Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 35
Filter
Add more filters










Publication year range
1.
Animals (Basel) ; 14(8)2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38672293

ABSTRACT

Identifying genetic markers of economically valuable traits has practical benefits for the meat goat industry. To better understand the genomic variations influencing body conformation traits, a genome-wide association study was performed on Tashi goats, an indigenous Chinese goat breed. A total of 155 Tashi goats were phenotyped for eight body conformation traits: body height, body length, chest depth, chest width, chest girth, rump width, rump height, and cannon bone circumference. Then, 100 Tashi goats were randomly selected for whole-genome sequencing and genotyped. We obtained 1676.4 Gb of raw data with an average sequencing depth of 6.2X. Clean reads were aligned to the ARS1.2 reference genome, and 11,257,923 single nucleotide polymorphisms (SNPs) were identified. The structure analysis showed that these Tashi goats were almost not genetically related. The 109, 20, 52, 14, 62, 51, 70, and 7 SNPs were significantly associated with body height, body length, chest depth, chest width, chest girth, rump width, rump height, and cannon bone circumference. Within the ±500 kb region of significant SNPs, 183 genes were annotated. The most significantly enriched KEGG pathway was "olfactory transduction", and the most significantly enriched gene ontology (GO) terms were "cellular process", "cellular anatomical entity", and "molecular transducer activity". Interestingly, we found several SNPs on chromosomes 10 and 11 that have been identified multiple times for all eight body conformation traits located in two fragments (114 kb and 1.03 Mb). In chr.10:25988403-26102739, the six SNPs were tightly linked, the TACTAG genotype was the highest at 91.8%, and the FNTB (Farnesyltransferase, CAAX Box Beta) and CHURC1 (Churchill Domain Containing 1) genes were located. In chr.11:88216493-89250659, ten SNPs were identified with several dependent linkage disequilibrium (LD) blocks, and seven related genes were annotated, but no significant SNP was located in them. Our results provide valuable biological information for improving growth performance with practical applications for genomic selection in goats.

2.
BMC Vet Res ; 20(1): 85, 2024 Mar 08.
Article in English | MEDLINE | ID: mdl-38459506

ABSTRACT

BACKGROUND: Comprehending the correlation between body conformation traits of cows at the early stages of lactation and prevalent lactation diseases might facilitate the execution of selection and feeding strategies that prioritize cow health. This study aimed to evaluate the impact of body conformation traits on the incidence of clinical mastitis and lameness in Chinese Holstein cows. From a pasture herd of 1472 early lactating Chinese Holstein cows, we evaluated 20 body conformation traits. During lactation, this pasture herd was visited weekly to gather clinical mastitis and lameness data. A nine-point scale was used to determine the conformation traits of cows to clarify their linear characters, including frame capacity, rump (RU), feet and leg (FL), mammary system (MS), and dairy character. A longitudinal binary disease (0 = healthy; 1 = diseased) data structure was created by allocating disease records to adjacent official test dates. The impact of body conformation traits on the risk of developing diseases (clinical mastitis and lameness) was analyzed using the logistic regression models. RESULTS: Compared to cows with low total scores (75-79 points), those with high total scores (80-85 points) of body conformation traits had a significantly lower risk of mastitis (P < 0.001). The disease status (0 or 1: binary variable) of clinical mastitis in lactating cows was significantly impacted negatively by age (P < 0.05). The fore udder attachment (FUA), angularity, rear attachment height (RAH), and rear teat placement (RTP) were all significantly associated with clinical mastitis during lactation (P < 0.05). The rear leg-rear view (RLRV) was significantly correlated with correlated considerably (P < 0.05) with lameness during lactation. An ideal score of four points on the lameness risk dimension of the RLRV may indicate a low risk of lameness. Since the risk of mastitis decreased as this trait score increased, the RTP may be an ideal marker for mastitis risk. CONCLUSIONS: According to the study, clinical mastitis and lameness risks in cows can be estimated using their body conformation traits. Cows with more centrally located rear teats have a lower risk of mastitis. These results may help dairy farmers identify cows at high risk of disease early in lactation and aid in breeding for disease resistance in cows.


