Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 110
Filter
1.
J Neuroeng Rehabil ; 21(1): 97, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38849899

ABSTRACT

BACKGROUND: Body weight support (BWS) training devices are frequently used to improve gait in individuals with neurological impairments, but guidance in selecting an appropriate level of BWS is limited. Here, we aim to describe the initial BWS levels used during gait training, the rationale for this selection and the clinical goals aligned with BWS training for different diagnoses. METHOD: A systematic literature search was conducted in PubMed, Embase and Web of Science, including terms related to the population (individuals with neurological disorders), intervention (BWS training) and outcome (gait). Information on patient characteristics, type of BWS device, BWS level and training goals was extracted from the included articles. RESULTS: Thirty-three articles were included, which described outcomes using frame-based (stationary or mobile) and unidirectional ceiling-mounted devices on four diagnoses (multiple sclerosis (MS), spinal cord injury (SCI), stroke, traumatic brain injury (TBI)). The BWS levels were highest for individuals with MS (median: 75%, IQR: 6%), followed by SCI (median: 40%, IQR: 35%), stroke (median: 30%, IQR: 4.75%) and TBI (median: 15%, IQR: 0%). The included studies reported eleven different training goals. Reported BWS levels ranged between 30 and 75% for most of the training goals, without a clear relationship between BWS level, diagnosis, training goal and rationale for BWS selection. Training goals were achieved in all included studies. CONCLUSION: Initial BWS levels differ considerably between studies included in this review. The underlying rationale for these differences was not clearly motivated in the included studies. Variation in study designs and populations does not allow to draw a conclusion on the effectiveness of BWS levels. Hence, it remains difficult to formulate guidelines on optimal BWS settings for different diagnoses, BWS devices and training goals. Further efforts are required to establish clinical guidelines and to experimentally investigate which initial BWS levels are optimal for specific diagnoses and training goals.


Subject(s)
Gait Disorders, Neurologic , Humans , Gait Disorders, Neurologic/rehabilitation , Gait Disorders, Neurologic/etiology , Body Weight , Gait/physiology
2.
Front Physiol ; 15: 1329765, 2024.
Article in English | MEDLINE | ID: mdl-38384800

ABSTRACT

Introduction: Spaceflight is associated with substantial and variable musculoskeletal (MSK) adaptations. Characterisation of muscle and joint loading profiles can provide key information to better align exercise prescription to astronaut MSK adaptations upon return-to-Earth. A case-study is presented of single-leg hopping in hypogravity to demonstrate the additional benefit computational MSK modelling has when estimating lower-limb MSK loading. Methods: A single male participant performed single-leg vertical hopping whilst attached to a body weight support system to replicate five gravity conditions (0.17, 0.25, 0.37, 0.50, 1 g). Experimental joint kinematics, joint kinetics and ground reaction forces were tracked in a data-tracking direct collocation simulation framework. Ground reaction forces, sagittal plane hip, knee and ankle net joint moments, quadriceps muscle forces (Rectus Femoris and three Vasti muscles), and hip, knee and ankle joint reaction forces were extracted for analysis. Estimated quadriceps muscle forces were input into a muscle adaptation model to predict a meaningful increase in muscle cross-sectional area, defined in (DeFreitas et al., 2011). Results: Two distinct strategies were observed to cope with the increase in ground reaction forces as gravity increased. Hypogravity was associated with an ankle dominant strategy with increased range of motion and net plantarflexor moment that was not seen at the hip or knee, and the Rectus Femoris being the primary contributor to quadriceps muscle force. At 1 g, all three joints had increased range of motion and net extensor moments relative to 0.50 g, with the Vasti muscles becoming the main muscles contributing to quadriceps muscle force. Additionally, hip joint reaction force did not increase substantially as gravity increased, whereas the other two joints increased monotonically with gravity. The predicted volume of exercise needed to counteract muscle adaptations decreased substantially with gravity. Despite the ankle dominant strategy in hypogravity, the loading on the knee muscles and joint also increased, demonstrating this provided more information about MSK loading. Discussion: This approach, supplemented with muscle-adaptation models, can be used to compare MSK loading between exercises to enhance astronaut exercise prescription.

