections. The SEM revealed an additional indirect but negative effect on intestinal parasite diversity via host genetic diversity. Our study showcases that habitat alterations not only affect species diversity and host genetic diversity in parallel, but also species diversity of host-associated assemblages. The impacts from human disturbance are therefore expected to ripple through entire ecosystems with far reaching effects felt even by generalist species.


Las perturbaciones antropogénicas sobre los hábitats naturales pueden afectar tanto a la diversidad de las especies como a la diversidad genética intraespecífica, dando lugar a correlaciones entre estos dos elementos de la biodiversidad (denominados correlación de la diversidad genética de las especies, SGDC por sus siglas en inglés). Sin embargo, todavía queda sin explorar si las predicciones de la SGDC afectan a las comunidades de parásitos y microorganismos intestinales asociadas al hospedador. Adicionalmente, el rol que juegan las especies generalistas, especialmente aquéllas dominantes, suele ser descuidado, a pesar de la importancia de control que ejercen sobre la estructura de la comunidad, y su rol como fuente, reservorio y vector de enfermedades zoonóticas. Para poder evaluar las relaciones de SGDC y distinguir entre los efectos directos e indirectos que tienen las características del hábitat y las perturbaciones sobre los distintos componentes de la biodiversidad, se pueden utilizar nuevos enfoques analíticos como por ejemplo los modelos de ecuaciones estructurales (SEM, por sus siglas en inglés). Considerando seis modelos específicos y biológicamente sólidos, recopilamos las características del hábitat de 22 sitios ubicados en cuatro paisajes distintos situados en el centro de Panamá. Cada paisaje difería en el grado de perturbación antropogénica y fragmentación, medido por diferentes variables cuantitativas, como la cobertura del dosel, la altura del dosel y la densidad del sotobosque. En términos de biodiversidad, por un lado estimamos (1) la diversidad de especies de pequeños mamíferos y, por otro lado (2) la diversidad del genoma completo, (3) la diversidad de parásitos intestinales, y (4) la heterogeneidad de las comunidades microbianas del intestino de la especie generalista más dominante, la rata espinosa de Tomes Proechimys semispinosus. Para evaluar los vínculos entre las características del hábitat y las medidas de diversidad biológica se utilizó el modelado SEM. El SEM mejor apoyado sugirió que las características del hábitat afectan directa y positivamente a la abundancia de pequeños mamíferos, a la diversidad genética de P. semispinosus y a la heterogeneidad microbiana intestinal. Sin embargo, se observó que las características del hábitat no tienen un efecto directo en la diversidad de parásitos intestinales. Aparte de estos efectos directos, detectamos efectos indirectos y positivos de las características del hábitat en ambos conjuntos asociados al hospedador (diversidad de parásitos y microorganismos intestinales) a través de la abundancia de pequeños mamíferos. En el caso de las comunidades microbianas, esto está probablemente relacionado con la transmisión interespecífica, especialmente en hábitats compartidos y/o antropogénicamente alterados; mientras que la diversidad de hospedadores mitiga las infecciones de parásitos. El SEM reveló un efecto indirecto adicional pero negativo sobre la diversidad de parásitos intestinales a través de la diversidad genética de los hospedadores. Nuestro estudio muestra que los patrones de SGDC se filtran a través de las varias capas de diversidad biológica, añadiendo los ensamblajes asociados al hospedador como componentes biológicos afectados por las alteraciones del hábitat.


Subject(s)
Biodiversity , Ecosystem , Animals , Humans , Rodentia , Mammals , Panama
6.
J Exp Bot ; 73(13): 4546-4561, 2022 07 16.
Article in English | MEDLINE | ID: mdl-35167679

