Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.961
Filter
1.
Neotrop Entomol ; 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38963529

ABSTRACT

Body size is an important morphological characteristic that covaries with the quality of parasitoids and predators. Data show that the larger the organism is, the better the biological parameters and the host location by natural enemies in the field. The standard way of evaluating the size of parasitoids of the genus Trichogramma (Hymenoptera: Trichogrammatidae) is by measuring the tibia, but using only one body part to estimate the size of organisms can lead to miscalculations. In this paper, commercial Trichogramma pretiosum Riley, 1879 (Hymenoptera: Trichogrammatidae) and Trichogramma galloi Zucchi, 1988 (Hymenoptera: Trichogrammatidae) were mounted on slides for microscopy and photographed, and the photographs were used to measure their antennae, scutellum, ovipositor, tibia, and wing. Principal component analysis (PCA) and linear discriminant analysis (LDA) were performed to select the body part that best represents their size. PCA showed that all body parts represented size in a similar way, and LDA showed that the ovipositor was the most representative. We conclude that the best body parts for representing the size of the Trichogramma species studied are the wing and ovipositor, and at least two body parts are needed to detect two size groups.

2.
Ecol Evol ; 14(7): e11612, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38952652

ABSTRACT

Dimensions of body size are an important measurement in animal ecology, although they can be difficult to obtain due to the effort and cost associated with the invasive nature of these measurements. We avoid these limitations by using camera trap images to derive dimensions of animal size. To obtain measurements of object dimensions using this method, the size of the object in pixels, the focal length of the camera, and the distance to that object must be known. We describe a novel approach of obtaining the distance to the object through the creation of a portable distance marker, which, when photographed, creates a "reference image" to determine the position of the animal within an image. This method allows for the retrospective analysis of existing datasets and eliminates the need for permanent in-field distance markers. We tested the accuracy of this methodology under controlled conditions with objects of known size resembling Felis catus, our study species, validating the legitimacy of our method of size estimation. We then apply our method to measure feral cat body size using images collected in Tasmania, Australia. The precision of our methodology was evaluated by comparing size estimates across individual cats, revealing consistent and reliable results. The average height (front paw to shoulder) of the feral cats sampled was 25.25 cm (CI = 24.4, 26.1) and the average length (base of tail to nose) was 47.48 cm (CI = 46.0, 48.9), suggesting wild feral cats in our study area are no larger than their domestic counterparts. Given the success of its application within our study, we call for further trails with this method across a variety of species.

3.
Ecol Evol ; 14(7): e11693, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38952662

ABSTRACT

Masquerade is a form of camouflage in which animals use their body size, shape, and coloration to resemble inanimate objects in their environment to deceive predators. However, there is a lack of experimental evidence to show that animals actively choose objects that match these body parameters. To explore how the Hainan four-eyed turtle, Sacalia insulensis, masquerades using suitable stones, we used indoor video surveillance technology to study the preferences of juvenile S. insulensis for stones of different sizes, shapes, and colors. The results indicated that under normal conditions, during the day, juvenile S. insulensis preferred larger oval or round stones, while at night, they preferred oval stones that were closer to their own size, with no significant preference for stone color during either time. When disturbed (by a researcher swinging their arm back and forth above the experimental setup every hour to mimic a predator), the turtles showed a preference for brown stones that were closer to their size and oval in shape. These findings suggest that juvenile S. insulensis prefer stones that resemble their carapace size and shape to masquerade when undisturbed, and that this preference is reinforced when they masquerade to reduce the risk of predation. The preference for stones that resemble their carapace color is significant only when there is a disturbance. To the best of our knowledge, this is the first study to provide evidence that vertebrates can selectively choose objects that resemble their own morphology for masquerading to reduce predation risk.