3.
Physiother Theory Pract ; 40(4): 767-777, 2024 Apr.
Article in English | MEDLINE | ID: mdl-36593733

ABSTRACT

BACKGROUND: The Andago is an electromechanical gait trainer providing dynamic body weight support while simultaneously enabling over ground walking. The aim of this study was to compare the effects of the Andago with over ground walking on selected gait parameters, during a single gait reeducation session in a post-acute rehabilitation population. METHODS: Twenty-seven participants (mean age 78 yrs. (SD = 9.2), female 55.6% (n = 15)) undergoing rehabilitation for neurological (51.8%, n = 14), orthopedic (33.3%, n = 9), and medical conditions (14.8%, n = 4) completed the study. This was a single group, cross sectional, repeated measures study. Participants completed a 10-meter walk test (10MWT) and a 20-minute gait reeducation session under two conditions: i) harnessed in the Andago with body weight support or ii) using their normal walking pattern. Walking speed, steps taken, distance walked, rest breaks, Borg ratings of perceived exertion, and fear of falling were compared over both conditions. RESULTS: Walking speed was significantly slower with the Andago (10MWT mean difference 0.12 (95% CI 0.03-0.20), eta squared 0.24, p = .008; 20-min gait mean difference 0.04 (95% CI 0.00-0.09), eta squared 0.15, p = .049). During the 20-minute gait reeducation session, step count, distance walked, and duration of walking was similar over both conditions, however participants recorded less rest breaks and fear of falling at minutes 10 and 20 in favor of the Andago. CONCLUSION: Gait parameters measured during a single gait reeducation session in the Andago, in a mixed cohort of predominately older rehabilitation patients, appear comparable to conventional over ground training, other than walking speed which was reduced.


Subject(s)
Accidental Falls , Fear , Aged , Female , Humans , Body Weight , Cross-Sectional Studies , Gait , Walking , Male , Aged, 80 and over
4.
J Neuroeng Rehabil ; 20(1): 167, 2023 12 13.
Article in English | MEDLINE | ID: mdl-38093374

ABSTRACT

BACKGROUND: Early Mobilization in Intensive Care Units (ICUs) enhances patients' evolution, but has been rarely studied in neurological ICUs. The aim of this study was to assess gait training with body-weight support (BWS) in neuroICU, and to report on its safety, feasibility and on delays before walking with and without BWS. METHODS: This study was an observational one-year single-center study. Inclusion criteria were adults with a neurological injury requiring mechanical ventilation. Exclusion criteria were early death or ICU transfer. After weaning from ventilation, patients were screened for indications of BWS walking using predefined criteria. RESULTS: Patients' conditions were mostly brain injuries: 32% subarachnoid hemorrhages, 42% focal strokes, and 12% traumatic brain injuries. Out of 272 admissions, 136 patients were excluded, 78 were eligible, and 33 performed BWS walking. Among non-eligible patients, 36 walked unsuspended upon ventilation weaning, 17 presented too severe impairments. Among the 45 eligible patients who did not receive BWS training, main reasons were workload and weekends (31%), medical barriers (29%), and early ICU discharge (22%). 78 BWS sessions were performed on the 33 beneficiaries (median sessions per patient 2, max 10). Pre-session, most patients had inadequate response to pain, orders, or simple orientation questions. Sitting without support was impossible for 74%. Most pre-post changes in hemodynamic, respiratory, and pain parameters were small, and recovered spontaneously after the session. Eight sessions were interrupted; reasons were pain, fatigue or major imbalance (4), syncope (1), occurrence of stool (2), and battery failure (1). None of these adverse events required medical intervention, patients recovered upon session interruption. Median session duration was 31 min, patients walked on median 17 m. First BWS session occurred on median 3 days after ventilation weaning, and 11 days before patients were able to walk unsuspended. CONCLUSIONS: Verticalization and walking using a suspension device in patients in neuroICU allows early gait training, despite challenging neurological impairments. It is safe and generally well tolerated. TRIAL REGISTRATION: ClinicalTrials database (ID: NCT04300491).