Subject(s)
Cattle Diseases , Mastitis, Bovine , Female , Cattle , Animals , Lactation , Lameness, Animal/etiology , Mastitis, Bovine/epidemiology , Gait , Milk , Dairying
3.
Anim Biosci ; 37(4): 555-566, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38271974

ABSTRACT

OBJECTIVE: This study aimed to assess the genetic parameters and accuracy of genomic predictions for twenty-four linear body conformation traits and overall conformation scores in Korean Holstein dairy cows. METHODS: A dataset of 2,206 Korean Holsteins was collected, and genotyping was performed using the Illumina Bovine 50K single nucleotide polymorphism (SNP) chip. The traits investigated included body traits (stature, height at front end, chest width, body depth, angularity, body condition score, and locomotion), rump traits (rump angle, rump width, and loin strength), feet and leg traits (rear leg set, rear leg rear view, foot angle, heel depth, and bone quality), udder traits (udder depth, udder texture, udder support, fore udder attachment, front teat placement, front teat length, rear udder height, rear udder width, and rear teat placement), and overall conformation score. Accuracy of genomic predictions was assessed using the single-trait animal model genomic best linear unbiased prediction method implemented in the ASReml-SA v4.2 software. RESULTS: Heritability estimates ranged from 0.10 to 0.50 for body traits, 0.21 to 0.35 for rump traits, 0.13 to 0.29 for feet and leg traits, and 0.05 to 0.46 for udder traits. Rump traits exhibited the highest average heritability (0.29), while feet and leg traits had the lowest estimates (0.21). Accuracy of genomic predictions varied among the twenty-four linear body conformation traits, ranging from 0.26 to 0.49. The heritability and prediction accuracy of genomic estimated breeding value (GEBV) for the overall conformation score were 0.45 and 0.46, respectively. The GEBVs for body conformation traits in Korean Holstein cows had low accuracy, falling below the 50% threshold. CONCLUSION: The limited response to selection for body conformation traits in Korean Holsteins may be attributed to both the low heritability of these traits and the lower accuracy estimates for GEBVs. Further research is needed to enhance the accuracy of GEBVs and improve the selection response for these traits.

4.
Animals (Basel) ; 13(23)2023 Nov 23.
Article in English | MEDLINE | ID: mdl-38066979

ABSTRACT

A genome-wide association study (GWAS) is an effective tool for identifying the dominant genes of complex economic traits in livestock by statistical analysis of genotype data and measured phenotype data. In this study, we rigorously measured 14 body conformation traits in 254 Qinchuan cattle, comprising body weight (BW), body height (BOH), back height (BAH), buttock height (BUH), chest depth (CD), chest width (CW), hip cross height (HCH), body length (BL), hip width (HW), rump length (RL), pin bone width (PBW), chest girth (CG), abdomen circumference (AG), and calf circumference (CC). After quality control, 281,889 SNPs were generated for GWAS with different traits. A total of 250 suggestive SNPs (p < 3.54 × 10-6) were screened and 37 candidate genes were annotated. Furthermore, we performed a linkage disequilibrium analysis of SNP loci and considered published studies, identifying the eight genes (ADAMTS17, ALDH1A3, CHSY1, MAGEL2, MEF2A, SYNM, CNTNAP5, and CTNNA3) most likely to be involved in growth traits. This study provides new insights into the regulatory mechanisms of bovine body size development, which can be very useful in the development of management and breeding strategies.

5.
Animals (Basel) ; 13(18)2023 Sep 19.
Article in English | MEDLINE | ID: mdl-37760364

ABSTRACT

The objective of this study was to identify quantitative trait loci (QTL) and nearby candidate genes that influence body conformation traits. Phenotypic data for 24 body conformation traits were collected from a population of 2329 Korean Holstein cattle, and all animals were genotyped using the 50 K Illumina bovine SNP chip. A total of 24 genome-wide significant SNPs associated with 24 body conformation traits were identified by genome-wide association analysis. The selection of the most promising candidate genes was based on gene ontology (GO) terms and the previously identified functions that influence various body conformation traits as determined in our study. These genes include KCNA1, RYBP, PTH1R, TMIE, and GNAI3 for body traits; ANGPT1 for rump traits; MALRD1, INHBA, and HOXA13 for feet and leg traits; and CDK1, RHOBTB1, and SLC17A1 for udder traits, respectively. These findings contribute to our understanding of the genetic basis of body conformation traits in this population and pave the way for future breeding strategies aimed at enhancing desirable traits in dairy cattle.