ABSTRACT

Transcription factors control gene expression, leading to regulation of biological processes that determine plant development and adaptation to the environment. Land colonization by plants occurred 450-470 million years ago and was accompanied by an increase in the complexity of transcriptional regulation associated to transcription factor gene expansions. AP2/ERF, bHLH, MYB, NAC, GRAS, and WRKY transcription factor families increased in land plants compared with algae. In angiosperms, they play crucial roles in regulating plant growth and responses to environmental stressors. However, less information is available in bryophytes and only in a few cases is the functional role of moss transcription factors in stress mechanisms known. In this review, we discuss current knowledge of the transcription factor families involved in development and defense responses to stress in mosses and other bryophytes. By exploring and analysing the Physcomitrium patens public database and published transcriptional profiles, we show that a high number of AP2/ERF, bHLH, MYB, NAC, GRAS, and WRKY genes are differentially expressed in response to abiotic stresses and during biotic interactions. Expression profiles together with a comprehensive analysis provide insights into relevant transcription factors involved in moss defenses, and hint at distinct and conserved biological roles between bryophytes and angiosperms.


Subject(s)
Bryopsida , Transcription Factors , Bryopsida/genetics , Bryopsida/metabolism , Gene Expression Regulation, Plant , Plant Proteins/genetics , Plant Proteins/metabolism , Stress, Physiological/genetics , Transcription Factors/genetics , Transcription Factors/metabolism
7.
Integr Zool ; 17(3): 408-419, 2022 May.
Article in English | MEDLINE | ID: mdl-33876575

ABSTRACT

Nestling growth parameters are integral components of avian life-history strategies as they are crucial determinants of individual survival. Although many factors impact on nestling growth, the relative contribution of each one is still debated in the literature. Most studies rely on the assumption that each factor directly affects nestling growth, but indirect effects mediated by other factors are usually the rule in nature. In this study, we present a comprehensive view of both direct and indirect factors affecting nestling growth using the Red-crested Cardinal (Paroaria coronata) as model system. We evaluated the relative importance of different habitat (forest structure), biotic interactions (botfly larvae ectoparasitism, number of siblings, hatching order), and temporal factors (time of breeding) on nestling growth parameters in 278 nestlings of 128 nests by using piecewise structural equation models. We found that botfly ectoparasitism had the strongest direct effect on nestling growth and, in turn, forest structure increased the probability of botfly occurrence. Besides, the interaction between the number of siblings and hatching order influenced nestling growth, indicating that the first and second nestlings had disproportionately higher growth rates in large than in small clutches. Time of breeding also showed a strong positive indirect effect on botfly occurrence, as well as a weak direct positive effect on nestling growth. Our results demonstrate that, under natural conditions, nestling growth is driven by different factors acting not only directly, but also indirectly on this essential life history trait, and that these factors weave a complex web of interrelated variables.


Subject(s)
Passeriformes , Animals , Ecosystem
8.
Plants (Basel) ; 10(10)2021 Sep 26.
Article in English | MEDLINE | ID: mdl-34685832

ABSTRACT

Climate change is unleashing novel biotic antagonistic interactions for forest trees that may jeopardize populations' persistence. Therefore, this review article envisions highlighting major opportunities from ecological evolutionary genomics to assist the identification, conservation, and breeding of biotic resistance in forest tree species. Specifically, we first discuss how assessing the genomic architecture of biotic stress resistance enables us to recognize a more polygenic nature for a trait typically regarded Mendelian, an expectation from the Fisherian runaway pathogen-host concerted arms-race evolutionary model. Secondly, we outline innovative pipelines to capture and harness natural tree pre-adaptations to biotic stresses by merging tools from the ecology, phylo-geography, and omnigenetics fields within a predictive breeding platform. Promoting integrative ecological genomic studies promises a better understanding of antagonistic co-evolutionary interactions, as well as more efficient breeding utilization of resistant phenotypes.

