Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Heliyon ; 10(11): e32677, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38961948

ABSTRACT

Muscle trauma is one of the most common body injuries. Severe consequences of muscle trauma are ischemic injuries of the extremities. It is known that the intensification of free radical processes takes place in almost most acute diseases and conditions, including muscle trauma. C60 fullerene (C60) with powerful antioxidant properties can be considered a potential nanoagent for developing an effective therapy for skeletal muscle trauma. Here the water-soluble C60 was prepared and its structural organization has been studied by the atomic force microscopy and dynamic light scattering techniques. The selective biomechanical parameters of muscle soleus contraction and biochemical indicators of blood in rats were evaluated after intramuscular injection of C60 1 h before the muscle trauma initiation. Analysis of the force muscle response after C60 injection (1 mg kg-1 dose) showed its protective effect against ischemia and mechanical injury at the level of 30 ± 2 % and 17 ± 1 %, accordingly, relative to the pathology group. Analysis of biomechanical parameters that are responsible for correcting precise positioning confirmed the effectiveness of C60 at a level of more than 50 ± 3 % relative to the pathology group. Moreover, a decrease in the biochemical indicators of blood by about 33 ± 2 % and 10 ± 1 % in ischemia and mechanical injury, correspondingly, relative to the pathology group occurs. The results obtained demonstrate the ability of C60 to correct the functional activity of damaged skeletal muscle.

2.
Front Public Health ; 12: 1347219, 2024.
Article in English | MEDLINE | ID: mdl-38726233

ABSTRACT

Background: Osteoporosis is becoming more common worldwide, imposing a substantial burden on individuals and society. The onset of osteoporosis is subtle, early detection is challenging, and population-wide screening is infeasible. Thus, there is a need to develop a method to identify those at high risk for osteoporosis. Objective: This study aimed to develop a machine learning algorithm to effectively identify people with low bone density, using readily available demographic and blood biochemical data. Methods: Using NHANES 2017-2020 data, participants over 50 years old with complete femoral neck BMD data were selected. This cohort was randomly divided into training (70%) and test (30%) sets. Lasso regression selected variables for inclusion in six machine learning models built on the training data: logistic regression (LR), support vector machine (SVM), gradient boosting machine (GBM), naive Bayes (NB), artificial neural network (ANN) and random forest (RF). NHANES data from the 2013-2014 cycle was used as an external validation set input into the models to verify their generalizability. Model discrimination was assessed via AUC, accuracy, sensitivity, specificity, precision and F1 score. Calibration curves evaluated goodness-of-fit. Decision curves determined clinical utility. The SHAP framework analyzed variable importance. Results: A total of 3,545 participants were included in the internal validation set of this study, of whom 1870 had normal bone density and 1,675 had low bone density Lasso regression selected 19 variables. In the test set, AUC was 0.785 (LR), 0.780 (SVM), 0.775 (GBM), 0.729 (NB), 0.771 (ANN), and 0.768 (RF). The LR model has the best discrimination and a better calibration curve fit, the best clinical net benefit for the decision curve, and it also reflects good predictive power in the external validation dataset The top variables in the LR model were: age, BMI, gender, creatine phosphokinase, total cholesterol and alkaline phosphatase. Conclusion: The machine learning model demonstrated effective classification of low BMD using blood biomarkers. This could aid clinical decision making for osteoporosis prevention and management.


Subject(s)
Bone Density , Machine Learning , Osteoporosis , Humans , Female , Middle Aged , Male , Osteoporosis/diagnosis , Aged , Algorithms , Nutrition Surveys , Logistic Models , Support Vector Machine
3.
Animals (Basel) ; 13(22)2023 Nov 12.
Article in English | MEDLINE | ID: mdl-38003111

ABSTRACT

The shortage of high-quality coarse feed resources is the main factor that restricts the development of animal husbandry in many developing countries. The present study aimed to investigate the effects of replacing corn silage with daylily silage on the growth performance, slaughter performance, blood biochemical indicators, meat quality, and muscle amino acid composition of Tan sheep. A total of 72 healthy Tan sheep were randomly assigned to four groups. In each group, 0%, 20%, 40%, and 60% of corn silage were replaced with daylily silage (denoted as CON, HC20, HC40, and HC60, respectively). Tan sheep fed with daylily silage showed no significant adverse effects on their growth performance, meat quality, and muscle amino acid composition (p > 0.05). Some increase was observed in the carcass fat content value (GR-value, p < 0.05), thickness of backfat (p < 0.05), and the blood urea level (p < 0.05). These findings indicate that the utilization of daylily silage instead of whole-plant corn silage has no adverse effects on the growth performance and meat quality of Tan sheep, thus indicating that it can partially replace whole-plant corn feed as a feed resource for Tan sheep.