6.
Animals (Basel) ; 13(15)2023 Jul 26.
Article in English | MEDLINE | ID: mdl-37570223

ABSTRACT

Body conformation is the most direct production index, which can fully reflect pig growth status and is closely related to critical economic traits. In this study, we conducted a genome-wide association study (GWAS) on body conformation traits in a population of 1518 Duroc × (Landrace × Yorkshire) commercial pigs. These traits included body length (BL), body height (BH), chest circumference (CC), abdominal circumference (AC), and waist circumference (WC). Both the mixed linear model (MLM) and fixed and random model circulating probability unification (FarmCPU) approaches were employed for the analysis. Our findings revealed 60 significant single nucleotide polymorphisms (SNPs) associated with these body conformation traits in the crossbred pig population. Specifically, sixteen SNPs were significantly associated with BL, three SNPs with BH, thirteen SNPs with CC, twelve SNPs with AC, and sixteen SNPs with WC. Moreover, we identified several promising candidate genes located within the genomic regions associated with body conformation traits. These candidate genes include INTS10, KIRREL3, SOX21, BMP2, MAP4K3, SOD3, FAM160B1, ATL2, SPRED2, SEC16B, and RASAL2. Furthermore, our analysis revealed a novel significant quantitative trait locus (QTL) on SSC7 specifically associated with waist circumference, spanning an 84 kb interval. Overall, the identification of these significant SNPs and potential candidate genes in crossbred commercial pigs enhances our understanding of the genetic basis underlying body conformation traits. Additionally, these findings provide valuable genetic resources for pig breeding programs.

7.
Animals (Basel) ; 13(14)2023 Jul 09.
Article in English | MEDLINE | ID: mdl-37508031

ABSTRACT

The objective of this study was to explore the effect of dam body conformations on birth traits including stillbirth, dystocia, gestation length and birth weight of Chinese Holstein calves and to provide a reference for improving cow reproductive performance. We collected phenotype data on 20 conformation traits of Chinese Holstein cows and analyzed the impact of dam conformation trait linear scores on stillbirth, dystocia, gestation length and calf birth weight. The feet angle, set of rear legs, fore udder attachment and rear attachment height traits of the dairy cows significantly affected the risk of stillbirth. The risk of dystocia decreases with the increase in stature and pin width. The bone quality of dairy cows had a significant positive correlation with gestation length. There was a significant positive correlation between fore udder attachment and calf weight at birth. The birth weight of calves from cows with high body conformation traits was significantly higher than that of calves with a low composite score. These results suggest that improving the body conformation traits, especially the selection of mammary system and body shape total score, will be beneficial in improving the reproductive performance of dairy cows.

8.
Genes (Basel) ; 14(2)2023 01 30.
Article in English | MEDLINE | ID: mdl-36833283

ABSTRACT

Marker-assisted selection is an important method for livestock breeding. In recent years, this technology has been gradually applied to livestock breeding to improve the body conformation traits. In this study, the LRRC8B (Leucine Rich Repeat Containing 8 VRAC Subunit B) gene was selected to evaluate the association between its genetic variations and the body conformation traits in two native sheep breeds in China. Four body conformation traits, including withers height, body length, chest circumference, and body weight, were collected from 269 Chaka sheep. We also collected the body length, chest width, withers height, chest depth, chest circumference, cannon bone circumference, and height at hip cross of 149 Small-Tailed Han sheep. Two different genotypes, ID and DD, were detected in all sheep. Our data showed that the polymorphism of the LRRC8B gene was significantly associated with chest depth (p < 0.05) in Small-Tailed Han sheep, and it is greater in sheep with DD than those with ID. In conclusion, our data suggested that the LRRC8B gene could serve as a candidate gene for marker-assisted selection in Small-Tailed Han sheep.