9.
Ecology ; 102(8): e03434, 2021 08.
Article in English | MEDLINE | ID: mdl-34114663

ABSTRACT

Understanding the mechanisms of spatial variation of biological invasions, across local-to-global scales, has been a major challenge. The importance of evolutionary history for invasion dynamics was noted by Darwin, and several studies have since considered how biodiversity of source and recipient regions can influence the probability of invasions. For over a century, the Panama Canal has connected water bodies and biotas with different evolutionary histories, and created a global shipping hot spot, providing unique opportunities to test mechanisms that affect invasion patterns. Here, we test for asymmetry in both the extent of invasions and predation effects, a possible mechanism of biotic resistance, between two tropical oceans at similar latitudes. We estimated nonnative species (NNS) richness for sessile marine invertebrates, using standardized field surveys and literature synthesis, to examine whether invasions are asymmetrical, with more NNS present in the less diverse Pacific compared to the Atlantic. We also experimentally tested whether predation differentially limits the abundance and distribution of these invertebrates between oceans. In standardized surveys, observed total NNS richness was higher in the Pacific (18 NNS, 30% of all Pacific species) than the Atlantic (11 NNS, 13% of all Atlantic species). Similarly, literature-based records also display this asymmetry between coasts. When considering only the reciprocal exchange of NNS between Atlantic and Pacific biotas, NNS exchange from Atlantic to Pacific was eightfold higher than the opposite direction, exceeding the asymmetry predicted by random exchange based simply on differences of overall diversity per region. Predation substantially reduced biomass and changed NNS composition in the Pacific, but no such effects were detected on the Atlantic coast. Specifically, some dominant NNS were particularly susceptible to predation in the Pacific, supporting the hypothesis that predation may reduce the abundance of certain NNS here. These results are consistent with predictions that high diversity in source regions, and species interactions in recipient regions, shape marine invasion patterns. Our comparisons and experiments across two tropical ocean basins, suggest that global invasion dynamics are likely driven by both ecological and evolutionary factors that shape susceptibility to and directionality of invasions across biogeographic scales.


Subject(s)
Biodiversity , Invertebrates , Animals , Aquatic Organisms , Oceans and Seas , Predatory Behavior
10.
Pest Manag Sci ; 77(10): 4701-4708, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34129282

ABSTRACT

BACKGROUND: The multiple nucleopolyhedrovirus of Spodoptera frugiperda (SfMNPV) plays an important role in regulating its natural host and has high potential for use as a bioinsecticide. However, information about how agricultural practices such as fertilization and plant biotic interactions affect the biocontrol efficacy of SfMNPV is limited. In this study, we examined how multitrophic maize-mycorrhiza-insect herbivore interactions affect the biocontrol efficacy of SfMNPV against S. frugiperda under full and reduced mineral nitrogen fertilization. Two fully factorial greenhouse pot experiments with three factors were performed: (i) arbuscular mycorrhizal fungi (AMF) (with and without AMF), (ii) nitrogen fertilization (50% and 100% N), and (iii) insect (with and without of S. frugiperda). The biocontrol efficacy of SfMNPV against S. frugiperda was examined using detached leaves under controlled environmental conditions. RESULTS: Associating maize with AMF resulted in multitrophic cascade effects. Plants with AMF showed suppression of plant growth and increased leaf N and P content, which coincided with increased foliar herbivory and larval biomass that finally reduced the susceptibility of S. frugiperda to SfMNPV. Reduced levels of N fertilization mitigated these observed cascade effects on the biocontrol efficacy of SfMNPV with maize mycorrhizas. CONCLUSION: Our results show that AMF can modulate S. frugiperda-SfMNPV interactions via plant-mediated phenotypic responses to the mycorrhizal association and are most likely linked with increased leaf food quality for S. frugiperda. These results call for further studies to address the mode of interaction and possible implications for pest management in maize agroecosystems. © 2021 Society of Chemical Industry.


Subject(s)
Mycorrhizae , Nucleopolyhedroviruses , Animals , Herbivory , Insecta , Spodoptera , Zea mays
11.
PeerJ ; 9: e10974, 2021.
Article in English | MEDLINE | ID: mdl-33854834