4.
Appl Microbiol Biotechnol ; 107(24): 7601-7620, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37792060

ABSTRACT

Blood biochemical indicators play a crucial role in assessing an individual's overall health status and metabolic function. In this study, we measured five blood biochemical indicators, including total cholesterol (CHOL), low-density lipoprotein cholesterol (LDL-CH), triglycerides (TG), high-density lipoprotein cholesterol (HDL-CH), and blood glucose (BG), as well as 19 growth traits of 206 male chickens. By integrating host whole-genome information and 16S rRNA sequencing of the duodenum, jejunum, ileum, cecum, and feces microbiota, we assessed the contributions of host genetics and gut microbiota to blood biochemical indicators and their interrelationships. Our results demonstrated significant negative phenotypic and genetic correlations (r = - 0.20 ~ - 0.67) between CHOL and LDL-CH with growth traits such as body weight, abdominal fat content, muscle content, and shin circumference. The results of heritability and microbiability indicated that blood biochemical indicators were jointly regulated by host genetics and gut microbiota. Notably, the heritability of HDL-CH was estimated to be 0.24, while the jejunal microbiability for BG and TG reached 0.45 and 0.23. Furthermore, by conducting genome-wide association study (GWAS) with the single-nucleotide polymorphism (SNPs), insertion/deletion (indels), and structural variation (SV), we identified RAP2C, member of the RAS oncogene family (RAP2C), dedicator of cytokinesis 11 (DOCK11), neurotensin (NTS) and BOP1 ribosomal biogenesis factor (BOP1) as regulators of HDL-CH, and glycerophosphodiester phosphodiesterase domain containing 5 (GDPD5), dihydrodiol dehydrogenase (DHDH), and potassium voltage-gated channel interacting protein 1 (KCNIP1) as candidate genes of BG. Moreover, our findings suggest that cecal RF39 and Clostridia_UCG_014 may be linked to the regulation of CHOL, and jejunal Streptococcaceae may be involved in the regulation of TG. Additionally, microbial GWAS results indicated that the presence of gut microbiota was under host genetic regulation. Our findings provide valuable insights into the complex interaction between host genetics and microbiota in shaping the blood biochemical profile of chickens. KEY POINTS: • Multiple candidate genes were identified for the regulation of CHOL, HDL-CH, and BG. • RF39, Clostridia_UCG_014, and Streptococcaceae were implicated in CHOL and TG modulation. • The composition of gut microbiota is influenced by host genetics.


Subject(s)
Gastrointestinal Microbiome , Male , Animals , Chickens , RNA, Ribosomal, 16S/genetics , RNA, Ribosomal, 16S/metabolism , Genome-Wide Association Study , Triglycerides/metabolism , Cholesterol/metabolism
5.
Pathogens ; 12(9)2023 Aug 28.
Article in English | MEDLINE | ID: mdl-37764902

ABSTRACT

Hepatitis B virus-related acute-on-chronic liver failure (HBV-ACLF) is a rare and severe form of end-stage liver disease with high mortality; gut microbes are strongly associated with the development of this severe liver disease but the exact association is unclear. Artificial liver support systems (ALSS) are clinically important in prolonging the waiting time for liver transplantation and in aiding drug therapy to achieve remission. The aim of this study was to investigate the effect of ALSS on the abundance and diversity of microorganisms in the gut of HBV-ACLF patients. In this study, 109 stool samples were collected from patients with hepatitis B virus-associated acute chronic liver failure (HBV-ACLF) for 16S rRNA sequencing. Among them, 44 samples were from patients treated with ALSS therapy as an adjunct to standard medical treatment (SMT) and 65 were from patients receiving SMT only. Analysis of the sequencing results suggested that there were significant differences in the abundance and diversity of gut microbiota between the with-ALSS and without-ALSS groups (p < 0.05). The operational taxonomic units and Shannon indexes indicated that the diversity and abundance of the gut microbiome, while decreasing after the first ALSS treatment, gradually increased after an increase in the number of ALSS therapies. The overall proportion of HBV-ACLF patients with coinfection was 27.59%; the coinfection can reduce the abundance of the Bacteroidetes phylum in the microbiome significantly whereas Proteobacteria were highly enriched. After ALSS therapy, HBV-ACLF patients had a decrease in potentially harmful bacteria, an increase in potentially beneficial bacteria, an increase in the diversity of the intestinal microbiota, and the intestinal microecological disorders were corrected to a certain extent. Serum alanine aminotransferase (ALT), aspartate aminotransferase (AST), and total bilirubin (TBIL) levels, as well as the international normalized ratio (INR), showed a decreasing trend whereas plasminogen activity (PTA) increased and the condition of patients with HBV-ACLF progressed in a favorable direction. In addition, the abundance of Blautia and Coprococcus was negatively correlated with TBIL and INR, positively correlated with PTA, and positively correlated with disease recovery. Our study shows that ALSS can alter the composition of the gut microbiota and have an ameliorating effect on the gut microecological imbalance in HBV-ACLF patients. It is worth mentioning that Blautia and Coprococcus may have great potential as biomarkers.