4.
Development ; 151(20)2024 Oct 15.
Article in English | MEDLINE | ID: mdl-38980277

ABSTRACT

Many animals share a lifelong capacity to adapt their growth rates and body sizes to changing environmental food supplies. However, the cellular and molecular basis underlying this plasticity remains only poorly understood. We therefore studied how the sea anemones Nematostella vectensis and Aiptasia (Exaiptasia pallida) respond to feeding and starvation. Combining quantifications of body size and cell numbers with mathematical modelling, we observed that growth and shrinkage rates in Nematostella are exponential, stereotypic and accompanied by dramatic changes in cell numbers. Notably, shrinkage rates, but not growth rates, are independent of body size. In the facultatively symbiotic Aiptasia, we show that growth and cell proliferation rates are dependent on the symbiotic state. On a cellular level, we found that >7% of all cells in Nematostella juveniles reversibly shift between S/G2/M and G1/G0 cell cycle phases when fed or starved, respectively. Furthermore, we demonstrate that polyp growth and cell proliferation are dependent on TOR signalling during feeding. Altogether, we provide a benchmark and resource for further investigating the nutritional regulation of body plasticity on multiple scales using the genetic toolkit available for Nematostella.


Subject(s)
Body Size , Cell Proliferation , Sea Anemones , Animals , Sea Anemones/cytology , Sea Anemones/physiology , Cell Cycle/physiology , Feeding Behavior/physiology , Signal Transduction , Symbiosis , TOR Serine-Threonine Kinases/metabolism
5.
J Insect Physiol ; : 104671, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38972633

ABSTRACT

Environmental gradients cause evolutionary and developmental changes in the cellular composition of organisms, but the physiological consequences of these effects are not well understood. Here, we studied experimental populations of Drosophila melanogaster that had evolved in one of three selective regimes: constant 16 °C, constant 25 °C, or intergenerational shifts between 16 °C and 25 °C. Genotypes from each population were reared at three developmental temperatures (16 °C, 20.5 °C, and 25 °C). As adults, we measured thorax length and cell sizes in the Malpighian tubules and wing epithelia of flies from each combination of evolutionary and developmental temperatures. We also exposed flies from these treatments to a short period of nearly complete oxygen deprivation to measure hypoxia tolerance. For genotypes from any selective regime, development at a higher temperature resulted in smaller flies with smaller cells, regardless of the tissue. At every developmental temperature, genotypes from the warm selective regime had smaller bodies and smaller wing cells but had larger tubule cells than did genotypes from the cold selective regime. Genotypes from the fluctuating selective regime were similar in size to those from the cold selective regime, but their cells of either tissue were the smallest among the three regimes. Evolutionary and developmental treatments interactively affected a fly's sensitivity to short-term paralyzing hypoxia. Genotypes from the cold selective regime were less sensitive to hypoxia after developing at a higher temperature. Genotypes from the other selective regimes were more sensitive to hypoxia after developing at a higher temperature. Our results show that thermal conditions can trigger evolutionary and developmental shifts in cell size, coupled with changes in body size and hypoxia tolerance. These patterns suggest links between the cellular composition of the body, levels of hypoxia within cells, and the energetic cost of tissue maintenance. However, the patterns can be only partially explained by existing theories about the role of cell size in tissue oxygenation and metabolic performance.

6.
Ecol Evol ; 14(7): e70005, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38988347

ABSTRACT

Islands have played a key role in our understanding of rapid evolution. A large body of literature has examined morphological changes in response to insularity and isolation, which has yielded useful generalizations about how animals can adapt to live in very small geographic areas. However, understanding the evolution of morphological variation in insular populations often requires detailed data sets on longitudinal patterns of growth and development, and such studies typically necessitate long-term mark-recapture on a large sample of individuals. Rattlesnakes provide a unique opportunity to address some of these difficulties because the addition of rattle segments to the rattle string occurs with regular periodicity and their size directly correlates with the body size of the snake at the time of the ecdysis cycle generating the segment. Here, we used a large database of rattle segment sizes recorded from island (Isla Coronado Sur, Baja California, Mexico) and mainland (Camp Pendleton, California, United States) populations of Western Rattlesnakes (Crotalus oreganus and C. o. caliginis) that separated approximately 10,000 years ago to compare body sizes at different ecdysis cycles, which allowed us to assess differences in growth rates and patterns of sexual size dimorphism. Our results show that rattlesnakes on Isla Coronado Sur appear to be born smaller and grow more slowly than their mainland counterparts, resulting in a "dwarfed" island population. However, despite significant differences in body size, both populations exhibited the same degree of sexual dimorphism. Our study demonstrates the potential to use rattle characteristics to recover detailed estimates of fundamental demographic parameters.