ABSTRACT

BACKGROUND: Plant-pollinator mutualistic networks show non-random structural properties that promote species coexistence. However, these networks show high variability in the interacting species and their connections. Mismatch between plant and pollinator attributes can prevent interactions, while trait matching can enable exclusive access, promoting pollinators' niche partitioning and, ultimately, modularity. Thus, plants belonging to specialized modules should integrate their floral traits to optimize the pollination function. Herein, we aimed to analyze the biological processes involved in the structuring of plant-hummingbird networks by linking network morphological constraints, specialization, modularity and phenotypic floral integration. METHODS: We investigated the understory plant-hummingbird network of two adjacent habitats in the Lacandona rainforest of Mexico, one characterized by lowland rainforest and the other by savanna-like vegetation. We performed monthly censuses to record plant-hummingbird interactions for 2 years (2018-2020). We also took hummingbird bill measurements and floral and nectar measurements. We summarized the interactions in a bipartite matrix and estimated three network descriptors: connectance, complementary specialization (H2'), and nestedness. We also analyzed the modularity and average phenotypic floral integration index of each module. RESULTS: Both habitats showed strong differences in the plant assemblage and network dynamics but were interconnected by the same four hummingbird species, two Hermits and two Emeralds, forming a single network of interaction. The whole network showed low levels of connectance (0.35) and high specialization (H2' = 0.87). Flower morphologies ranged from generalized to specialized, but trait matching was an important network structurer. Modularity was associated with morphological specialization. The Hermits Phaethornis longirostris and P. striigularis each formed a module by themselves, and a third module was formed by the less-specialized Emeralds: Chlorestes candida and Amazilia tzacatl. The floral integration values were higher in specialized modules but not significantly higher than that formed by generalist species. CONCLUSIONS: Our findings suggest that biological processes derived from both trait matching and "forbidden" links, or nonmatched morphological attributes, might be important network drivers in tropical plant-hummingbird systems while morphological specialization plays a minor role in the phenotypic floral integration. The broad variety of corolla and bill shapes promoted niche partitioning, resulting in the modular organization of the assemblage according to morphological specialization. However, more research adding larger datasets of both the number of modules and pollination networks for a wider region is needed to conclude whether phenotypic floral integration increases with morphological specialization in plant-hummingbird systems.

12.
Front Vet Sci ; 8: 604560, 2021.
Article in English | MEDLINE | ID: mdl-33778034

ABSTRACT

Many human emergent and re-emergent diseases have a sylvatic cycle. Yet, little effort has been put into discovering and modeling the wild mammal reservoirs of dengue (DENV), particularly in the Americas. Here, we show a species-level susceptibility prediction to dengue of wild mammals in the Americas as a function of the three most important biodiversity dimensions (ecological, geographical, and phylogenetic spaces), using machine learning protocols. Model predictions showed that different species of bats would be highly susceptible to DENV infections, where susceptibility mostly depended on phylogenetic relationships among hosts and their environmental requirement. Mammal species predicted as highly susceptible coincide with sets of species that have been reported infected in field studies, but it also suggests other species that have not been previously considered or that have been captured in low numbers. Also, the environment (i.e., the distance between the species' optima in bioclimatic dimensions) in combination with geographic and phylogenetic distance is highly relevant in predicting susceptibility to DENV in wild mammals. Our results agree with previous modeling efforts indicating that temperature is an important factor determining DENV transmission, and provide novel insights regarding other relevant factors and the importance of considering wild reservoirs. This modeling framework will aid in the identification of potential DENV reservoirs for future surveillance efforts.

13.
PeerJ ; 7: e8076, 2019.
Article in English | MEDLINE | ID: mdl-31824759

ABSTRACT

Habitat loss and fragmentation are recognized as affecting the nature of biotic interactions, although we still know little about such changes for reptilian herbivores and their hindgut nematodes, in which endosymbiont interactions could range from mutualistic to commensal and parasitic. We investigated the potential cost and benefit of endosymbiont interactions between the spur-thighed tortoise (Testudo graeca L.) and adult oxyurid nematodes (Pharyngodonidae order Oxyurida) in scrublands of southern Spain. For this, we assessed the association between richness and abundance of oxyurid species with tortoises' growth rates and body traits (weight and carapace length) across levels of habitat loss (low, intermediate and high). Furthermore, by using an intrapopulation ecological network approach, we evaluated the structure and diversity of tortoise-oxyurid interactions by focusing on oxyurid species infesting individual tortoises with different body traits and growth rates across habitats. Overall, tortoise body traits were not related to oxyurid infestation across habitats. Oxyurid richness and abundance however, showed contrasting relationships with growth rates across levels of habitat loss. At low habitat loss, oxyurid infestation was positively associated with growth rates (suggesting a mutualistic oxyurid-tortoise relationship), but the association became negative at high habitat loss (suggesting a parasitic relationship). Furthermore, no relationship was observed when habitat loss was intermediate (suggesting a commensal relationship). The network analysis showed that the oxyurid community was not randomly assembled but significantly nested, revealing a structured pattern for all levels of habitat loss. The diversity of interactions was lowest at low habitat loss. The intermediate level, however, showed the greatest specialization, which indicates that individuals were infested by fewer oxyurids in this landscape, whereas at high habitat loss individuals were the most generalized hosts. Related to the latter, connectance was greatest at high habitat loss, reflecting a more uniform spread of interactions among oxyurid species. At an individual level, heavier and larger tortoises tended to show a greater number of oxyurid species interactions. We conclude that there is an association between habitat loss and the tortoise-oxyurid interaction. Although we cannot infer causality in their association, we hypothesize that such oxyurids could have negative, neutral and positive consequences for tortoise growth rates. Ecological network analysis can help in the understanding of the nature of such changes in tortoise-oxyurid interactions by showing how generalized or specialized such interactions are under different environmental conditions and how vulnerable endosymbiont interactions might be to further habitat loss.

