Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 82
Filter
1.
Saudi Pharm J ; 32(7): 102125, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38933714

ABSTRACT

Objective: Skin cancer refers to the pathological condition characterized by the proliferation of atypical skin cells in an uncontrolled manner. Plant-based products such as bixin although show promising anticancer properties, but maintaining their stability in a formulation is a difficult task. The objective of the research is to formulate a silver nanoparticle gel preparation of bixin and evaluate its anticancer properties. Methods: The extract from Bixa orellana seed was prepared by hot extraction technique to isolate the active ingredient, bixin. A green synthesis approach was utilized for preparing the silver nanoparticle gel of bixin (BOAgNPs). Characterization of silver nanoparticles was done using FTIR, scanning electron microscopy, compatibility study, homogeneity testing, pH evaluation, and drug content determination. The in-vitro anticancer activity was performed using cell lines (B16F10) and in-vivo by chemical carcinogen (7,12-dimethylbenz (a) anthracene) in mice. Results: The BOAgNPs-loaded topical gel was found to be homogeneous (clear orange color) and pH-compatible (pH ≈ 6.66) with the skin. The characterization studies indicated the presence of all functional groups in the formulation. An optimized batch of bixin-nano gel showed about 60% inhibitory effects on B16F10 cell lines (in-vitro activity) when equated with a reference drug, 5-fluorouracil. The in-vivo anticancer study suggested suppression of tumorigenesis and promotion of the healing process with bixin-nano gel application on the skin. Conclusion: The results suggested the promising anticancer property of bixin when formulated in silver nanoparticle gel. The preparation of silver particles nano gel with bixin might provide an effective alternative option for treating skin cancers, provided more research complements the findings of the present study.

2.
Ultrason Sonochem ; 107: 106906, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38776867

ABSTRACT

The interest in natural colorants derived from sustainable processes has prompted research into obtaining bixin from defatted annatto (Bixa orellana L.) seeds. Bixin is a compound that imparts yellow-orange-red coloration, known for its high biodegradability, low toxicity, and wide industrial applicability. Meanwhile, high-intensity ultrasound (HIUS) technology has emerged as a promising method for extracting natural colorants, offering higher yields through shorter processes and minimizing thermal degradation. Although some studies have demonstrated the efficiency of HIUS technology in bixin extraction, research on the effects of acoustic cavitation on the properties of the colorant remains limited. Therefore, this study aimed to investigate the influence of HIUS-specific energy levels (0.02, 0.04, 0.12, and 0.20 kJ/g) on the chemical, physical, and morphological characteristics of annatto extracts containing bixin and geranylgeraniol. Single-step extractions of bixin using ethanol as a solvent were evaluated at various acoustic powers (4.6, 8.5, 14.5, and 20 W) and extraction times (0.5, 1, 3, and 5 min) to determine their impact on the yield of natural colorant extraction. Increasing the acoustic power from 4.6 to 20 W and extending the extraction time from 0.5 to 5 min resulted in higher yields of natural colorant, likely due to the effects of acoustic cavitation and increased heat under more intense conditions. However, elevated levels of mechanical and thermal energy did not affect the chemical properties of the colorant, as indicated by UV-Vis and FTIR spectra. Conversely, higher specific energies yielded colorants with a more intense red hue, consistent with increased bixin content, and altered the microstructure and physical state, as observed in X-ray diffractograms. Nevertheless, these alterations did not impact the solubility of the colorant. Therefore, employing a cleaner extraction procedure aided by one-step ultrasound facilitated the recovery of natural colorants and contributed to the biorefining of annatto seeds, enabling the production of a rich geranylgeraniol colorant through a sustainable approach.