7.
ISME J ; 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38904949

ABSTRACT

Prior work has shown a positive scaling relationship between vertebrate body size, human height, and gut microbiome alpha diversity. This observation mirrors commonly observed species area relationships (SAR) in many other ecosystems. Here, we expand these observations to several large data sets, showing that this size-diversity scaling relationship is independent of relevant covariates, like diet, body mass index, age, sex, bowel movement frequency, antibiotic usage, and cardiometabolic health markers. Island biogeography theory (IBT), which predicts that larger islands tend to harbor greater species diversity through neutral demographic processes, provides a simple mechanism for positive SARs. Using gut-adapted IBT model, we demonstrated that increasing the length of a flow-through ecosystem led to increased species diversity, closely matching our empirical observations. We delve into the possible clinical implications of these SARs in the American Gut cohort. Consistent with prior observations that lower alpha diversity is a risk factor for Clostridioides difficile infection (CDI), we found that individuals who reported a history of CDI were shorter than those who did not and that this relationship was mediated by alpha diversity. We observed that vegetable consumption had a much stronger association with CDI history, which was also partially mediated by alpha diversity. In summary, we find that the positive scaling observed between body size and gut alpha diversity can be plausibly explained by a gut-adapted IBT model, may be related to CDI risk, and vegetable intake appears to independently mitigate this risk, although additional work is needed to validate the potential disease risk implications.

8.
Ecol Evol ; 14(6): e11604, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38915389

ABSTRACT

Scarcity of morphological data limits the potential of functional ecology approaches, which rely on traits to elucidate ecological processes. Dragonflies and damselflies (Odonata) are a frequently used ecological model for which, however, only limited morphological data is available. Here, it is presented a field sampling protocol to collect ecologically relevant yet largely unavailable morphological traits of Odonata. The protocol enables the straightforward collection of traits from living individuals directly in the field. Those traits include body mass, wing area and wing loading as well as thorax width, hindwing length and body length. Furthermore, the protocol allows for posterior wing morphometric analyses. The protocol proved to be robust and universally applicable based on testing on roughly half (76) of all European odonate species. The use of this protocol can increase our understanding of odonatan morphology at interspecific and intraspecific levels and assist in developing mechanistic understanding of their ecology.

9.
Genes (Basel) ; 15(6)2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38927675

ABSTRACT

Lhx3 is a LIM-homeodomain transcription factor that affects body size in mammals by regulating the secretion of pituitary hormones. Akita, Shiba Inu, and Mame Shiba Inu dogs are Japanese native dog breeds that have different body sizes. To determine whether Lhx3 plays a role in the differing body sizes of these three dog breeds, we sequenced the Lhx3 gene in the three breeds, which led to the identification of an SNP in codon 280 (S280N) associated with body size. The allele frequency at this SNP differed significantly between the large Akita and the two kinds of smaller Shiba dogs. To validate the function of this SNP on body size, we introduced this change into the Lhx3 gene of mice. Homozygous mutant mice (S279N+/+) were found to have significantly increased body lengths and weights compared to heterozygous mutant (S279N+/-) and wild-type (S279N-/-) mice several weeks after weaning. These results demonstrate that a nonsynonymous substitution in Lhx3 plays an important role in regulating body size in mammals.