Subject(s)
Gait , Walking , Adult , Humans , Feasibility Studies , Walking/physiology , Gait/physiology , Critical Care , Pain
5.
Sensors (Basel) ; 23(21)2023 Oct 29.
Article in English | MEDLINE | ID: mdl-37960500

ABSTRACT

The Lokomat provides task-oriented therapy for patients with gait disorders. This robotic technology drives the lower limbs in the sagittal plane. However, normative gait also involves motions in the coronal and transverse planes. This study aimed to compare the Lokomat with Treadmill gait through three-dimensional (3D)-joint kinematics and inter-joint coordination. Lower limb kinematics was recorded in 18 healthy participants who walked at 3 km/h on a Treadmill or in a Lokomat with nine combinations of Guidance (30%, 50%, 70%) and bodyweight support (30%, 50%, 70%). Compared to the Treadmill, the Lokomat altered pelvic rotation, decreased pelvis obliquity and hip adduction, and increased ankle rotation. Moreover, the Lokomat resulted in significantly slower velocity at the hip, knee, and ankle flexion compared to the treadmill condition. Moderate to strong correlations were observed between the Treadmill and Lokomat conditions in terms of inter-joint coordination between hip-knee (r = 0.67-0.91), hip-ankle (r = 0.66-0.85), and knee-ankle (r = 0.90-0.95). This study showed that some gait determinants, such as pelvis obliquity, rotation, and hip adduction, are altered when walking with Lokomat in comparison to a Treadmill. Kinematic deviations induced by the Lokomat were most prominent at high levels of bodyweight support. Interestingly, different levels of Guidance did not affect gait kinematics. The present results can help therapists to adequately select settings during Lokomat therapy.


Subject(s)
Robotic Surgical Procedures , Humans , Biomechanical Phenomena , Gait , Walking , Lower Extremity , Knee Joint , Body Weight
6.
Sensors (Basel) ; 23(18)2023 Sep 17.
Article in English | MEDLINE | ID: mdl-37766002

ABSTRACT

Gait rehabilitation commonly relies on bodyweight unloading mechanisms, such as overhead mechanical support and underwater buoyancy. Lightweight and wireless inertial measurement unit (IMU) sensors provide a cost-effective tool for quantifying body segment motions without the need for video recordings or ground reaction force measures. Identifying the instant when the foot contacts and leaves the ground from IMU data can be challenging, often requiring scrupulous parameter selection and researcher supervision. We aimed to assess the use of machine learning methods for gait event detection based on features from foot segment rotational velocity using foot-worn IMU sensors during bodyweight-supported treadmill walking on land and underwater. Twelve healthy subjects completed on-land treadmill walking with overhead mechanical bodyweight support, and three subjects completed underwater treadmill walking. We placed IMU sensors on the foot and recorded motion capture and ground reaction force data on land and recorded IMU sensor data from wireless foot pressure insoles underwater. To detect gait events based on IMU data features, we used random forest machine learning classification. We achieved high gait event detection accuracy (95-96%) during on-land bodyweight-supported treadmill walking across a range of gait speeds and bodyweight support levels. Due to biomechanical changes during underwater treadmill walking compared to on land, accurate underwater gait event detection required specific underwater training data. Using single-axis IMU data and machine learning classification, we were able to effectively identify gait events during bodyweight-supported treadmill walking on land and underwater. Robust and automated gait event detection methods can enable advances in gait rehabilitation.


Subject(s)
Foot , Lower Extremity , Humans , Gait , Walking , Body Weight , Machine Learning
7.
Biomedicines ; 11(8)2023 Jul 30.
Article in English | MEDLINE | ID: mdl-37626645