Subject(s)
Bixaceae , Carotenoids , Seeds , Ultrasonic Waves , Seeds/chemistry , Bixaceae/chemistry , Carotenoids/chemistry , Carotenoids/isolation & purification , Chemical Fractionation/methods , Diterpenes/chemistry , Diterpenes/isolation & purification , Color , Plant Extracts
3.
Foods ; 13(10)2024 May 16.
Article in English | MEDLINE | ID: mdl-38790850

ABSTRACT

Currently, Bixa orellana L. extracts are used as a color source in the food, pharmaceutical, and cosmetic industries because they are important as a potential source of antioxidant activity. The extraction is carried out by conventional methods, using alkaline solutions or organic solvents. These extraction methods do not take advantage of the lipid fraction of annatto (Bixa orellana L.) seeds, and the process is not friendly to the environment. In this work, the objective was to obtain an extract rich in nutraceuticals (bixin and tocols) of high antioxidant power from Peruvian annatto seeds as a potential source for a functional food or additive in the industry using supercritical fluid extraction (SFE). Experiments related to extraction yield, bixin, tocotrienols, tocopherols, and antioxidant activity were carried out. The SFE was performed at 40 °C, 50 °C, and 60 °C, and 100, 150, and 250 bar with 0.256 kg/h carbon dioxide as the supercritical solvent (solvent-to-feed ratio of 10.2). Supercritical extraction at 60 °C and 250 bar presented the best results in terms of global extraction yield of 1.40 ± 0.01 g/100 g d.b., extract concentration of 0.564 ± 0.005 g bixin/g extract, 307.8 mg α-tocotrienol/g extract, 39.2 mg ß-tocotrienol/g extract, 2 mg γ-tocopherol/g extract, and IC50 of 989.96 µg extract/mL. Economical evaluation showed that 60 °C, 250 bar, and 45 min presented the lowest cost of manufacturing (2 × 2000 L, COM of USD 212.39/kg extract). This extract is a potential source for functional food production.

4.
Nat Prod Res ; : 1-14, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38726906

ABSTRACT

Bixin is a carotenoid found in the covering of Bixa orellana seeds and widely used as a dye, mainly in food products and cosmetics. This compound is insoluble in water, but technologies have been developed for its use in aqueous preparations, as well as a component for new formulations to disperse other lipophilic ingredients. It has recently aroused the interest of researchers in areas such as Pharmacology, Endocrinology and Oncology, but also new applications in Food Technology. This work aimed to review the main studies in the period from 1911 to 2023, but we emphasised aspects in technologies related to the field of health such as Pharmacology and Pharmacy. We used 'bixin' as a keyword to search for articles on the Web of Science and obtained 488 results, most of which were original articles and 20 were reviews. The analysis demonstrated a continuing large number of studies in Food Technology, but a rapid growth in areas related to health aspects.

5.
Food Sci Nutr ; 12(4): 2426-2435, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38628195

ABSTRACT

Various studies have shown that natural colorants, in addition to their coloring attributes, have valuable biological effects such as antioxidant, anti-inflammation, and anticarcinogenic properties. Moreover, their use as a food colorant can restrict the potential disadvantages of synthetic additives and turn foods into functional products. In this study, in vitro antimicrobial activities of two natural colorants of bixin and curcumin against some important foodborne pathogens: Staphylococcus aureus (S. aureus), Listeria innocua (L. innocua), and Escherichia coli (E. coli) were investigated by disk diffusion method. Minimum inhibitory concentration and minimum bactericidal concentration values were determined by agar dilution and broth microdilution methods. The synergistic activity of the colorants against selected microorganisms was assayed by the checkerboard microdilution method. The results showed that the inhibitory effects of bixin against S. aureus were more pronounced than E. coli and L. innocua. The lowest concentration of curcumin (0.6 mg/mL) in the disk diffusion method was not inhibited by any tested bacteria. However, it was effective at the higher concentrations against three microorganisms, but its diameter of inhibition zones was lower than gentamicin in all concentrations. Synergetic effects were observed by curcumin and bixin combination against S. aureus (FICI ≤ 0.5), but they act as an antagonist against E. coli and L. innocua. The results of the synergy test were confirmed by the isobologram curves.