Subject(s)
Body Size , LIM-Homeodomain Proteins , Polymorphism, Single Nucleotide , Transcription Factors , Animals , LIM-Homeodomain Proteins/genetics , LIM-Homeodomain Proteins/metabolism , Transcription Factors/genetics , Mice , Body Size/genetics , Dogs/genetics , Gene Frequency , Male , Female
10.
J Evol Biol ; 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38847298

ABSTRACT

Interspecific variation in body size is one of the most popular topics in comparative studies. Despite recent advances, little is still known about the patterns and processes behind the evolution of body size in insects. Here, we used a robust data set comprising all geometrid moth species occurring in Northern Europe to examine the evolutionary associations involving body size and several life-history traits under an explicitly phylogenetic framework. We provided new insights into the interactive effects of life-history traits on body size and evidence of correlated evolution. We further established the sequence of trait evolution linking body size with the life-history traits correlated with it. We found that most (but not all) of the studied life-history traits, to some extent, interfered with interspecific variation in body size, but interactive effects were uncommon. Both bi- and multivariate phylogenetic analyses indicated that larger species tend to be nocturnal flyers, overwinter in the larval stage, feed on the foliage of trees rather than herbs, and have a generalist feeding behavior. We found evidence of correlated evolution involving body size with overwintering stage, host-plant growth form, and dietary specialization. The examination of evolutionary transitions within the correlated models signaled that overwintering as larvae preceded the evolution of large sizes, as did feeding on tree foliage and the generalist feeding behavior. By showing that both body size and all life-history traits correlated with it evolve at very slow rates, we caution against uncritical attempts to propose causal explanations for respective associations based on contemporary ecological settings.

11.
Ecol Evol ; 14(6): e11506, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38840585

ABSTRACT

Body size is a fundamental biological trait shaping ecological interactions, evolutionary processes, and our understanding of the structure and dynamics of marine communities on a global scale. Accurately defining a species' body size, despite the ease of measurement, poses significant challenges due to varied methodologies, tool usage, and subjectivity among researchers, resulting in multiple, often discrepant size estimates. These discrepancies, stemming from diverse measurement approaches and inherent variability, could substantially impact the reliability and precision of ecological and evolutionary studies reliant on body size data across extensive species datasets. This study examines the variation in reported maximum body sizes across 69,570 individual measurements of maximum size, ranging from <0.2 µm to >45 m, for 27,271 species of marine metazoans. The research aims to investigate how reported maximum size variations within species relate to organism size, taxonomy, habitat, and the presence of skeletal structures. The investigation particularly focuses on understanding why discrepancies in maximum size estimates arise and their potential implications for broader ecological and evolutionary studies relying on body size data. Variation in reported maximum sizes is zero for 38% of species, and low for most species, although it exceeds two orders of magnitude for some species. The likelihood of zero variation in maximum size decreased with more measurements and increased in larger species, though this varied across phyla and habitats. Pelagic organisms consistently had low maximum size range values, while small species with unspecified habitats had the highest variation. Variations in maximum size within a species were notably smaller than interspecific variation at higher taxonomic levels. Significant variation in maximum size estimates exists within marine species, and partially explained by organism size, taxonomic group, and habitat. Variation in maximum size could be reduced by standardized measurement protocols and improved meta-data. Despite the variation, egregious errors in published maximum size measurements are rare, and their impact on comparative macroecological and macroevolutionary research is likely minimal.

12.
Biol Lett ; 20(6): 20240066, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38836647

ABSTRACT

Metabolism drives various biological processes, potentially influencing the ecological success and evolutionary fitness of species. Understanding diverse metabolic rates is fundamental in biology. Mechanisms underlying adaptation to factors like temperature and predation pressure remain unclear. Our study explored the role of temperature and predation pressure in shaping the metabolic scaling of an invasive mussel species (Brachidontes pharaonis). Specifically, we performed laboratory-based experiments to assess the effects of phenotypic plasticity on the metabolic scaling by exposing the mussels to water conditions with and without predator cues from another invasive species (the blue crab, Callinectes sapidus) across various temperature regimes. We found that temperature effects on metabolic scaling of the invasive mussels are mediated by the presence of chemical cues of an invasive predator, the blue crab. Investigating temperature-predator interactions underscores the importance of studying the ecological effects of global warming. Our research advances our understanding of how environmental factors jointly impact physiological processes.