ABSTRACT

Parkinson's disease (PD) is a neurodegenerative disorder characterized by motor and non-motor alterations. Typical motor symptoms include resting tremors, bradykinesia (hypokinesia or akinesia), muscular stiffness, gait alterations, and postural instability. In this context, neurorehabilitation may have a pivotal role in slowing the progression of PD, using both conventional and innovative rehabilitation approaches. Thirty patients (15 males and 15 females) affected by PD were enrolled in our study. We randomly divided the patients into two groups, an experimental group (EG) and a control group (CG). In particular, the EG performed gait and balance training using the Rysen system, which is an innovative body weight support (BWS) system, whilst the CG received conventional physiotherapy. Both groups underwent 20 sessions, five times weekly, with each session lasting about 40 min. At the end of the training sessions (T1), we found that both groups (EG and CG) achieved clinical improvements, although the EG showed better scores for post-treatment regarding global motor functioning and postural stability compared to the CG. In conclusion, our results suggest that the Rysen system, which is an innovative BWS tool, could be considered a valid device for improving postural control and global motor functions, when compared to conventional gait training, in patients affected by PD.

8.
Front Hum Neurosci ; 17: 1197380, 2023.
Article in English | MEDLINE | ID: mdl-37497041

ABSTRACT

This study introduces a body-weight-support (BWS) robot actuated by two pneumatic artificial muscles (PAMs). Conventional BWS devices typically use springs or a single actuator, whereas our robot has a split force-controlled BWS (SF-BWS), in which two force-controlled actuators independently support the left and right sides of the user's body. To reduce the experience of weight, vertical unweighting support forces are transferred directly to the user's left and right hips through a newly designed harness with an open space around the shoulder and upper chest area to allow freedom of movement. A motion capture evaluation with three healthy participants confirmed that the proposed harness does not impede upper-body motion during laterally identical force-controlled partial BWS walking, which is quantitatively similar to natural walking. To evaluate our SF-BWS robot, we performed a force-tracking and split-force control task using different simulated load weight setups (40, 50, and 60 kg masses). The split-force control task, providing independent force references to each PAM and conducted with a 60 kg mass and a test bench, demonstrates that our SF-BWS robot is capable of shifting human body weight in the mediolateral direction. The SF-BWS robot successfully controlled the two PAMs to generate the desired vertical support forces.

9.
World Neurosurg ; 178: e239-e253, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37467957

ABSTRACT

OBJECTIVE: To investigate the effects of body weight support treadmill training (BWSTT) and sciatic nerve electrical stimulation (SNES) on motor function recovery in spinal cord injury (SCI) rats and its possible mechanism. METHODS: Modified Allen's method was utilized for T10 incomplete SCI. The Basso-Beattie-Bresnahan (BBB) score and modified Tarlov score were applied to assess motor function. Pathologic alterations of the spinal cord and muscles were observed by hematoxylin and eosin (HE) staining. The positive staining region of collagen fibers was assessed with Masson staining. Immunofluorescence was applied to count the positive cells of brain-derived neurotrophic factor (BDNF) and tropomyosin-related kinase B (TrkB). BDNF, TrkB, phosphatidylinositol-3-kinase (PI3K), and protein kinase B (Akt) relative mRNA and protein expressions were evaluated by reverse transcription polymerase chain reaction (RT-PCR) and Western blotting. RESULTS: On the 21st day of the intervention, the motor scores in SNES and BWSTT + SNES groups were higher than that in SCI group (P < 0.05). Compared with SCI group, mRNA and protein expressions of BDNF/TrkB and PI3K/Akt were more significant on the 21st day of the intervention in SNES and BWSTT + SNES groups (P < 0.05), but there was no difference in BWSTT group (P > 0.05). CONCLUSIONS: This experiment demonstrated that BWSTT combined with SNES contributed to alleviating spinal cord tissue injury, delaying muscle atrophy and improving locomotion. One of the possible mechanisms may be related to the regulation of the BDNF/TrkB signaling pathway, which changes the expression of PI3K/Akt protein. Furthermore, it was discovered that the ultra-early BWSTT may not be conducive to recovery.