6.
J Exp Bot ; 75(5): 1390-1406, 2024 Feb 28.
Article in English | MEDLINE | ID: mdl-37975812

ABSTRACT

Age affects the production of secondary metabolites, but how developmental cues regulate secondary metabolism remains poorly understood. The achiote tree (Bixa orellana L.) is a source of bixin, an apocarotenoid used in diverse industries worldwide. Understanding how age-dependent mechanisms control bixin biosynthesis is of great interest for plant biology and for economic reasons. Here we overexpressed miRNA156 (miR156) in B. orellana to comprehensively study the effects of the miR156-SQUAMOSA PROMOTER BINDING PROTEIN-LIKE (SPL) module on age-dependent bixin biosynthesis in leaves. Overexpression of miR156 in annatto plants (miR156ox) reduced BoSPL transcript levels, impacted leaf ontogeny, lessened bixin production, and increased abscisic acid levels. Modulation of expression of BoCCD4-4 and BoCCD1, key genes in carotenoid biosynthesis, was associated with diverting the carbon flux from bixin to abscisic acid in miR156ox leaves. Proteomic analyses revealed an overall low accumulation of most secondary metabolite-related enzymes in miR156ox leaves, suggesting that miR156-targeted BoSPLs may be required to activate several secondary metabolic pathways. Our findings suggest that the conserved BomiR156-BoSPL module is deployed to regulate leaf dynamics of bixin biosynthesis, and may create novel opportunities to fine-tune bixin output in B. orellana breeding programs.


Subject(s)
Abscisic Acid , Bixaceae , Plant Extracts , Bixaceae/genetics , Bixaceae/metabolism , Abscisic Acid/metabolism , Proteomics , Plant Breeding , Carotenoids/metabolism
7.
Physiol Mol Biol Plants ; 29(10): 1423-1435, 2023 Oct.
Article in English | MEDLINE | ID: mdl-38076759

ABSTRACT

Lycopene cyclases (LCYs) are a key branching point in regulating the carotenoid biosynthesis pathway in plants. Bixa orellana L. is characterized by the presence in its seed of bixin, an apocarotenoid of significant importance in the food, pharmaceutical, and cosmetic industries. Gene analysis provides the opportunity to investigate the LCY gene structure in plant species and its relationship with the synthesis of carotenoids. Coding sequences of the LCY genes were retrieved from a B. orellana genome DNA. Boß-LCY1 and Boß-LCY2 genes exhibit 100% of identity to their respective cDNA accessions, and exhibit a single coding region of 1512 bp (504 aa) and 1495 bp (498 aa), respectively. In contrast, Boε-LCY gene shows a coding region of 1581 bp (527 aa) with 10 introns of diverse lengths. Putative Transcription Factors (TFs) binding sites were upstream (3000 bp) identified for each LCY gene. TFs cover two groups, one with the categories of photosynthesis, reproduction, and oxidative processes that are frequent. The second one with the categories of defense, cell cycle, signaling, and carbohydrate metabolism, which are poorly represented. Besides, repetitive DNA elements showed motifs and proteins related to LTR from the Ty3/Gypsy family, were associated with the TFs regions. In general, TFs vary in the different BoLCY genes, being more abundant in the Boε-LCY gene. LCY expression analyzed from a transcriptome database, and validated by RT-qPCR, shows an upregulation of the three LCYs, mainly oriented to the synthesis of essential carotenoids in photosynthetic tissues (leaves), as well as an upregulation of the Boß-LCY2 gene in the non-photosynthetic tissues (firsts seed development stages) related to the bixin accumulation. Supplementary Information: The online version contains supplementary material available at 10.1007/s12298-023-01384-8.