6.
Foods ; 12(23)2023 Nov 22.
Article in English | MEDLINE | ID: mdl-38231614

ABSTRACT

This research elaborates the process of enriching table eggs with n-3 polyunsaturated fatty acids (n-3 PUFA) and presents the effect of such enriched eggs on human health. The experiment was performed on 480 TETRA SL laying hens divided into three groups. Feeding mixtures contained 5% of oils (K = soybean oil, P1 = 3.5% linseed oil + 1.5% fish oil, P2 = 3% linseed oil + 2% fish oil). Referring to the content of α-linolenic acid (ALA), eicosapentaenoic acid (EPA), and docosahexaenoic acid (DHA), eggs of P1 and P2 groups were significantly richer in n-3 PUFA than eggs of the control group (p = 0.001). Atherogenic (AI), thrombogenic (TI), and hypo/hypercholesterolemic (HHI) indexes of egg yolks were more favourable in enriched eggs than in conventional eggs. Fatty acid profiles in the blood of examinees that consumed conventional and enriched eggs (treatments K and P1, respectively) differed significantly in total saturated fatty acids (ΣSFA) (p = 0.041) and in the content of ALA (p = 0.010). The consumption of n-3 PUFA-enriched eggs lowered the Σn-6 PUFA/Σn-3 PUFA ratio in the examinees' blood serum (27%) and had a favourable effect on some blood biochemical indicators. This research confirmed the assumption that the use of a combination of fish and linseed oil in mixtures for laying hens in an amount of up to 5% will increase the content of omega-3 in table eggs, but it was not confirmed that the consumption of these eggs in a short period of time (21 days) has a positive effect on human health.

7.
PeerJ ; 10: e12708, 2022.
Article in English | MEDLINE | ID: mdl-35047233

ABSTRACT

The study aimed to evaluate changes in selected biochemical indicators among mixed martial arts competitors in subsequent periods of the training cycle. The research involved 12 mixed martial arts athletes aged 25.8 ± 4.2 years competing in the intermediate category. Selected somatic indicators were measured twice. Biochemical indicators were assessed five times during the 14-week study period. Serum concentrations of testosterone, cortisol, uric acid, myoglobin, total protein, interleukin 6, and tumor necrosis factor, as well as creatine kinase activity were determined. One hour after sparring completion, there were significant increases in cortisol (by 54.9%), uric acid (22.0%), myoglobin (565.0%), and interleukin 6 (280.3%) as compared with the values before the simulated fight. The highest creatine kinase activity (893.83 ± 139.31 U/l), as well as tumor necrosis factor (3.93 ± 0.71 pg/ml) and testosterone (5.83 ± 0.81 ng/ml) concentrations (p = 0.00) were recorded 24 hours after the simulation. Systematic observation of selected blood biochemical indicators in the training process periodization in mixed martial arts helps understand adaptive, compensatory, and regenerative mechanisms occurring in training athletes.


Subject(s)
Hydrocortisone , Martial Arts , Humans , Interleukin-6 , Myoglobin , Uric Acid , Testosterone , Athletes , Tumor Necrosis Factor-alpha , Creatine Kinase
8.
Hum Brain Mapp ; 43(5): 1640-1656, 2022 04 01.
Article in English | MEDLINE | ID: mdl-34913545

ABSTRACT

Machine learning has been applied to neuroimaging data for estimating brain age and capturing early cognitive impairment in neurodegenerative diseases. Blood parameters like neurofilament light chain are associated with aging. In order to improve brain age predictive accuracy, we constructed a model based on both brain structural magnetic resonance imaging (sMRI) and blood parameters. Healthy subjects (n = 93; 37 males; aged 50-85 years) were recruited. A deep learning network was firstly pretrained on a large set of MRI scans (n = 1,481; 659 males; aged 50-85 years) downloaded from multiple open-source datasets, to provide weights on our recruited dataset. Evaluating the network on the recruited dataset resulted in mean absolute error (MAE) of 4.91 years and a high correlation (r = .67, p <.001) against chronological age. The sMRI data were then combined with five blood biochemical indicators including GLU, TG, TC, ApoA1 and ApoB, and 9 dementia-associated biomarkers including ApoE genotype, HCY, NFL, TREM2, Aß40, Aß42, T-tau, TIMP1, and VLDLR to construct a bilinear fusion model, which achieved a more accurate prediction of brain age (MAE, 3.96 years; r = .76, p <.001). Notably, the fusion model achieved better improvement in the group of older subjects (70-85 years). Extracted attention maps of the network showed that amygdala, pallidum, and olfactory were effective for age estimation. Mediation analysis further showed that brain structural features and blood parameters provided independent and significant impact. The constructed age prediction model may have promising potential in evaluation of brain health based on MRI and blood parameters.