Subject(s)
INDEL Mutation , Polymorphism, Single Nucleotide , Sheep , Animals , Body Weight/genetics , Genotype , Phenotype
9.
Animals (Basel) ; 12(24)2022 Dec 13.
Article in English | MEDLINE | ID: mdl-36552441

ABSTRACT

The aim of this study was a genome-wide association study (GWAS) on conformation traits using 25,486 genotyped Czech Holsteins, with 35,227 common SNPs for each genotype. Linear trait records were collected between 1995 and 2020. The Interbull information from Multiple Across Country Evaluation (MACE) was included for bulls that mostly had daughter records in a foreign country. When using the Bonferroni correction, the number of SNPs that were either significant or approached the significance threshold was low-dairy capacity composite on BTA4, feet and legs composite BTA21, total score BTA10, stature BTA24, body depth BTA6, angularity BTA20, fore udder attachment BTA10. Without the Bonferroni correction, the total number of significant or near of significance SNPs was 32. The SNPs were localized on BTA1,2,4,5,6,7,8,18,22,25,26,28 for dairy capacity composite, BTA15,21 for feet and legs composite, BTA10 for total score, BTA24 stature, BTA6,23 body depth, BTA20 angularity, BTA2 rump angle, BTA9,10 rear legs rear view, BTA2,19 rear legs side view, BTA10 fore udder attachment, BTA2 udder depth, BTA10 rear udder height, BTA12 central alignment, BTA24 rear teat placement, BTA8,29 rear udder width. The results provide biological information for the improvement of body conformation and fitness in the Holstein population.

10.
J Anim Sci ; 100(12)2022 Dec 01.
Article in English | MEDLINE | ID: mdl-36334266

ABSTRACT

The aim of this study was to assess the contribution of the weighted single-step genomic best linear unbiased prediction (wssGBLUP) method compared to the single-step genomic best linear unbiased prediction (ssGBLUP) method for genomic evaluation of 25 linear-type traits in the Czech Holstein cattle population. The nationwide database of linear-type traits with 6,99,681 records combined with deregressed proofs from Interbull (MACE method) was used as the input data. Genomic breeding values (GEBVs) were predicted based on these phenotypes using ssGBLUP and wssGBLUP methods using the BLUPF90 software. The bull validation test was employed which was based on comparing GEBVs of young bulls (N = 334) with no progeny in 2016. A minimum of 50 daughters with their own performance in 2020 was chosen to verify the contribution to the GEBV prediction, GEBV reliability, validation reliabilities (R2), and regression coefficients (b1). The results showed that the differences between the two methods were negligible. The low benefit of wssGBLUP may be due to the inclusion of a small number of SNPs; therefore, most predictions rely on polygenic relationships between animals. Nevertheless, the benefits of wssGBLUP analysis should be assessed with respect to specific population structures and given traits.


Animal breeding is based on statistical and mathematical approaches. With the development of computer technology, these procedures have become more efficient and have shed light upon an increasing amount of information, particularly in the field of molecular genetics. This results in a more accurate prediction of the breeding value. The single-step approach is the most popular genomic breeding value-prediction method. Single-step genomic BLUP (ssGBLUP) assumes that all single nucleotide polymorphisms (SNPs) explain the same fraction of genetic variance. In contrast, unequal variance and SNP weights were considered in weighted ssGBLUP (wssGBLUP). The aim of this study was to assess the contribution of wssGBLUP compared to ssGBLUP for the genomic evaluation of 25 linear-type traits in Czech Holstein cattle. We can conclude that no significant differences were found between these methods for the evaluated traits, probably because of the low number of included SNPs, which may not cover all significant SNPs in the genome.


Subject(s)
Cattle , Genomics , Models, Genetic , Animals , Cattle/genetics , Male , Genomics/methods , Genotype , Phenotype , Reproducibility of Results , Czech Republic
11.
Front Vet Sci ; 9: 932034, 2022.
Article in English | MEDLINE | ID: mdl-36268046

ABSTRACT

Milk production and body conformation traits are critical economic traits for dairy cows. To understand the basic genetic structure for those traits, a genome wide association study was performed on milk yield, milk fat yield, milk fat percentage, milk protein yield, milk protein percentage, somatic cell score, body form composite index, daily capacity composite index, feed, and leg conformation traits, based on the Illumina Bovine HD100k BeadChip. A total of 57, 12 and 26 SNPs were found to be related to the milk production, somatic cell score and body conformation traits in the Holstein cattle. Genes with pleiotropic effect were also found in this study. Seven significant SNPs were associated with multi-traits and were located on the PLEC, PLEKHA5, TONSL, PTGER4, and LCORL genes. In addition, some important candidate genes, like GPAT3, CEBPB, AGO2, SLC37A1, and FNDC3B, were found to participate in fat metabolism or mammary gland development. These results can be used as candidate genes for milk production, somatic cell score, and body conformation traits of Holstein cows, and are helpful for further gene function analysis to improve milk production and quality.

12.
Animals (Basel) ; 12(18)2022 Sep 15.
Article in English | MEDLINE | ID: mdl-36139293

ABSTRACT

In this study, we estimated the genetic parameters for 6 composite traits and 27 body conformation traits of 1016 dual-purpose Simmental cattle reared in northwestern China from 2010 to 2019 using a linear animal mixed model. To integrate these traits, a variety of methods were used as follows: (1) genetic parameters estimates for composite and individual body conformation traits based on the pedigree relationship matrix (A) and combined genomic-pedigree relationship matrix (H); (2) factor analysis to explore the relationships among body conformation traits; and (3) genetic parameters of factor scores estimated using A and H, and the correlations of EBVs of the factor scores and EBVs of the composite traits. Heritability estimates of the composite traits using A and H were low to medium (0.07-0.47). The 24 common latent factors explained 96.13% of the total variance. Among factors with eigenvalues ≥ 1, F1 was mainly related to body frame, muscularity, and rump; F2 was related to feet and legs; F3, F4, F5, and F6 were related to teat placement, teat size, udder size, and udder conformation; and F7 was related to body frame. Single-trait analysis of factor scores yielded heritability estimates that were low to moderate (0.008-0.43 based on A and 0.04-0.43 based on H). Spearman and Pearson correlations, derived from the best linear unbiased prediction analysis of composite traits and factor scores, showed a similar pattern. Thus, incorporating factor analysis into the morphological evaluation to simplify the assessment of body conformation traits may improve the genetics of dual-purpose Simmental cattle.

13.
Animals (Basel) ; 12(13)2022 Jun 21.
Article in English | MEDLINE | ID: mdl-35804502

ABSTRACT

This study was performed to expose the polymorphisms of the growth hormone-releasing hormone receptor gene in Chinese Dabieshan cattle, evaluate its effect on body conformation traits, and find potential molecular markers in Chinese cattle. The GHRHR structure and the phylogenetic tree were analyzed using bioinformatics software. The polymorphism of the GHRHR gene in 486 female cattle was genotyped by PCR-RFLP and DNA sequencing, and the association between SNPs and body conformation traits of Chinese Dabieshan cattle was analyzed by one-way ANOVA in SPSS software. GHRHR was often conserved in nine species, and its sequence of cattle was closest to sheep and goats. Six polymorphic SNPs were identified, g.10667A > C and g.10670A > C were missense mutation. The association analysis indicated that the six SNPs significantly influenced the body conformation traits of Chinese Dabieshan cattle (p < 0.05). Six haplotypes were identified and Hap1 (-CAACGA-) had the highest frequency (36.10%). The Hap3/5 (-GCCCCCGGAAGG-) exhibited a significantly greater wither height (WH), hip height (HH), heart girth (HG), and hip width (HW) (p < 0.05). Overall, the polymorphisms of GHRHR affected the body conformation traits of Chinese Dabieshan cattle, and the GHRHR gene could be used as a molecular marker in Dabieshan cattle breeding programs.

14.
Animals (Basel) ; 12(5)2022 Feb 23.
Article in English | MEDLINE | ID: mdl-35268118

ABSTRACT

Identifying associations between genetic markers and economic traits has practical benefits for the meat goat industry. To better understand the genomic regions and biological pathways contributing to body conformation traits of meat goats, a genome-wide association study was performed using Dazu black goats (DBGs), a Chinese indigenous goat breed. In particular, 150 DBGs were genotyped by whole-genome sequencing, and six body conformation traits, including body height (BH), body length (BL), cannon circumference (CC), chest depth (CD), chest width (CW), and heart girth (HG), were examined. In total, 53 potential SNPs were associated with these body conformation traits. A bioinformatics analysis was performed to evaluate the genes located close to the significant SNPs. Finally, 42 candidate genes (e.g., PSTPIP2, C7orf57, CCL19, FGF9, SGCG, FIGN, and SIPA1L) were identified as components of the genetic architecture underlying body conformation traits. Our results provide useful biological information for the improvement of growth performance and have practical applications for genomic selection in goats.

15.
Anim Biosci ; 35(4): 517-526, 2022 Apr.
Article in English | MEDLINE | ID: mdl-34530508

ABSTRACT

OBJECTIVE: The growth differentiation factor 8 (GDF8) gene plays a key role in bone formation, resorption, and skeletal muscle development in mammals. Here, we studied the genetic variants of GDF8 and their contribution to body conformation traits in Chinese Dabieshan cattle. METHODS: Single nucleotide polymorphisms (SNPs) were identified in the bovine GDF8 gene by DNA sequencing. Phylogenetic analysis, motif analysis, and genetic diversity analysis were conducted using bioinformatics software. Association analysis between five SNPs, haplotype combinations, and body conformation traits was conducted in 380 individuals. RESULTS: The GDF8 was highly conserved in seven species, and the GDF8 sequence of cattle was most similar to the sequences of sheep and goat based on the phylogenetic analysis. The motif analysis showed that there were 12 significant motifs in GDF8. Genetic diversity analysis indicated that the polymorphism information content of the five studied SNPs was within 0.25 to 0.5. Haplotype analysis revealed a total of 12 different haplotypes and those with a frequency of <0.05 were excluded. Linkage disequilibrium analysis showed a strong linkage (r2>0.330) between the following SNPs: g.5070C>A, g.5076T>C, and g.5148A>C. Association analysis indicated these five SNPs were associated with some of the body conformation traits (p<0.05), and the animals with haplotype combination H1H1 (-GGGG CCTTAA-) had greater wither height, hip height, heart girth, abdominal girth, and pin bone width than the other (p<0.05) Dabieshan cattle. CONCLUSION: Overall, our results indicate that the genetic variants of GDF8 affected the body conformation traits of Chinese Dabieshan cattle, and the GDF8 gene could make a strong candidate gene in Dabieshan cattle breeding programs.

16.
Gene ; 810: 146060, 2022 Feb 05.
Article in English | MEDLINE | ID: mdl-34740731

ABSTRACT

Previous, studies have shown that the dynein transporter compound has a role in diseases such as intellectual disability and cerebral malformations. However, the study of CNV in DYNC1I2 gene has not been reported. Q-PCR and data association analysis were used for DYNC1I2 gene copy in this study. In this study, blood samples were collected from five breeds of Chinese cattle (Qingchuan cattle, Xianan cattle, Yunling cattle, Pinan cattle and Guyuan cattle) for DYNC1I2 gene CNV type detection. SPSS 20.0 software and method of ANOVA were used to analyzed the association between types of CNV and growth traits. Results reveal that the distribution of different copy number types in different cattle breeds is different. Association analysis indicate that CNV of DYNC1I2 gene showed a positive effect in cattle growth: in XN cattle, individuals with deletion types showed better performance on height at hip cross (P < 0.05); individuals with duplication types have better performance on body length (P < 0.05) in PN cattle; individuals with deletion types was significantly correlated with chest width and Hucklebone width (P < 0.05) in QC cattle; individuals with duplication types in Yunling cattle were better than the normal types, and there was a significant correlation between copy number variant and chest depth (P < 0.05). The results showed that CNV markers closely related to cattle production traits were detected at DNA level, which could be used as an important candidate molecular marker for marker-assisted selection of growth traits in Chinese cattle, and provided a new research basis for genetics and breeding of Chinese beef cattle.


Subject(s)
Cattle/anatomy & histology , Cattle/genetics , Dyneins/genetics , Gene Dosage , Animals , Biometry , Cattle/classification , Cattle/growth & development , DNA Copy Number Variations , Dyneins/chemistry , Meat , Molecular Structure
17.
BAG, J. basic appl. genet. (Online) ; 32(2): 59-70, dic. 2021. graf
Article in Spanish | LILACS-Express | LILACS | ID: biblio-1355732

ABSTRACT

RESUMEN El pollo campero es un ave destinado a sistemas productivos alternativos al industrial. Campero INTA es un cruzamiento simple entre poblaciones sintéticas generadas por INTA en Pergamino. Estas poblaciones se han mantenido cerradas y con bajo tamaño efectivo con el consiguiente efecto detrimental asociado a fenómenos de depresión endogámica. Con el objetivo de disponer de una población doble propósito con adecuados niveles productivos de carne y huevos y de rusticidad para ser utilizada en sistemas semi-intensivos que preservan el bienestar animal, se implementó un programa de relevamiento del recurso genético disponible y se diseñó un plan de cruzamientos dirigido a la producción de un híbrido terminal de tres vías. La secuencia incluyó la evaluación de cinco poblaciones sintéticas maternas (A, E, DE, ES y CE), la selección de dos de ellas (ES y A), su caracterización en cruzamientos simples recíprocos [(ESxA) y (AxES)], la elección de la alternativa (ESxA) como progenitor femenino y su cruzamiento por gallos de la estirpe paterna mejorada AH' para la obtención como producto final del pollo Campero Casilda. La evaluación de su patrón de crecimiento, conformación corporal, relación de conversión y caracteres productivos a la faena indican que tanto los machos como las hembras cumplen, como aves destinadas a la producción de carne, con las exigencias establecidas en el protocolo respectivo. La evaluación de los caracteres productivos a la madurez sexual, el patrón dinámico de aumento de peso del huevo y las curvas de postura califican a las hembras para su utilización como ponedoras.


ABSTRACT Campero chicken is a bird destined to production systems alternative to the industrial one. Campero INTA is a two-way cross between synthetic populations generated by INTA in Pergamino. These populations have remained closed and with a low effective size with the consequent detrimental effect associated with inbreeding depression. To have a dual-purpose population with adequate meat and egg production levels and rusticity to be used in semi-intensive systems that preserve animal welfare, a survey program of the available genetic resource was implemented and a crossbreeding plan to produce a terminal three-way hybrid was designed. The sequence included the evaluation of five maternal synthetic populations (A, E, DE, ES and CE), the selection of two of them (ES and A), their characterization in two-way reciprocal crosses [(ESxA) and (AxES)], the choice of the alternative (ESxA) as female parent and its crossing by roosters of the improved paternal line AH' to obtain the Campero Casilda chicken as the final product. The evaluation of their growth pattern, body conformation, conversion ratio and productive characters at slaughter indicate that both males and females satisfied the requirements as birds destined for meat production established in the respective protocol. The evaluation of productive characters at sexual maturity, dynamic pattern of egg weight gain and laying curves allowed to qualify the females as layers.

18.
Front Genet ; 12: 664343, 2021.
Article in English | MEDLINE | ID: mdl-34707635

ABSTRACT

The Duroc × (Landrace × Yorkshire) hybrid pigs (DLY) are the most popular commercial pigs, providing consumers with the largest source of pork. In order to gain more insights into the genetic architecture of economically important traits in pigs, we performed a genome-wide association study (GWAS) using the GeneSeek Porcine 50 K SNP Chip to map the genetic markers and genes associated with body conformation traits (BCT) in 311 DLY pigs. The quantitative traits analyzed included body weight (BW), carcass length (CL), body length (BL), body height (BH), and body mass index (BMI). BMI was defined as BMICL, BMIBL, and BMIBH, respectively, based on CL, BL, and BH phenotypic data. We identified 82 SNPs for the seven traits by GEMMA-based and FarmCPU-based GWASs. Both methods detected two quantitative trait loci (QTL) on SSC8 and SSC17 for body conformation traits. Several candidate genes (such as TNFAIP3, KDM4C, HSPG2, BMP2, PLCB4, and GRM5) were found to be associated with body weight and body conformation traits in pigs. Notably, the BMP2 gene had pleiotropic effects on CL, BL, BH, BMICL, and BMIBL and is proposed as a strong candidate gene for body size due to its involvement in growth and bone development. Furthermore, gene set enrichment analysis indicated that most of the pathway terms are associated with regulation of cell growth, negative regulation of cell population proliferation, and chondrocyte differentiation. We anticipate that these results further advance our understanding of the genetic architecture of body conformation traits in the popular commercial DLY pigs and provide new insights into the genetic architecture of BMI in pigs.

19.
Anim Genet ; 52(4): 560-564, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34096079

ABSTRACT

Qira black sheep is a famous indigenous sheep breed in China. The objectives of this study are to identify candidate genes related to body size, and to estimate the level of inbreeding depression on body size based on runs of homozygosity in Qira black sheep. Here, 188 adult Qira black sheep were genotyped with a high density (630 K) SNP chip and genome-wide association study for body weight and body size traits (including withers height, body slanting length, tail length, chest girth, chest width, and chest depth) were performed using an additive linear model. In consequence, 12 genome- and chromosome-wide significant SNPs and, accordingly, six candidate genes involved in muscle differentiation, metabolism and cell processes were identified. Of them, ZNF704 (zinc finger protein 704) was identified for body weight; AK2 (adenylate kinase 2) and PARK2 (parkin RBR E3 ubiquitin protein ligase) for tail length; MOCOS (molybdenum cofactor sulfurase) and ELP2 (elongator acetyltransferase complex subunit 2) for chest width; and MFAP1 (microfibril associated protein 1) for chest girth. Additionally, inbreeding depressions on body size were observed in the current herd. These results will provide insightful understandings into the genetic mechanisms of adult body size, and into the conservation and utilization of Qira black sheep.


Subject(s)
Body Size/genetics , Genome-Wide Association Study/veterinary , Inbreeding Depression/genetics , Polymorphism, Single Nucleotide , Sheep, Domestic/physiology , Animals , Female , Genotype , Oligonucleotide Array Sequence Analysis/veterinary , Sheep, Domestic/genetics
20.
J Anim Breed Genet ; 138(4): 482-490, 2021 Jul.
Article in English | MEDLINE | ID: mdl-33527529

ABSTRACT

Measurements from 13 different morphological traits of importance in the Pura Raza Español (PRE) horse were used to estimate genetic and environmental parameters following a heteroscedastic model in which data were assigned to stallions. Data sets used ranged from 20,610 (height at withers) to 48,486 measurements (length of shoulder), and the number of animals analysed in the pedigrees varied from 17,662 (height at withers) to 23,962 (dorsal-sternal diameter). Results of heritabilities of the traits varied from 0.09 (width of chest and upper neck line) to 0.30 (muscular development). Further, genetic correlations between traits and their environmental variability were estimated, obtaining values from -0.56 (muscular development) to 0.69 (height at withers). Also, predicted breeding values for the mean and for the environmental variability were obtained for all horses in the pedigrees, providing individual information about not only the expected phenotypic value of their offspring but also the expected heterogeneity among them. Results proved the possibility of improving morphological traits and reducing the heterogeneity of offspring at a time by the selection of animals and levels of systematic effects.


Subject(s)
Horses/genetics , Animals , Male , Pedigree , Phenotype
SELECTION OF CITATIONS
SEARCH DETAIL
...