10.
Front Neurorobot ; 17: 1089377, 2023.
Article in English | MEDLINE | ID: mdl-37359910

ABSTRACT

Introduction: Body weight support overground walking training (BWSOWT) is widely used in gait rehabilitation. However, existing systems require large workspace, complex structure, and substantial installation cost for the actuator, which make those systems inappropriate for the clinical environment. For wide clinical use, the proposed system is based on a self-paced treadmill, and uses an optimized body weight support with frame-based two-wire mechanism. Method: The Interactive treadmill was used to mimic overground walking. We opted the conventional DC motors to partially unload the body weight and modified pelvic type harness to allow natural pelvic motion. The performance of the proposed system on the measurement of anterior/posterior position, force control, and pelvic motion was evaluated with 8 healthy subjects during walking training. Results: We verified that the proposed system was the cost/space-effective and showed the more accurate anterior/posterior position than motion sensor, comparable force control performance, and natural pelvic motion. Discussion: The proposed system is cost/space effective, and able to mimic overground walking training with body weight support. In future work, we will improve the force control performance and optimize the training protocol for wide clinical use.

11.
Front Neurosci ; 17: 1188776, 2023.
Article in English | MEDLINE | ID: mdl-37360168

ABSTRACT

Dynamic Body Weight Support (BWS) systems have gained attention in recent years for their potential in gait training. However, maintaining a natural gait and vertical unloading have been less explored. In our previous work, we developed a body Motion Tracking (MT) walker that can move with patients. In this study, we introduce a novel Motion Tracking Variable Body Weight Support (MTVBWS) system for overground walkers. This system utilizes Center of Mass (COM) tracking and gait phase detection to not only dynamically support the user's body weight in the vertical direction but also to facilitate movement in all directions. The system achieves this horizontal omnidirectional movement by employing active Mecanum wheels, guided by COM recognition. The validation experiments were implemented with the MT mode, passive mode, and BWS mode in "static," "fixed unloading ratio (FUR)," and "variable unloading ratio (VUR)" settings with unloading force of 20 and 30%. The result shows that, compared to other modes, the proposed system in the MTVBWS mode can reduce the dragging effect in the horizontal plane caused by the walker. Moreover, the unloading force can be adjusted automatically to minimize the fluctuations in the force experienced by each lower limb during the rehabilitation walking training process. In comparison to natural walk, this mode presents smaller force fluctuations for each lower limb.

12.
Front Neurol ; 14: 1062349, 2023.
Article in English | MEDLINE | ID: mdl-36815001

ABSTRACT

Human movement is optimized to Earth's gravity and based on highly complex interactions between sensory and neuro-muscular systems. Yet, humans are able to adapt-at least partially-to extreme environments upon and beyond Earth's surface. With upcoming Lunar Gateway and Artemis missions, it is crucial to increase our understanding of the impact of hypogravity-i.e., reduced vertical loading-on physiological and sensory-motor performances to improve countermeasure programs, and define crewmember's readiness to perform mission critical tasks. Several methodologies designed to reduce vertical loading are used to simulate hypogravity on Earth, including body weight support (BWS) devices. Countering gravity and offloading the human body is also used in various rehabilitation scenarios to improve motor recovery in neurological and orthopedic impairments. Thus, BWS-devices have the potential of advancing theory and practice of both space exploration and terrestrial rehabilitation by improving our understanding of physiological and sensory-motor adaptations to reduced vertical loading and sensory input. However, lack of standardization of BWS-related research protocols and reporting hinders the exchange of key findings and new advancements in both areas. The aim of this introduction paper is to review the role of BWS in understanding human movement in simulated hypogravity and the use of BWS in terrestrial rehabilitation, and to identify relevant research areas contributing to the optimization of human spaceflight and terrestrial rehabilitation. One of the main aims of this research topic is to facilitate standardization of hypogravity-related research protocols and outcome reporting, aimed at optimizing knowledge transfer between space research and BWS-related rehabilitation sciences.