8.
Food Sci Anim Resour ; 43(6): 949-960, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37969328

ABSTRACT

This research aimed to validate a high-performance liquid chromatography method for the quantitative determination of bixin and norbixin in various foods. The Diode Array Detector (495 nm) technique was used. Method was validated for specificity, linearity, limit of detection (LOD), limit of quantification (LOQ), precision, and accuracy, and the measurement uncertainty was assessed. The calibration curve showed excellent linearity (r2≥0.9999) over the tested concentration range of 0.2-25 mg/L. The LOD and LOQ were 0.03-0.11 and 0.02-0.05 mg/L for bixin and norbixin, respectively. The intra- and inter-day accuracies and precisions were 88.0±1.3-97.0±0.5% and 0.2%-2.6% relative SD (RSD) for bixin and 88.2±0.8-105.8±0.8% and 0.3%-2.7% RSD for norbixin, respectively. Inter-laboratory validation for accuracy and precision was conducted in three laboratories, and these results all met the AOAC guidelines. In addition, the relative expanded uncertainty (<22%) satisfied the CODEX recommendation. Furthermore, products distributed in Korea were monitored for annatto extracts using the proposed method to demonstrate its application. The developed analytical method is reliable for quantifying bixin and norbixin in various foods.

9.
Front Nutr ; 10: 1209248, 2023.
Article in English | MEDLINE | ID: mdl-37781110

ABSTRACT

Chronic inflammation is the underlying mechanism for many diseases. Thus, inflammatory signaling pathways are valuable targets for new treatment modalities. Natural products have gained interest as a potential source of bioactive compounds which provide health benefits in combating inflammatory-related diseases. Recent reports have linked the medicinal values of Bixa orellana L. with its anti-inflammatory activities. Therefore, this review aims to examine the therapeutic potential of bixin, a major bioactive constituent found in the seeds of B. orellana, on inflammatory-related diseases based on existing in vitro and in vivo evidence. Additionally, the anti-inflammatory mechanism of bixin via signaling pathways is explored and possible toxic effects are addressed. The findings suggest that bixin may ameliorate inflammation via inhibition of toll-like receptor 4/nuclear factor-kappa B (TLR4/NF-κB), phosphoinositide 3-kinase/protein kinase B (PI3K/Akt) and thioredoxin-interacting protein/NOD-like receptor protein 3 (TXNIP/NLRP3) inflammasome mechanisms. More well-planned clinical studies should be performed to verify its effectiveness and safety profile.

10.
J Biomol Struct Dyn ; : 1-15, 2023 Oct 14.
Article in English | MEDLINE | ID: mdl-37837422

ABSTRACT

Bixin, the key pigment of Bixa orellana L., is an apo-carotenoid found in the seed arils. The present study aimed to quantitatively determine the bixin content of seeds and explore its anti-cancer activity through in silico studies. The bixin content from the seeds of the local genotype, TNMTP8, quantified by RP-HPLC was 4.58 mg per gram. The prediction of pharmacological activity suggested that bixin may serve as a BRAF, MMP9, TNF expression inhibitors, and TP53 expression enhancer. According to molecular docking analysis, bixin interacted with eight different skin cancer targets and had the lowest binding energy compared to the standard drug, 5-fluorouracil. The binding score between bixin and the targets ranged from -4.7 to -8.7 kcal/mol. The targets BRAF and SIRT3 interacted well with bixin, with binding energies as low as -8.3 and -8.7 kcal/mol, respectively. Hence, the dynamic behavior of these two docked complexes throughout a 500 ns trajectory run was investigated further. The Root Mean Square Deviation (RMSD), Root Mean Square Fluctuation (RMSF) values, and total contacts as a function of time recorded during scrutiny suggest that both complexes were stable. This was validated by post-molecular dynamics analysis using Molecular Mechanics Generalized Born Surface Area (MM-GBSA). Principal component analysis (PCA) was used to analyze the significant differences in motion exhibited by BRAF-Bixin and SIRT3-Bixin. The results showed that bixin is a promising source for potential treatment interventions in skin cancer therapies.Communicated by Ramaswamy H. Sarma.