Subject(s)
Cues , Introduced Species , Predatory Behavior , Temperature , Animals , Brachyura/physiology , Bivalvia/physiology , Bivalvia/metabolism
13.
Amino Acids ; 56(1): 38, 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38844708

ABSTRACT

Biomarkers that accurately reflect renal function are essential in management of chronic kidney diseases (CKD). However, in children, age/physique and medication often alter established renal biomarkers. We studied whether amino acid enantiomers in body fluids correlate with renal function and whether they are influenced by physique or steroid medication during development. We conducted a prospective study of children 2 to 18 years old with and without CKD. We analyzed associations of serine/asparagine enantiomers in body fluids with major biochemical parameters as well as physique. To study consequences of kidney dysfunction and steroids on serine/asparagine enantiomers, we generated juvenile mice with uninephrectomy, ischemic reperfusion injury, or dexamethasone treatment. We obtained samples from 27 children, of which 12 had CKD due to congenital (n = 7) and perinatal (n = 5) causes. Plasma D-asparagine and the D/L-serine ratio had robust, positive linear associations with serum creatinine and cystatin C, and detected CKD with high sensitivity and specificity, uninfluenced by body size or biochemical parameters. In the animal study, kidney dysfunction increased plasma D-asparagine and the D/L-serine ratio, but dexamethasone treatment did not. Thus, plasma D-asparagine and the D/L-serine ratio can be useful markers for renal function in children.


Subject(s)
Asparagine , Biomarkers , Renal Insufficiency, Chronic , Serine , Child , Animals , Humans , Asparagine/blood , Asparagine/metabolism , Renal Insufficiency, Chronic/blood , Child, Preschool , Serine/blood , Mice , Male , Female , Adolescent , Biomarkers/blood , Prospective Studies , Dexamethasone , Stereoisomerism , Creatinine/blood , Kidney/metabolism
14.
Hum Nat ; 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38878141

ABSTRACT

Humans have undergone a long evolutionary history of violent agonistic exchanges, which would have placed selective pressures on greater body size and the psychophysical systems that detect them. The present work showed that greater body size in humans predicted increased knockout power during combative contests (Study 1a-1b: total N = 5,866; Study 2: N = 44 openweight fights). In agonistic exchanges reflective of ancestral size asymmetries, heavier combatants were 200% more likely to win against their lighter counterparts because they were 200% more likely to knock them out (Study 2). Human dominance judgments (total N = 500 MTurkers) accurately tracked the frequency with which men (N = 516) knocked out similar-sized adversaries (Study 3). Humans were able to directly perceive a man's knockout power because they were attending to cues of a man's body size. Human dominance judgments-which are important across numerous psychological domains, including attractiveness, leadership, and legal decision-making-accurately predict the likelihood with which a potential mate, ally, or rival can incapacitate their adversaries.

15.
J Neuropsychol ; 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38877675

ABSTRACT

Knowledge of the body size is intricately tied to multisensory integration processes that rely on the dynamic interplay of top-down and bottom-up mechanisms. Recent years have seen the development of passive sensory stimulation protocols aimed at investigating the modulation of various cognitive functions, primarily inducing perceptual learning and behaviour change without the need for extensive training. Given that reductions in sensory input have been associated with alterations in body size perception, it is reasonable to hypothesize that increasing sensory information through passive sensory stimulation could similarly influence the perception of the size of body parts. The primary aim of this study was to investigate the potential modulatory effects of passive sensory stimulation on the perception of hand and face size in a group of young adults. Passive sensory stimulation effectively modulated the size representation of the stimulated hand, supporting the notion that access to somatosensory and proprioceptive information is prioritised for the hands but may not extend to the face. Increased somatosensory input resulted in a reduction of distortion, providing evidence for bottom-up modulation of size representation. Passive sensory stimulation can induce subjective changes in body size perception without the need for extensive training. This paradigm holds promise as a potential alternative for modulating distorted size representation in individuals with body representational deficits.