Subject(s)
Brain , Magnetic Resonance Imaging , Aging , Brain/diagnostic imaging , Brain/pathology , Female , Humans , Machine Learning , Magnetic Resonance Imaging/methods , Male , Neuroimaging
9.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-476386

ABSTRACT

Objective Beagle dogs are commonly used animal for drug safety evaluation .As the necessary parameters , blood biochemical indicators are detected in acute or chronic toxicity tests .This study aims at assessing the influence of different preservation conditions and different preservation time on blood biochemical indicators to ensure the reliability of test results of long-term toxicity assessment .Methods Six Beagle dogs (3 males and 3 females) were used in this study .After collection and preparation of serum samples , biochemical indicators were detected after preservation in refrigerator at 2-8℃for 1, 2, 5, 8, and 12 hours;after preservation in ice transportation boxes at 2-10℃for 2, 5, and 8 hours;and after preservation in refrigerator at -20℃ for 1, 3, and 5 days.The biochemical indicators included alanine aminotransferase ( ALT ) , aspartate aminotransferase ( AST ) and alkaline phosphatase ( ALP ) , total protein ( TP ) , albumin (propagated), urea, creatinine (CREA), glucose (GLU), total cholesterol (TCHO), total bilirubin (TBIL), creatine kinase ( CK ) , gamma pancreatic acyl transferase ( GGT ) , calcium ( CA ) , lactate dehydrogenase ( LDH ) , phosphorus ( P) , high-density lipoprotein cholesterol ( HDL-C) , low density lipoprotein cholesterol ( LDL-C) , triglyceride ( TG) , sodium ( Na+) , potassium ( K+) and chloride ( Cl -) .Results Compared with the results of samples preserved for 1 hour, the LDL-C result of that preserved in refrigerator at -20℃for 5 days was significantly increased (P0.05 ) , and the coefficient of variation of LDH was 41%.Conclusions According to the test results of blood biochemical indicators in the Beagle dogs detected after different preservation conditions and different preservation time in this study , detection test should be done within 1 hour, if not, detection should be done within 12 hours for the samples preserved at 2~8℃, or within 3 days for the sample preserved at -20℃.For transportation of serum samples , the serum samples should be placed in the ice box at 2~10℃, and detection test should be done within 8 hours .

10.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-580465

ABSTRACT

Objective To explore the differences of blood biochemical indicators between normal and kidney Yang deficient rats administered orally different doses of white prepared lateral root of aconite.Method Eighty Sprague-Dawley(SD) male rats were divided randomly into normal group and kidney Yang deficient model group,forty rats in each group.After producing kidney Yang deficient model by injecting hydrocortisoni natrii succinas in intramuscular,normal and model rats were respectively and randomly divided into little,low,medium,great dose group and blank group,eight rats in each group.Those rats were administered orally with different concentrations of white prepared lateral root of aconite every day for two weeks.Twenty-four hours after the last oral administration,the blood were obtained and used for testing adrenocorticotrophic hormone(ACTH),cyclic adenosine monophosphate(cAMP),cyclic guanosine monophosphate(cGMP),glucose(GLU),cholesterol(CHO),alanine aminotransferase(ALT),urea nitrogen(BUN).Results Before taking medicine,model rats' cAMP/cGMP and ACTH were lower than normal rats',and they showed a trend of rise with adding dose.Before taking medicine,model rats' GLU was lower than normal rats'.With adding dose,model rats' GLU increased,however,normal rats' GLU reduced.When taken medium dose white prepared lateral root of aconite,model rats' CHO was higher than normal rats'.Taking medicine made both groups ALT rise,but normal rats' went up more quickly than model rats'.Model rats' BUN was higher than normal rats',and taking low dose or little dose medicine could lead to incline of reduction.Conclusion White prepared lateral root of aconite caused different blood biochemical effects on normal and kidney Yang deficient rats,and more remarkable toxicity effect on normal rats.

SELECTION OF CITATIONS
SEARCH DETAIL
...