11.
Fitoterapia ; 169: 105612, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37454777

ABSTRACT

Since long, medicinal plants or herbs are being used in different traditional treatment systems as therapeutic agents to treat a variety of illnesses. Bixa orellana L., an medicinal plant (family: Bixaceae), is an Ayurvedic herb used to treat dyslipidemia, diarrhoea, and hepatitis since ancient times. B. orellana L., seeds contain an orange-red coloured component known as bixin (C25H30O4), which constitutes 80% of the extract.Chemically, bixin is a natural apocarotenoid, biosynthesized through the oxidative degradation of C40 carotenoids. Bixin helps to regulate the Nrf2/MyD88/TLR4 and TGF-1/PPAR-/Smad3 pathways, which further give it antifibrosis, antioxidant, and anti-inflammatory properties. This current review article presents a comprehensive review of bixin as an anti-inflammatory, antioxidant, anticancer,and skin protecting natural product. In addition, the biosynthesis and molecular target of bixin, along with bixin extraction techniques, are also presented.


Subject(s)
Biological Products , Plants, Medicinal , Antioxidants/pharmacology , Antioxidants/metabolism , Bixaceae/chemistry , Bixaceae/metabolism , Biological Products/pharmacology , Biological Products/metabolism , Molecular Structure , Carotenoids , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/metabolism , Plants, Medicinal/metabolism , Plant Extracts/pharmacology , Plant Extracts/metabolism
12.
J Pharm Bioallied Sci ; 15(1): 15-20, 2023.
Article in English | MEDLINE | ID: mdl-37313537

ABSTRACT

Background: The ATP-Binding Cassette (ABC) transporter has long been studied to confer drug resistance in human tumors and play important role in metabolic processes and cellular signaling. The overexpression of ABCB1, ABCC1, ABCC2, ABCC3, and ABCG2 leads to decreased sensitivity of lung cancer to cisplatin. At the transcription level, the expression of ABC transporters is highly regulated and requires the complex interplay of factors involved in differentiation and development, cell survival and apoptosis upon intrinsic and environmental stress. The p53 regulation of drug-resistance genes is also complex yet not well understood. Previously, we demonstrated the synergistic interaction between bixin or fucoxanthin with cisplatin in A549 lung cancer cells. Objectives: Current study aims to identify whether carotenoids enhancing therapeutic effect of Cisplatin due to the ability to reverse drug resistance associated proteins, such as ABC transporter and regulating the tumor suppressor corresponding gene, p53. Methods: Real-Time Quantitative-Polymerase Chain Reaction (RT-qPCR) was performed to estimate the expression level of ABCC1 and ABCC2, and p53 of A549 cell lines in response to carotenoids alone and in combination with cisplatin. Results and Conclusion: The administration of bixin or fucoxanthin decreases the expression of ABCC1 and ABCC2. Both carotenoids, either alone or in combination with cisplatin, upregulated p53 gene expression indicating the mechanism of proliferation inhibition and apoptosis occurs via the p53 caspase-independent pathway.

13.
Food Chem ; 421: 136132, 2023 Sep 30.
Article in English | MEDLINE | ID: mdl-37094396

ABSTRACT

Bixin has desirable bioactivities but poor water solubility, which limits its practical applications. Enzymatic transesterification of methyl to alditol groups in bixin by Candida antarctica lipase B (CALB) improves bixin water solubility. Herein, magnetic CALB nanoreactors with diameter of 11.7 nm and CALB layer thickness of 3.5 nm were developed by covalently linking CALB onto silicon covered Fe3O4 nanoparticles. The CALB loading capacity in nanoreactors achieved 30%. The Michaelis constant (Km) and maximum reaction rate of magnetic CALB nanoreactors were 56.1 mmol/L and 0.2 mmol/(L·min). Magnetic CALB nanoreactors could circularly catalyze bixin-maltitol ester synthesis and keep catalytic efficiency of 62.6% after eight repetitive enzymatic reactions. Additionally, the optimal bixin-maltitol ester synthesis procedure was heating bixin-maltitol mixture at molar ratio of 1:7 in anhydrous 2-methyl-2-butanol-dimethylsulfoxide (8:2, v/v) at 50 °C for 24 h. Bixin-maltitol ester showed improved water solubility at pH 5.5 and 7.0.