14.
Am Nat ; 194(3): 334-343, 2019 09.
Article in English | MEDLINE | ID: mdl-31553213

ABSTRACT

Predation, which is a fundamental force in ecosystems, has been found to decrease in intensity with elevation and latitude. The mechanisms behind this pattern, however, remain unaddressed. Using visual sampling of potential predators and live flies as baits, we assessed predation patterns along 4,000-m elevation transects on either side of the equatorial Andes. At the lower elevations, we found that around 80% of predation events on our insect baits were due to ants. The decline in predation with elevation was driven mainly by a decline in the abundance of ants, whose importance relative to other predators also declined. We show that both predator density and activity (predation rate per individual predator) decreased with elevation, thus ascribing specific mechanisms to known predation patterns. We suggest that changes in these two mechanisms may reflect changes in primary productivity and metabolic rate with temperature, factors of potential relevance across latitudinal and other macroecological gradients, particularly for ectotherm predators and prey.


Subject(s)
Altitude , Predatory Behavior , Animals , Ants/physiology , Arthropods/physiology , Diptera , Ecosystem , Ecuador , Population Density , Vertebrates/physiology
15.
J Anim Ecol ; 88(6): 870-880, 2019 06.
Article in English | MEDLINE | ID: mdl-30883729

ABSTRACT

Anthropogenic disturbance and climate change are the main drivers of biodiversity loss and ecological services around the globe. There is concern that climate change will exacerbate the impacts of disturbance and thereby promote biotic homogenization, but its consequences for ecological services are unknown. We investigated the individual and interactive effects of increasing chronic anthropogenic disturbance (CAD) and aridity on seed dispersal services provided by ants in Caatinga vegetation of north-eastern Brazil. The study was conducted in Catimbau National Park, Pernambuco, Brazil. Within an area of 214 km2 , we established nineteen 50 × 20 m plots that encompassed gradients of both CAD and aridity. We offered diaspores of six plant species, three myrmecochorous diaspores and three fleshy fruits that are secondarily dispersed by ants. We then quantified the number of interactions, seed removal rate and dispersal distances, and noted the identities of interacting ant species. Finally, we used pitfall trap data to quantify the abundances of ant disperser species in each plot. Our results show that overall composition of ant disperser species varied along the gradients of CAD and aridity, but the composition of high-quality dispersers varied only with aridity. The total number of interactions, rates of removal and mean distance of removal all declined with increasing aridity, but they were not related to CAD. These same patterns were found when considering only high-quality disperser species, driven by the responses of the dominant disperser Dinoponera quadriceps. We found little evidence of interactive effects of CAD and aridity on seed dispersal services by ants. Our study indicates that CAD and aridity act independently on ant-mediated seed dispersal services in Caatinga, such that the impacts of anthropogenic disturbance are unlikely to change under the forecast climate of increased aridity. However, our findings highlight the vulnerability of seed dispersal services provided by ants in Caatinga under an increasingly arid climate due to low functional redundancy in high-quality disperser species. Given the large number of plant species dependent on ants for seed dispersal, this has important implications for future plant recruitment and, consequently, for the composition of Caatinga plant communities.