16.
Genes (Basel) ; 15(6)2024 May 22.
Article in English | MEDLINE | ID: mdl-38927592

ABSTRACT

To investigate the nucleotide variation sites (SNPs) and expression differences of the fatty acid synthase gene (FASN) in Guizhou white goats, the relationship between the variation and body size traits was investigated. In this study, DNA was extracted from the blood of 100 samples of white goats from different regions in Guizhou province, China, and the variation sites were screened using pooled sequencing by mixing DNA samples, and 242 blood samples with body size traits were used for association analysis. The allele frequency, genotype frequency, homozygosity, heterozygosity and effective gene number were calculated by using PopGene 32.0 software, the population polymorphism information content was calculated by using PIC software (Version 0.6), and the state of genetic balance of the genes was analyzed by using the chi-square test. The mRNA of FASN gene expression levels in male and female goats were investigated by using real-time fluorescence quantitative PCR (RT-qPCR). The general linear mixed model of MINTAB software (Version 16.0) was used to analyze the association between FASN gene nucleotide mutation sites and body size traits. The results showed that there was one nucleotide mutation site g.141 C/T in the target fragment of FASN gene amplification, and revealed two alleles, C and T, and three genotypes CC, CT and TT. The genotype frequencies for CC, CT and TT were 0.4308, 0.4205 and 0.1487, respectively. The allele frequencies for C and T were 0.6410 and 0.3590, respectively. The genetic homozygosity (Ho) was higher than the heterozygosity (He). The χ2 test showed that the mutation site was in the Hardy-Weinberg equilibrium state (p > 0.05). The RT-qPCR results showed that the FASN gene had different expression levels in the longissimus dorsi muscle of male and female goats, and its expression was significantly higher in male goats than in female goats. The association analysis results showed that the mutation of the FASN gene had different effects on body size traits of male and female goats, and the presence of the populations of the T allele and the TT genotype recorded higher body size traits (body weight, heart girth and wither height) in female populations. Therefore, the site of the FASN gene can be used as a candidate marker for the early selection of growth traits in Guizhou white goats.


Subject(s)
Body Size , Goats , Polymorphism, Single Nucleotide , Animals , Goats/genetics , Goats/growth & development , Female , Male , Body Size/genetics , Gene Frequency , China , Genotype
17.
Sci Rep ; 14(1): 14491, 2024 06 24.
Article in English | MEDLINE | ID: mdl-38914732

ABSTRACT

Estimating the change rates in body size following the weight loss programs is very important in the compliance of those programs. Although, there is enough evidence on the significant association of body weight change with the other anthropometric indices and/ or body composition, there is so limited studies that have depicted this relationship as mathematical formulas. Therefore, the present research designed to use a mathematical model to predict changes of anthropometric indices following a weight-loss diet in the overweight and obese women. In this longitudinal study, 212 overweight/obese women who received an individualized low-calorie diet (LCD) were selected and followed-up for five months. Anthropometric measurements such as weight, waist circumference (WC), hip circumference (HC), and body composition (lean mass and fat mass) were performed. Then, body mass index, waist to hip ratio (WHR), waist to height ratio (WHtR), a body shape index (ABSI), abdominal volume index (AVI), and body adiposity index (BAI) were calculated using the related formula. Following the LCD led to the substantial and consistent changes in various anthropometric indices over time. All of these anthropometric variations were significantly related with the percent change (PC) of body weight except than WHR. Moreover, according to the mathematical formulas, weight loss was closely related to the decrease of WC (PC-WC = - 0.120 + 0.703 × PC-WT), HC (PC-HC = - 0.350 + 0.510 × PC-WT), body fat percentage (PC-Body Fat = - 0.019 + 0.915 × PC-WT), WHtR (PC-WHtR = - 0.113 + 0.702 × PC-WT), and improvements in ABSI (PC-ABSI = - 0.112 + 0.034 × PC-WT) and AVI (PC-AVI = - 0.324 + 1.320 × PC-WT). The decreasing rates of WC, HC, body fat percentage, WHtR, ABSI, and AVI in relation to the weight loss were clinically and statistically significant. This means that a healthy weight lowering diet would be accompanied by decreasing the body fat, body size and also the risk of morbidities.