Subject(s)
Enzymes, Immobilized , Esters , Candida , Fungal Proteins , Sugar Alcohols , Nanotechnology , Magnetic Phenomena , Water
14.
Front Plant Sci ; 14: 1066509, 2023.
Article in English | MEDLINE | ID: mdl-36875614

ABSTRACT

Diverse morphological, cellular and physiological changes occur during seed maturation in Bixa orellana when the seed tissues form specialized cell glands that produce reddish latex with high bixin amounts. Transcriptomic profiling during seed development in three B. orellana accessions (P12, N4 and N5) with contrasting morphologic characteristics showed enrichment in pathways of triterpenes, sesquiterpenes, and cuticular wax biosynthesis. WGCNA allows groups of all identified genes in six modules the module turquoise, the largest and highly correlated with the bixin content. The high number of genes in this module suggests a diversification of regulatory mechanisms for bixin accumulation with the genes belonging to isoprene, triterpenes and carotene pathways, being more highly correlated with the bixin content. Analysis of key genes of the mevalonate (MVA) and the 2C-methyl-D-erythritol-4-phosphate (MEP) pathways revealed specific activities of orthologs of BoHMGR, BoFFP, BoDXS, and BoHDR. This suggests that isoprenoid production is necessary for compounds included in the reddish latex of developing seeds. The carotenoid-related genes BoPSY2, BoPDS1 and BoZDS displayed a high correlation with bixin production, consistent with the requirement for carotene precursors for apocarotenoid biosynthesis. The BoCCD gene member (BoCCD4-4) and some BoALDH (ALDH2B7.2 and ALDH3I1) and BoMET (BoSABATH1 and BoSABATH8) gene members were highly correlated to bixin in the final seed development stage. This suggested a contributing role for several genes in apocarotenoid production. The results revealed high genetic complexity in the biosynthesis of reddish latex and bixin in specialized seed cell glands in different accessions of B. orellana suggesting gene expression coordination between both metabolite biosynthesis processes.

15.
Protoplasma ; 260(4): 1207-1219, 2023 Jul.
Article in English | MEDLINE | ID: mdl-36787048

ABSTRACT

Bixin is a commercially valuable apocarotenoid pigment found in the seed aril of Bixa orellana. The dynamics and regulation of its biosynthesis and accumulation during seed development remain largely unknown. Here, we combined chemical, anatomical, and transcriptomic data to provide stage-specific resolution of the cellular and molecular events occurring during B. orellana seed development. Seeds at five developmental stages (S1-S5) were used for analysis of bixin content and seed anatomy, and three of them (S1, S3, and S4) were selected for Illumina HiSeq sequencing. Bixin accumulated in large quantities in seeds compared with other tissues analyzed, particularly during the S2 stage, peaking at the S4 stage, and then decreasing slightly in the S5 stage. Anatomical analysis revealed that bixin accumulated in the large central vacuole of specialized cells, which were scattered throughout the developing mesotesta at the S2 stage, but enlarged progressively at later stages, until they occupied most of the parenchyma in the aril. A total of 13 million reads were generated and assembled into 73,381 protein-encoding contigs, from which 312 were identified as containing 1-deoxy-D-xylulose-5-phosphate/2-C-methyl-D-erythritol-4-phosphate (DOXP/MEP), carotenoid, and bixin pathways genes. Differential transcriptome expression analysis of these genes revealed that 50 of them were sequentially and differentially expressed through the seed developmental stages analyzed, including seven carotenoid cleavage dioxygenases, eight aldehyde dehydrogenases, and 22 methyltransferases. Taken together, these results show that bixin synthesis and accumulation in seeds of B. orellana are a developmentally regulated process involving the coordinated expression of DOXP/MEP, carotenoid, and bixin biosynthesis genes.