13.
Exp Brain Res ; 241(2): 615-627, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36639543

ABSTRACT

Evidence supporting the benefits of locomotor training (LT) to improve walking ability following stroke are inconclusive and could likely be improved with a better understanding of the effects of individual parameters i.e., body weight support (BWS), speed, and therapist assistance and their interactions with walking ability and specific impairments. We evaluated changes in muscle activity of thirty-seven individuals with chronic stroke (> 6 months), in response to a single session of LT at their self-selected or fastest-comfortable speed (FS) with three levels of BWS (0%, 15%, and 30%), and at FS with 30% BWS and seven different combinations of therapist assistance at the paretic foot, non-paretic foot, and trunk. Altered Muscle Activation Pattern (AMAP), a previously developed tool in our lab was used to evaluate the effects of LT parameter variation on eight lower-extremity muscle patterns in individuals with stroke. Repeated-measures mixed-model ANOVA was used to determine the effects of speed, BWS, and their interaction on AMAP scores. The Wilcoxon-signed rank test was used to determine the effects of therapist-assisted conditions on AMAP scores. Increased BWS mostly improved lower-extremity muscle activity patterns, but increased speed resulted in worse plantar flexor activity. Abnormal early plantar flexor activity during stance decreased with assistance at trunk and both feet, exaggerated plantar flexor activity during late swing decreased with assistance to the non-paretic foot or trunk, and diminished gluteus medius activity during stance increased with assistance to paretic foot and/or trunk. Therefore, different sets of training parameters have different immediate effects on activation patterns of each muscle and gait subphases.


Subject(s)
Stroke Rehabilitation , Stroke , Humans , Walking/physiology , Gait/physiology , Stroke/complications , Stroke Rehabilitation/methods , Muscle, Skeletal/physiology , Body Weight
14.
Proc Inst Mech Eng H ; 236(12): 1744-1751, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36398688

ABSTRACT

The majority of people with muscle weakness or paralysis lose their ability to walk and require various assistive devices like a walker to walk. Although various studies have examined the effect of different types of anterior and posterior walkers on different walking variables, so far no studies compare anterior versus posterior walker on forces and torques applied to the lower extremities. This paper presents a novel approach of using a passive saddle-assistive device (S-AD) to investigate the effect of this device on the torques of the joints. To measure the effectiveness of the device, a volunteer with spinal cord injury (SCI) participated to walk in four modes; including the use of a standard walker, anterior, and posterior mobility S-AD with and without body weight support, in the gait laboratory. The forces and torques applied to the lower and upper limbs were measured and examined. The result demonstrated a reduction in the vertical force on the lower limb in the anterior S-AD in supporting the patient's weight compared to the standard walker up to 42.8% and to the posterior S-AD with weight support up to 12%. According to the results, the anterior S-AD has a greater effect compared to posterior S-AD and standard walkers on lower and upper limb torque and forces during walking of a SCI patient while using knee ankle-foot orthoses.


Subject(s)
Orthotic Devices , Spinal Cord Injuries , Humans , Gait , Walking , Body Weight
15.
Front Neurol ; 13: 1003723, 2022.
Article in English | MEDLINE | ID: mdl-36438963

ABSTRACT

Background: Body-weight-supported treadmill training (BWSTT) combined with functional electrical stimulation (FES) is considered an effective intervention method to improve gait parameters in stroke patients. In this article, we compared the effect of BWSTT combined with FES and BWSTT only on gait parameters in stroke patients. Methods: Two researchers searched for literature published before January 5, 2021, in seven Chinese and English databases including PubMed, Web of Science, Cochrane Library, Ovid, CNKI, Wanfang Data, and VIP. Meta-analysis was then performed on various data collected, namely, 10 Meters Walking Test (10MWT), gait speed, Fugl-Meyer Assessment (FMA), Berg Balance Scale (BBS), Modified Barthel Index (MBI), Comprehensive Spasticity Scale (CSS), Functional Ambulation Category (FAC), and Ankle Range of Motion (AROM). Results: A total of 14 studies were included in the meta-analysis, in which 945 stroke patients participated. In these 14 studies, the participants were randomly divided into a test group and a control group. The test group received BWSTT combined with FES, while the control group received BWSTT only. Meta-analysis showed that when compared to BWSTT, BWSTT combined with FES had a better effect on FAC, AROM, 10MWT, CSS, MBI, FMA, gait speed, and BBS of stroke patients. However, the effect of BWSTT combined with FES on BBS was not significant in the medium exercise group when compared to that of BWSTT. Also, the effect of BWSTT combined with FES on gait speed was not significant in the large exercise group when compared to that of BWSTT only. Conclusion: BWSTT combined with FES is more effective than BWSTT only for improving gait parameters in stroke patients. Systematic review registration: https://www.crd.york.ac.uk/prospero/#recordDetails, CRD42022299636.

16.
Article in English | MEDLINE | ID: mdl-35805845

ABSTRACT

The aims of this study were (1) to compare the effect of robot-assisted gait orthosis (RAGO) plus conventional physiotherapy with the effect of conventional therapy alone on functional outcomes, including balance, walking ability, muscle strength, daily activity, and cognition, in chronic stroke patients, and (2) to determine the association of adjustable parameters of RAGO on functional outcomes. Adjustable parameters of RAGO included guidance force, treadmill speed, and body-weight support. This retrospective cohort study enrolled 32 patients with chronic stroke. Of these, 16 patients received RAGO plus conventional physiotherapy (RAGO group), and 16 patients received conventional physiotherapy alone (control group). Balance was assessed using the Berg Balance Scale, walking ability using the Functional Ambulation Category, muscle strength using the Motricity Index, daily activity using the Barthel Index, and cognition using the Mini-Mental State Examination. The scores were assessed before and after training. The Mini-Mental State Examination and the Berg Balance Scale increased significantly in both groups, whereas improvements in the Motricity Index and the Barthel Index were only observed in the RAGO group after intervention. During RAGO training, reducing guidance force and body-weight support assistance was associated with improvements in the Barthel Index, whereas higher treadmill walking speed was associated with improvements in the Berg Balance Scale. Our study found that RAGO combination therapy resulted in improvements in more functional outcomes than did conventional training alone. The adjustable parameters of the RAGO training were partly associated with training outcomes.


Subject(s)
Robotics , Stroke Rehabilitation , Stroke , Exercise Therapy/methods , Gait/physiology , Humans , Retrospective Studies , Robotics/methods , Stroke/complications , Stroke Rehabilitation/methods , Treatment Outcome , Walking
17.
Article in English | MEDLINE | ID: mdl-35627346

ABSTRACT

This study investigated the effects of robot-assisted gait training with body weight support on gait and balance in stroke patients. The study participants comprised 24 patients diagnosed with stroke. Patients were randomly assigned to four groups of six: robot A, B, C, and non-robot. The body weight support (BWS) for the harness of the robot was set to 30% of the patient's body weight in robot group A, 50% in robot group B, and 70% in robot group C. All experimental groups received robot-assisted gait training and general physical therapy. The non-robot group underwent gait training using a p-bar, a treadmill, and general physical therapy. The intervention was performed for 30 min a day, five times a week, for 6 weeks. All participants received the intervention after the pre-test. A post-test was performed after all of the interventions were completed. Gait was measured using a 10 m Walking test (10MWT) and the timed up and go (TUG) test. Balance was assessed using the Berg Balance Scale (BBS). Robot groups A, B, and C showed significantly better 10MWT results than did the non-robot group (p < 0.5). TUG was significantly shorter in robot groups A, B, and C than in the non-robot group (p < 0.5). The BBS scores for robot group A improved significantly more than did those for robot groups B and C and the non-robot group (p < 0.5), indicating that robot-assisted gait training with body weight support effectively improved the gait of stroke patients.


Subject(s)
Robotics , Stroke Rehabilitation , Stroke , Body Weight , Gait , Humans , Robotics/methods , Stroke Rehabilitation/methods , Treatment Outcome
18.
J Neuroeng Rehabil ; 19(1): 40, 2022 04 22.
Article in English | MEDLINE | ID: mdl-35459246

ABSTRACT

BACKGROUND: Lokomat therapy for gait rehabilitation has become increasingly popular. Most evidence suggests that Lokomat therapy is equally effective as but not superior to standard therapy approaches. One reason might be that the Lokomat parameters to personalize therapy, such as gait speed, body weight support and Guidance Force, are not optimally used. However, there is little evidence available about the influence of Lokomat parameters on the effectiveness of the therapy. Nevertheless, an appropriate reporting of the applied therapy parameters is key to the successful clinical transfer of study results. The aim of this scoping review was therefore to evaluate how the currently available clinical studies report Lokomat parameter settings and map the current literature on Lokomat therapy parameters. METHODS AND RESULTS: A systematic literature search was performed in three databases: Pubmed, Scopus and Embase. All primary research articles performing therapy with the Lokomat in neurologic populations in English or German were included. The quality of reporting of all clinical studies was assessed with a framework developed for this particular purpose. We identified 208 studies investigating Lokomat therapy in patients with neurologic diseases. The reporting quality was generally poor. Less than a third of the studies indicate which parameter settings have been applied. The usability of the reporting for a clinical transfer of promising results is therefore limited. CONCLUSION: Although the currently available evidence on Lokomat parameters suggests that therapy parameters might have an influence on the effectiveness, there is currently not enough evidence available to provide detailed recommendations. Nevertheless, clinicians should pay close attention to the reported therapy parameters when translating research findings to their own clinical practice. To this end, we propose that the quality of reporting should be improved and we provide a reporting framework for authors as a quality control before submitting a Lokomat-related article.


Subject(s)
Robotics , Gait , Humans , Orthotic Devices , Robotics/methods , Walking , Walking Speed
19.
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi ; 39(1): 175-184, 2022 Feb 25.
Article in Chinese | MEDLINE | ID: mdl-35231979

ABSTRACT

The body weight support rehabilitation training system has now become an important treatment method for the rehabilitation of lower limb motor dysfunction. In this paper, a pelvic brace body weight support rehabilitation system is proposed, which follows the center of mass height (CoMH) of the human body. It aims to address the problems that the existing pelvic brace body weight support rehabilitation system with constant impedance provides a fixed motion trajectory for the pelvic mechanism during the rehabilitation training and that the patients have low participation in rehabilitation training. The system collectes human lower limb motion information through inertial measurement unit and predicts CoMH through artificial neural network to realize the tracking control of pelvic brace height. The proposed CoMH model was tested through rehabilitation training of hemiplegic patients. The results showed that the range of motion of the hip and knee joints on the affected side of the patient was improved by 25.0% and 31.4%, respectively, and the ratio of swing phase to support phase on the affected side was closer to that of the gait phase on the healthy side, as opposed to the traditional body weight support rehabilitation training model with fixed motion trajectory of pelvic brace. The motion trajectory of the pelvic brace in CoMH mode depends on the current state of the trainer so as to realize the walking training guided by active movement on the healthy side of hemiplegia patients. The strategy of dynamically adjustment of body weight support is more helpful to improve the efficiency of walking rehabilitation training.


Subject(s)
Stroke Rehabilitation , Walking , Biomechanical Phenomena , Gait , Hemiplegia , Humans , Pelvis , Range of Motion, Articular
20.
Global Spine J ; 12(1_suppl): 97S-108S, 2022 Feb.
Article in English | MEDLINE | ID: mdl-35174735

ABSTRACT

STUDY DESIGN: Narrative review. OBJECTIVE: Degenerative cervical myelopathy is one of the most frequent impairments of the spinal cord encountered internationally in adults. Currently, surgical decompression is the recommended treatment for people with DCM (PwCM) presenting with moderate to severe symptoms or neurological deficits. However, despite surgical intervention, not all patients make a complete recovery due to the irreversible tissue damage within the spinal cord. The objective of this review is to describe the state and gaps in the current literature on rehabilitation for PwCM and possible innovative rehabilitation strategies. METHODS: Literature search. RESULTS: In other neurological disorders such as stroke and acute traumatic spinal cord injury (SCI), timely and strategic rehabilitation has been shown to be indispensable for maximizing functional outcomes, and it is imperative that appropriate perioperative rehabilitative interventions accompany surgical approaches in order to enable the best outcomes. In this review, the current state of knowledge regarding rehabilitation for PwCM is described. Additionally, various therapies that have shown to improve outcomes in comparable neurological conditions such as stroke and SCI which may be translated to DCM will be reviewed. CONCLUSIONS: We conclude that locomotor training and arm/hand therapy may benefit PwCM. Further, we conclude that body weight support, robotic assistance, and virtual/augmented reality therapies may be beneficial therapeutic analogs to locomotor and hand therapies.

SELECTION OF CITATIONS
SEARCH DETAIL
...