Subject(s)
Anthropometry , Diet, Reducing , Obesity , Overweight , Weight Loss , Humans , Female , Obesity/diet therapy , Obesity/physiopathology , Adult , Diet, Reducing/methods , Middle Aged , Overweight/diet therapy , Overweight/physiopathology , Models, Theoretical , Longitudinal Studies , Body Mass Index , Waist Circumference , Waist-Hip Ratio , Body Composition , Caloric Restriction/methods
18.
Trends Ecol Evol ; 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38902165

ABSTRACT

Accelerating rates of climate change have intensified research on thermal adaptation. Increasing temperature fluctuations, a prominent feature of climate change, means that the persistence of many species depends on both heat and cold tolerance across the entire life cycle. In endotherms, research has focused on specific life stages, with changes in thermoregulation across life rarely being examined. Consequently, there is a need to (i) analyse how heat and cold tolerance mechanisms coevolve, and (ii) test whether antagonistic effects between heat and cold tolerance across different life stages limit thermal adaptation. Information on genes influencing heat and cold tolerance and how they are expressed through life will enable more accurate modelling of species vulnerabilities to future climatic volatility.

19.
Ecol Evol ; 14(6): e11559, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38863720

ABSTRACT

Understanding how age and body size vary across elevations can provide insights into the evolution of life-history traits in animals. In the present study, we compared the demographic (using skeletochronology) and morphological traits of the Tibetan toad (Bufo tibetanus) between two populations from different elevational habitats (2650 vs. 3930 m). We found that (1) the mean age and body size of females were significantly greater than those of males in both populations; (2) both sexes of toads from the higher elevation tended to be significantly older in age and larger in body size; (3) there was a significant positive relationship between age and body size within each sex of the toad at both elevations; and (4) growth rates varied between the two populations, with the higher rate observed in the lower-elevation population. Our results suggested that factors other than age, such as elevation-associated temperature, influence the observed differences in body size between the two populations. Future research at a broader range of elevations should focus on these factors and evaluate their influence on animal growth patterns.

20.
Surg Today ; 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38871859

ABSTRACT

PURPOSE: Laparoscopic hepatectomy (LH) is reported to cause less bleeding than open hepatectomy (OH) in obese patients; however, there are no reports addressing this issue in terms of body size-corrected bleeding. METHODS: The subjects of this study were 31 obese and 149 non-obese patients who underwent LH and 32 obese and 245 non-obese patients who underwent OH. Bleeding corrected for body surface area (C-BL) was compared between the obese and non-obese patients who underwent each procedure. A multivariate analysis for increased C-BL was performed using the median C-BL for each procedure. RESULTS: The median C-BL tended to be higher in the obese patients than in the non-obese patients who underwent LH, but there was no significant difference (72 vs. 42 mL/m2, P = 0.050). However, it was significantly higher in the obese patients than in the non-obese patients who underwent OH (542 vs. 333 mL/m2, P = 0.002). In a multivariate analysis, for OH, sectionectomy or more (OR 3.20, P < 0.001) and a high BMI (OR 2.76, P = 0.018) were found to be independent risk factors, whereas for LH, a high BMI was not (OR 1.58, P = 0.301). CONCLUSIONS: Obesity was identified as a risk factor for increased bleeding with body size correction for OH, but the risk was reduced for LH.

SELECTION OF CITATIONS
SEARCH DETAIL
...