Subject(s)
Bixaceae , Carotenoids , Bixaceae/genetics , Bixaceae/metabolism , RNA-Seq , Carotenoids/metabolism , Seeds
16.
Food Chem ; 412: 135479, 2023 Jun 30.
Article in English | MEDLINE | ID: mdl-36709686

ABSTRACT

Bixin is the cis-carotenoid from the seed of achiote tree or annatto. It is an approved liposoluble apocarotenoid by FDA as colorant and additive in the food industry. Nonetheless, bixin is unstable in the presence of oxygen, light, high pHs (alkali) and heat; thereby reducing its bioavailability/bioactivity, and also, with a low solubility in water. Some biopolymeric (e.g., nanofibers, nanogels, and nanotubes) and lipid-based nanocarriers (nanoliposomes, niosomes, hexosomes, nanoemulsions, solid-lipid nanoparticles, and nanostructured lipid carriers) have been introduced for bixin. Thus, this review focuses on the updated information regarding bixin-loaded nanodelivery platforms. Moreover, it provides a comprehensive review of bioavailability, physicochemical properties, and applications of nanoencapsulated-bixin as an additive, its release rate and safety issues. These findings will bring potential strategies for the usage of nanocarriers in managing bixin defaults to improve its broad application in various industries.


Subject(s)
Nanoparticle Drug Delivery System , Nanostructures , Carotenoids/chemistry , Lipids
17.
Food Chem ; 400: 134076, 2023 Jan 30.
Article in English | MEDLINE | ID: mdl-36084596

ABSTRACT

Nonionic oil-in-water (O/W) nanoemulsion provides potential to stabilize hydrophobic bio-functional components in aqueous medium. Understanding safety of nanoemulsion droplets via investigating in vitro cell uptake and cellular substructural changes is important to achieve their practical applications. Herein, we developed a nonionic O/W nanoemulsion to stabilize representative bio-functional hydrophobic component of 9'-cis-bixin at pH 3-7 and ultraviolet (UV)-induced degradation at 365, 302, and 254 nm. In vitro cell uptake demonstrated that Caco-2 cells adequately enriched 9'-cis-bixin through fast uptake of nanoemulsion droplets within 15 min. However, excessive nanoemulsion droplets greatly decreased cell survival rate, which was due to the potential destruction of cellular substructures of mitochondria, nuclear membrane, and cell membrane. Lower nanoemulsion concentration provided no significant effects on Caco-2 cell survival. This work provided objective understanding on bio-functional component stability by nanoemulsion with in vitro safety evaluation.


Subject(s)
Water , Caco-2 Cells , Carotenoids , Emulsions/chemistry , Humans , Hydrophobic and Hydrophilic Interactions , Water/chemistry
18.
Photodiagnosis Photodyn Ther ; 40: 103104, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36057364

ABSTRACT

In this study, the action of antimicrobial peptide (AMP) P5 and antimicrobial photodynamic therapy (aPDT) mediated by bixin and chlorin-e6 (Ce6) on Cutibacterium acnes (C. acnes) in planktonic phase and biofilm were evaluated both as monotherapies and combined therapies. Microbial viability after treatments were quantified by colony-forming units per milliliter of the sample (CFU/mL) and have demonstrated that all treatments employed exerted bactericidal activity, reducing the microbial load by more than 3 log10 CFU/mL, also demonstrating for the first time in the literature the antimicrobial photodynamic effect of bixin that occurs mostly through type I mechanism which was proved by the quantification of superoxide anion production. Bacterial biofilm was completely eliminated only after its exposure to aPDT mediated by this PS, however, Ce6 proved to be a more efficient PS, considering that most of the photodynamic effect of bixin- aPDT was exerted by excitation of the endogenous C porphyrins of C. acnes with blue light. The combination of P5 with Ce6-aPDT showed a synergistic effect on the bacterial biofilm with a reduction in microbial load by more than 10 log10 CFU/mL, in which the ability of P5 to permeabilize the polymeric extracellular matrix of the biofilm explains the obtained results, with greater internalization of the PS as shown by the Confocal Laser Scanning Microscopy. One-way ANOVA (Analysis of Variance) with Tukey's post-test and two-way ANOVA with Bonferroni's post-test were used to compare the values of continuous variables between the control group and the treatment groups.