Subject(s)
Ants , Seed Dispersal , Animals , Brazil , Climate Change , Environment , Seeds
16.
Ecol Evol ; 9(24): 14330-14340, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31938522

ABSTRACT

AIM: To understand how disturbance-here defined as a transient reduction in competition-can shape plant distributions along elevation gradients. Theory suggests that disturbance may increase elevation ranges, especially at the lower range limits, through reduced competitive exclusion. Nevertheless, to date this relationship remains unclear. LOCATION: Mountains of Costa Rica. METHODS: We compared the elevation range of woody stems over 10 cm dbh ("trees") observed in plots along two transects spanning a range of elevations in secondary (regrowth) and old-growth forest (409 and 249 species, respectively). We also estimated these elevation ranges using nationwide data. In addition, we examined the influence of stem size and plot scale basal area (as a measure of competition) on species elevation range limits in the two gradients. RESULTS: In general, tree species ranges increased with elevation. Species in the secondary forest had broader elevation ranges (100-318 m broader than species in the old-growth forest; Wilcoxon: p-value <.001). Also, in the secondary transect, individuals with greater diameters had broader elevation ranges than those observed as smaller trees (137 m broader; Kruskal-Wallis: p-value = .03). The lower range limit of species occurred more frequently in plots with lower (vs. higher) basal area than expected by chance in both forest types. We also observed higher elevation upper limits in old growth, but not in secondary forests, with lower (vs. higher) basal area. MAIN CONCLUSION: Disturbance relaxes the constraints imposed by competition and extends effective elevation ranges of species, particularly those in secondary forest, to warmer and cooler climates (minimum increase equivalent to about 0.6-1.4°C). Thus, suitable disturbance may assist species persistence under climate change. We believe this is the first study indicating a consistent relation between disturbance and woody plant species distributions along elevation gradients.

17.
Naturwissenschaften ; 105(9-10): 54, 2018 Aug 31.
Article in English | MEDLINE | ID: mdl-30291455

ABSTRACT

Recent studies on ecological networks have quantified the contribution of ecological, historical, and evolutionary factors on the structure of local communities of interacting species. However, the influence of species' biogeographical traits, such as migratory habits or phylogeographical history, on ecological networks is poorly understood. Meta-networks, i.e., networks that cover large spatial extensions and include species not co-occurring locally, enable us to investigate mechanisms that operate at larger spatial scales such as migratory patterns or phylogeographical distributions, as well as indirect relationships among species through shared partners. Using a meta-network of hummingbird-plant interaction across Mexico, we illustrate the usefulness of this approach by investigating (1) how biogeographical and morphological factors associate with observed interactions and (2) how species-specific biogeographical characteristics associate with species' network roles. Our results show that all studied hummingbird and plant species in the meta-network were interrelated, either directly or through shared partners. The meta-network was structured into modules, resulting from hummingbirds and plants interacting preferentially with subsets of species, which differed in biogeographical, and, to a lesser extent, morphological traits. Furthermore, migrants and hummingbirds from Nearctic, Transition, and widespread regions had a higher topological importance in the meta-network. Our study illustrates how meta-networks may contribute to our current knowledge on species' biogeographical traits and biotic interactions, providing a perspective complementary to local-scale networks.


Subject(s)
Birds/physiology , Ecosystem , Animals , Birds/classification , Mexico , Plants
18.
Front Plant Sci ; 9: 1482, 2018.
Article in English | MEDLINE | ID: mdl-30369938

ABSTRACT

Plant-phyllosphere interactions depend on microbial diversity, the plant host and environmental factors. Light is perceived by plants and by microorganisms and is used as a cue for their interaction. Photoreceptors respond to narrow-bandwidth wavelengths and activate specific internal responses. Light-induced plant responses include changes in hormonal levels, production of secondary metabolites, and release of volatile compounds, which ultimately influence plant-phyllosphere interactions. On the other hand, microorganisms contribute making some essential elements (N, P, and Fe) biologically available for plants and producing growth regulators that promote plant growth and fitness. Therefore, light directly or indirectly influences plant-microbe interactions. The usage of light-emitting diodes in plant growth facilities is helping increasing knowledge in the field. This progress will help define light recipes to optimize outputs on plant-phyllosphere communications. This review describes research advancements on light-regulated plant-phyllosphere interactions. The effects of full light spectra and narrow bandwidth-wavelengths from UV to far-red light are discussed.

19.
PeerJ ; 6: e5444, 2018.
Article in English | MEDLINE | ID: mdl-30128203

ABSTRACT

BACKGROUND: Despite numerous tests of Darwin's naturalization hypothesis (DNH) evidence for its support or rejection is still contradictory. We tested a DNH derived prediction stating that nonnative species (NNS) without native congeneric relatives (NCR) will spread to a greater number of localities than species with close relatives in the new range. This test controlled the effect of residence time (Rt) on the spread of NNS and used naturalized species beyond their lag phase to avoid the effect of stochastic events in the establishment and the lag phases that could obscure the NCR effects on NNS. METHODS: We compared the number of localities (spread) occupied by NNS with and without NCR using 13,977 herbarium records for 305 NNS of weeds. We regressed the number of localities occupied by NNS versus Rt to determine the effect of time on the spread of NNS. Then, we selected the species with Rt greater than the expected span of the lag phase, whose residuals were above and below the regression confidence limits; these NNS were classified as widespread (those occupying more localities than expected by Rt) and limited-spread (those occupying fewer localities than expected). These sets were again subclassified into two groups: NNS with and without NCR at the genus level. The number of NNS with and without NCR was compared using χ2 tests and Spearman correlations between the residuals and the number of relatives. Then, we grouped the NNS using 34 biological attributes and five usages to identify the groups' possible associations with spread and to test DNH. To identify species groups, we performed a nonmetric multidimensional scaling (NMDS) analysis and evaluated the influences of the number of relatives, localities, herbarium specimens, Rt, and residuals of regression. The Spearman correlation and the Mann-Whitney U test were used to determine if the DNH prediction was met. Additionally, we used the clustering objects on subsets of attributes (COSA) method to identify possible syndromes (sets of biological attributes and usages) associated to four groups of NNS useful to test DNH (those with and without NCR and those in more and fewer localities than expected by Rt). RESULTS: Residence time explained 33% of the variation in localities occupied by nonnative trees and shrubs and 46% of the variation for herbs and subshrubs. The residuals of the regression for NNS were not associated with the number or presence of NCR. In each of the NMDS groups, the number of localities occupied by NNS with and without NCR did not significantly differ. The COSA analysis detected that only NNS with NCR in more and fewer localities than expected share biological attributes and usages, but they differ in their relative importance. DISCUSSION: Our results suggest that DNH does not explain the spread of naturalized species in a highly heterogeneous country. Thus, the presence of NCR is not a useful characteristic in risk analyses for naturalized NNS.

20.
PeerJ ; 5: e3344, 2017.
Article in English | MEDLINE | ID: mdl-28560101

ABSTRACT

Tropical dry forests (TDFs) have been widely transformed by human activities worldwide and the ecosystem services they provide are diminishing. There has been an urgent call for conservation and restoration of the degraded lands previously occupied by TDFs. Restoration experiences aim to recover species diversity and ecological functions. Different restoration strategies have been used to maximize plant performance including weeding, planting or using artificial mulching. In this investigation, we evaluated whether different restoration practices influence animal arrival and the reestablishment of biotic interactions. We particularly evaluated lepidopteran larvae diversity and caterpillar predation on plants established under different restoration treatments (mulching, weeding and control) in the Pacific West Coast of México. This study corroborated the importance of plant host identity for lepidopteran presence in a particular area. Lepidopteran diversity and herbivory rates were not affected by the restoration treatment but they were related to tree species. In contrast, caterpillar predation marks were affected by restoration treatment, with a greater number of predation marks in control plots, while caterpillar predation marks among plant species were not significantly different. This study highlights the importance of considering the introduction of high plant species diversity when planning TDF restoration to maximize lepidopteran diversity and ecosystem functioning.

SELECTION OF CITATIONS
SEARCH DETAIL