Subject(s)
Anti-Infective Agents , Photochemotherapy , Porphyrins , Photochemotherapy/methods , Porphyrins/pharmacology , Biofilms , Propionibacterium acnes , Anti-Infective Agents/pharmacology , Bacteria , Peptides/pharmacology , Photosensitizing Agents/pharmacology
19.
Antioxidants (Basel) ; 11(7)2022 Jun 29.
Article in English | MEDLINE | ID: mdl-35883784

ABSTRACT

The use of annatto pigments has been evaluated as a therapeutic strategy in animal models of several health disorders. Beneficial effects were generally attributed to the inhibition of oxidative stress. Bixin is the main pigment present in annatto seeds and has emerged as an important scavenger of reactive oxygen (ROS) and nitrogen species (RNS). However, this carotenoid is highly hydrophobic, affecting its therapeutic applicability. Therefore, bixin represents an attractive target for nanotechnology to improve its pharmacokinetic parameters. In this study, we prepared bixin nanoparticles (npBX) and evaluated if they could prevent pulmonary inflammation and oxidative stress induced by cigarette smoke (CS). C57BL/6 mice were exposed to CS and treated daily (by gavage) with different concentrations of npBX (6, 12 and 18%) or blank nanoparticles (npBL, 18%). The negative control group was sham smoked and received 18% npBL. On day 6, the animals were euthanized, and bronchoalveolar lavage fluid (BALF), as well as lungs, were collected for analysis. CS exposure led to an increase in ROS and nitrite production, which was absent in animals treated with npBX. In addition, npBX treatment significantly reduced leukocyte numbers and TNF-α levels in the BALF of CS-exposed mice, and it strongly inhibited CS-induced increases in MDA and PNK in lung homogenates. Interestingly, npBX protective effects against oxidative stress seemed not to act via Nrf2 activation in the CS + npBX 18% group. In conclusion, npBX prevented oxidative stress and acute lung inflammation in a murine model of CS-induced acute lung inflammation.

20.
Nat Prod Res ; 36(24): 6421-6427, 2022 Dec.
Article in English | MEDLINE | ID: mdl-35133226

ABSTRACT

Emerging evidence on the potential pro-oxidant effect of carotenoids provokes apoptosis of cancer cells. Bixa orellana L. is native to Central and South America, interestingly, is also cultivated worldwide. Apo-carotenoids present in B. orellana L. are mainly dominated by bixin and norbixin and demonstrate fundamental antioxidant activity. Anti-proliferative activity on human cancer cells is rarely investigated. We isolated bixin from B. orellana L. found in the island of Java using Ultra-Fast Liquid Chromatography and confirmed the isolated compound using Liquid Chromatography-MS/MS. Bixin and crude extract were examined on human lung cancer (A549), cervical cancer (HeLa), and breast cancer (MCF-7). Anti-proliferative activity revealed to be promising on both, the isolated pigment and crude extract. Further investigation on the mechanism of action and effect on other cell lines, both in vitro and in vivo, are required before clinical translation.


Subject(s)
Breast Neoplasms , Lung Neoplasms , Uterine Cervical Neoplasms , Female , Humans , Bixaceae/chemistry , Uterine Cervical Neoplasms/drug therapy , Breast Neoplasms/drug therapy , Tandem Mass Spectrometry , Carotenoids/pharmacology , Carotenoids/metabolism , Lung Neoplasms/drug therapy , Complex Mixtures , Lung/metabolism , Plant Extracts/pharmacology , Plant Extracts/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL