Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 260
Filter
1.
Basic Res Cardiol ; 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38963562

ABSTRACT

Understanding the mechanisms underlying vascular regeneration in the heart is crucial for developing novel therapeutic strategies for myocardial ischemia. This study investigates the contribution of bone marrow-derived cells to endothelial cell populations in the heart, and their role in cardiac function and coronary circulation following repetitive ischemia (RI). Chimeric rats were created by transplanting BM cells from GFP female rats into irradiated male recipients. After engraftment chimeras were subjected to RI for 17 days. Vascular growth was assessed from recovery of cardiac function and increases in myocardial blood flow during LAD occlusion. After sorting GFP+ BM cells from heart and bone of Control and RI rats, single-cell RNA sequencing was implemented to determine the fate of BM cells. Our in vivo RI model demonstrated an improvement in cardiac function and myocardial blood flow after 17 days of RI with increased capillary density in the rats subjected to RI compared to Controls. Single-cell RNA sequencing of bone marrow cells isolated from rats' hearts identified distinct endothelial cell (EC) subpopulations. These ECs exhibited heterogeneous gene expression profiles and were enriched for markers of capillary, artery, lymphatic, venous, and immune ECs. Furthermore, BM-derived ECs in the RI group showed an angiogenic profile, characterized by upregulated genes associated with blood vessel development and angiogenesis. This study elucidates the heterogeneity of bone marrow-derived endothelial cells in the heart and their response to repetitive ischemia, laying the groundwork for targeting specific subpopulations for therapeutic angiogenesis in myocardial ischemia.

2.
Exp Cell Res ; 440(2): 114138, 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38906316

ABSTRACT

Prolyl 4-hydroxylase beta subunit (P4HB) plays a vital role in bone formation. This study intends to clarify the role of P4HB in the therapeutic effect of Icariin (ICA) on osteoporosis. Herein, in vivo and in vitro models were constructed by performing ovariectomy (OVX) in rats and inducing osteogenic differentiation in bone marrow stem cells (BMSCs), respectively. Hematoxylin and eosin staining and micro-computed tomography analysis were performed to evaluate osteoporosis in OVX rats. Alizarin Red staining, alkaline phosphatase staining, and the ALP activity test were employed to assess osteogenesis. m6A dot blotting and methylated RNA immunoprecipitation were used to determine m6A modification. We found that P4HB was downregulated in bone tissues of patients with osteoporosis and OVX rats. P4HB facilitated osteogenic differentiation of BMSCs. What's more, ICA upregulated P4HB expression, promoted osteogenic differentiation of BMSCs, and alleviated osteoporosis in OVX rats, which were reversed by knocking down P4HB. ICA enhanced the stability and m6A modification of P4HB. METTL14 mediated m6A modification of P4HB mRNA. In addition, METTL14 knockdown overturned the promotive effects of ICA on P4HB m6A level and BMSC osteogenic differentiation. To sum up, ICA elevated the METTL14-mediated m6A modification of P4HB to facilitate BMSC osteogenic differentiation.

3.
Front Bioeng Biotechnol ; 12: 1321466, 2024.
Article in English | MEDLINE | ID: mdl-38361789

ABSTRACT

Context: The development of porous devices using materials modified with various natural agents has become a priority for bone healing processes in the oral and maxillofacial field. There must be a balance between the proliferation of eukaryotic and the inhibition of prokaryotic cells to achieve proper bone health. Infections might inhibit the formation of new alveolar bone during bone graft augmentation. Objective: This study aimed to evaluate the in vitro osteogenic behavior of human bone marrow stem cells and assess the antimicrobial response to 3D-printed porous scaffolds using propolis-modified wollastonite. Methodology: A fractional factorial design of experiments was used to obtain a 3D printing paste for developing scaffolds with a triply periodic minimal surface (TPMS) gyroid geometry based on wollastonite and modified with an ethanolic propolis extract. The antioxidant activity of the extracts was characterized using free radical scavenging methods (DPPH and ABTS). Cell proliferation and osteogenic potential using Human Bone Marrow Stem Cells (bmMSCs) were assessed at different culture time points up to 28 days. MIC and inhibition zones were studied from single strain cultures, and biofilm formation was evaluated on the scaffolds under co-culture conditions. The mechanical strength of the scaffolds was evaluated. Results: Through statistical design of experiments, a paste suitable for printing scaffolds with the desired geometry was obtained. Propolis extracts modifying the TPMS gyroid scaffolds showed favorable cell proliferation and metabolic activity with osteogenic potential after 21 days. Additionally, propolis exhibited antioxidant activity, which may be related to the antimicrobial effectiveness of the scaffolds against S. aureus and S. epidermidis cultures. The mechanical properties of the scaffolds were not affected by propolis impregnation. Conclusion: These results demonstrate that propolis-impregnated porous wollastonite scaffolds might have the potential to stimulate bone repair in maxillofacial tissue engineering applications.

4.
Heliyon ; 10(4): e25762, 2024 Feb 29.
Article in English | MEDLINE | ID: mdl-38390125

ABSTRACT

Background: Diabetic ulcers (DUs) typically occur in patients with vascular diseases and diabetes. Extracellular vesicles secreted by bone marrow-derived stem cells (BMSC-EVs) represent a cell-free therapy that has emerged as a promising alternative for treating DU, especially due to significant advancements in the understanding of their role in promoting angiogenesis; however, their application in DU treatment remains in the preclinical stage, and their effectiveness is still uncertain. Therefore, we conducted this meta-analysis to evaluate the therapeutic efficacy of BMSC-EVs in treating DU and to expedite the clinical translation of BMSC-EV therapy for DU. Methods: We conducted a comprehensive search of PubMed, Cochrane Library, MEDLINE, EMBASE, China National Knowledge Infrastructure (CNKI), Wanfang Database, VIP Database, and our self-constructed database of Chinese Biomedical Literature up to May 2023 to identify preclinical studies related to the therapeutic use of extracellular vesicles secreted by bone marrow-derived stem cells for treating diabetic ulcers. Outcome measures included wound healing rate, neovascularization density, a-sma, and CD31. RevMan 5 software was employed for all statistical analyses. Results: In this meta-analysis, a total of 11 studies involving 103 animals were identified. The pooled analysis indicated that BMSC-EV treatment showed a superior wound healing rate compared to that of the control group (SMD = 1.06, 95% CI [0.52, 1.60], P = 0.0001). In the subgroup analysis, EV combined with new materials or drug therapy performed better than the sole injection of extracellular vesicles (SMD = 1.85, 95% CI [0.87, 2.82], P < 0.00001). BMSC-EV treatment also resulted in a higher number of neovascular structures compared to the control group(SMD = 5.80, 95% CI[0.89,10.71], P = 0.006). In the subgroup analysis, EV combined therapy showed a significant difference in the number of blood vessels compared to the sole injection of extracellular vesicles (SMD = 4.90, 95% CI[2.64,7.15], P < 0.00001). However, BMSCs-EV treatment did not demonstrate any statistically significant difference in the angiogenesis-related indicators CD31 and α-SMA compared to the control group (SMD = 1.61, 95% CI[-0.51,3.74], P = 0.14). Conclusion: According to the current meta-analysis, BMSC-EV therapy can enhance the healing of diabetic ulcers and promote wound angiogenesis, particularly when used in combination with novel dressings or other drugs, which further accelerates the healing process of diabetic ulcers. To establish the most effective parameters for EV treatment in diabetic ulcers, future research should promptly progress into clinical trials.

5.
Int Immunopharmacol ; 126: 111250, 2024 Jan 05.
Article in English | MEDLINE | ID: mdl-38006752

ABSTRACT

Bone marrow mesenchymal stem cells (BMSCs) are a promising new therapy for sepsis, a common cause of death in hospitals. However, the global epidemic of metabolic syndromes, including obesity and pre-obesity, threatens the health of the human BMSC pool. The therapeutic effects of BMSCs are primarily due to the secretion of the small extracellular vesicles containing lipids, proteins, and RNA. Accordingly, studies on BMSCs, their small extracellular vesicles, and their modifications in obese individuals are becoming increasingly important. In this study, we investigated the therapeutic potential of small extracellular vesicles (sEVs) from high-fat diet BMSCs (sEVsHFD) in sepsis-induced liver-heart axis injury. We found that sEVsHFD yielded diminished therapeutic benefits compared to sEVs from chow diet BMSCs (sEVsCD). We subsequently verified that IFITM3 significantly differed in sEVsCD and sEVsHFD, alternating in septic liver tissue, and indicating its potential as a remodeling target of sEVs. IFITM3-overexpressed high-fat-diet BMSCs (HFD-BMSCs) showed that corresponding sEVs (sEVsHFD-IFITM3) markedly ameliorated liver-heart axis injury during sepsis. Lastly, we identified the protective action mechanisms of sEVsHFD-IFITM3 in sepsis-induced organ failure and HMGB1 expression and secretion was altered in septic liver and serum while HMGB1 has been demonstrated as a critical mediator of multi-organ failure in sepsis. These findings indicate that IFITM3 overexpression regenerates the therapeutic benefit of sEVs from HFD-BMSCs in sepsis via the HMGB1 pathway.


Subject(s)
Extracellular Vesicles , Membrane Proteins , Mesenchymal Stem Cell Transplantation , Sepsis , Animals , Mice , Bone Marrow , Diet, High-Fat , Heart/physiopathology , HMGB1 Protein/metabolism , Liver/physiopathology , Membrane Proteins/genetics , Membrane Proteins/metabolism , Sepsis/therapy
6.
Sci China Life Sci ; 67(1): 113-121, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37751064

ABSTRACT

Intrauterine adhesion is a major cause of female reproductive disorders. Although we and others uncontrolled pilot studies showed that treatment with autologous bone marrow stem cells made a few patients with severe intrauterine adhesion obtain live birth, no large sample randomized controlled studies on this therapeutic strategy in such patients have been reported so far. To verify if the therapy of autologous bone marrow stem cells-scaffold is superior to traditional treatment in moderate to severe intrauterine adhesion patients in increasing their ongoing pregnancy rate, we conducted this randomized controlled clinical trial. Totally 195 participants with moderate to severe intrauterine adhesion were screened and 152 of them were randomly assigned in a 1:1 ratio to either group with autologous bone marrow stem cells-scaffold plus Foley balloon catheter or group with only Foley balloon catheter (control group) from February 2016 to January 2020. The per-protocol analysis included 140 participants: 72 in bone marrow stem cells-scaffold group and 68 in control group. The ongoing pregnancy occurred in 45/72 (62.5%) participants in the bone marrow stem cells-scaffold group which was significantly higher than that in the control group (28/68, 41.2%) (RR=1.52, 95%CI 1.08-2.12, P=0.012). The situation was similar in live birth rate (bone marrow stem cells-scaffold group 56.9% (41/72) vs. control group 38.2% (26/68), RR=1.49, 95%CI 1.04-2.14, P=0.027). Compared with control group, participants in bone marrow stem cells-scaffold group showed more menstrual blood volume in the 3rd and 6th cycles and maximal endometrial thickness in the 6th cycle after hysteroscopic adhesiolysis. The incidence of mild placenta accrete was increased in bone marrow stem cells-scaffold group and no severe adverse effects were observed. In conclusion, transplantation of bone marrow stem cells-scaffold into uterine cavities of the participants with moderate to severe intrauterine adhesion increased their ongoing pregnancy and live birth rates, and this therapy was relatively safe.


Subject(s)
Uterine Diseases , Female , Humans , Pregnancy , Bone Marrow Cells , Endometrium , Pregnancy Rate , Tissue Adhesions , Uterus
7.
BMC Musculoskelet Disord ; 24(1): 943, 2023 Dec 05.
Article in English | MEDLINE | ID: mdl-38053043

ABSTRACT

BACKGROUNDS: Bone marrow stem cell can differentiate to osteoblast by growth factors, pulsed low-intensity ultrasound and electric magnetic field. In the research, bone marrow stem cells were cultured; bone marrow stem cells in culture can be stimulated by platelet-rich plasma and electric field. METHODS: The culture well of the co-cultivation device has a radius of 7.5 mm and a depth of 7 mm. It is divided into two sub-chambers separated by a 3 mm high and 1 mm wide barrier. The bone marrow stem cells were seeded at a density of 2 × 104 cells and the medium volume was 120µl. Platelet-rich plasma (PRP) or platelet-poor plasma (PPP) was added to the other sub-chamber at a volume of 10µl. The bone marrow stem cells were subjected to different electric fields (0 ~ 1 V/cm) at a frequency of 70 kHz for 60 min. RESULTS: The highest osteogenic capacity of bone marrow stem cells was achieved by addition of PRP to electric field stimulation (0.25 V/cm) resulted in a proliferation rate of 599.78%. In electric field stimulation (0.75 V/cm) with PPP, the proliferation rate was only 10.46%. CONCLUSIONS: Bone marrow stem cell with PRP in the co-culture device combined with electric field at 0.25 V/cm strength significantly promoted the growth of bone marrow stem cells.


Subject(s)
Electromagnetic Fields , Platelet-Rich Plasma , Humans , Coculture Techniques , Platelet-Rich Plasma/metabolism , Cell Proliferation , Bone Marrow Cells , Cell Differentiation
8.
Biochem Biophys Rep ; 36: 101569, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38024862

ABSTRACT

Introduction: In this study, we report that a proteoglycans (PGs)-layer between the bone and titanium dioxide (TiO2) surface after osseointegration improved the calcification capacity and immunotolerance of human bone marrow mesenchymal stem cells (hBMSCs) on TiO2. Alkaline treatment of TiO2 is a method for promoting osteogenesis in hBMSCs. We hypothesized that promotion of osteogenesis due to alkaline treatment was caused by changing PGs-layer on TiO2. Objective: This study aimed to analyze whether alkaline treatment of TiO2 affects PGs-layer formation and immunotolerance in hBMSCs. Methods: The topology and wettability of the alkaline-treated titanium (Ti-Al) and unprocessed titanium (Ti-MS) surfaces were characterized. Initial cell attachment, cell proliferation, calcification capacity, alkaline phosphatase activity, PGs-layer formation, PGs function, and the expression of osteogenic and immunotolerance-related genes were analyzed. The conditioned medium (CM) from hBMSCs grown on Ti-Al and Ti-MS was added to macrophages (hMps) and Jurkat cells, and immunotolerance gene expression in these cells was analyzed. Results: hBMSCs cultured on Ti-Al showed increased initial cell attachment, cell proliferation, PG-layer formation, and osteogenic capacity compared with hBMSCs on Ti-MS. Gene expression of indoleamine 2,3-dioxygenase (IDO) in the hBMSCs cultured on Ti-Al was higher than that in the hBMSCs on Ti-MS. CM from hBMSCs did not affect markers of M1 and M2 macrophages in hMps. CM from hBMSCs cultured on Ti-Al altered the gene expression of Foxp3 in Jurkat cells compared to that of CM from hBMSCs on Ti-MS. Significance: These results suggest that alkaline treatment of TiO2 altered PGs-layer formation, and changed the osteogenesis and immunotolerance of hBMSCs.

9.
JOR Spine ; 6(3): e1256, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37780830

ABSTRACT

Background: Adolescent idiopathic scoliosis (AIS) is a scoliotic deformity of unknown etiology that occurs during adolescent development. Abnormal bone metabolism is closely related to AIS, but the cause is uncertain. Recent studies have shown that heat shock protein 27 (HSP27) and its phosphorylation (pHSP27) play important roles in bone metabolism. However, whether HSP27 and pHSP27 are involved in abnormal bone metabolism in AIS is unclear. Methods: Osteoblasts (OBs) and bone marrow stem cells (BMSCs) were extracted from the facet joints and bone marrow of AIS patients and controls who underwent posterior spinal fusion surgery. The expression levels of HSP27 and pHSP27, as well as the expression levels of bone formation markers in OBs from AIS patients and controls, were examined by quantitative real-time PCR (qRT-PCR) and Western blotting. The mineralization ability of OBs from AIS patients and controls was analyzed by alizarin red staining after osteogenic differentiation. Heat shock and thiolutin were used to increase the levels of pHSP27 in OBs, and the levels of bone formation markers were also investigated. In addition, the levels of pHSP27 and the bone formation ability of BMSCs from AIS patients and controls were investigated after heat shock treatment. Results: Lower pHSP27 levels and impaired osteogenic differentiation abilities were observed in the OBs of AIS patients than in those of controls. Thiolutin increased HSP27 phosphorylation and increased the mRNA levels of SPP1 and ALPL in OBs from AIS patients. Heat shock treatment increased SPP1 and HSP27 mRNA expression, pHSP27 levels, OCN expression, and mineralization ability of both OBs and BMSCs from AIS patients. Conclusion: Heat shock treatment and thiolutin can increase the levels of pHSP27 and further promote the bone formation of OBs and BMSCs from AIS patients. Therefore, decreased pHSP27 levels may be associated with abnormal bone metabolism in AIS patients.

10.
Chem Biol Interact ; 385: 110721, 2023 Nov 01.
Article in English | MEDLINE | ID: mdl-37739048

ABSTRACT

Aberrant bone marrow mesenchymal stem cell (BMSC) lineage differentiation leads to osteoporosis. Codonopsis pilosula polysaccharides (CPPs) have been widely used in traditional Chinese medicines, due to their multiple pharmacological actions. However, little is known regarding their effects on BMSC differentiation. This study aimed to identify the effects and mechanisms of CPPs on osteogenic and adipogenic differentiation in rat BMSCs. An osteoporosis model was established in Sprague-Dawley (SD) rats through bilateral ovariectomy (OVX), and be applied to observe the effect of CPPs on osteoporosis in vivo. The ability of CPPs to affect rBMSC proliferation was determined using the CCK-8 assay, and the osteogenic differentiation of rBMSCs measured by ALP and Alizarin Red S staining. The adipogenic differentiation of rBMSCs was measured by Oil Red O staining. The mRNA and protein levels related to osteogenesis and adipogenic differentiation of rBMSCs were measured using qRT-PCR and western blotting, respectively. Cellular immunofluorescence was used to detect cytokine expression and localisation in rBMSCs. We observed that CPPs ameliorated bone loss in OVX rats. CPPs considerably enhanced osteogenic differentiation by increasing ALP activity and the prevalence of mineralised nodules and promoting the mRNA and protein expression of osteogenic differentiation markers (RUNX2, COL I, ALP, and OPN). Furthermore, it inhibited the accumulation of lipid vesicles in the cytoplasm and the mRNA and protein expression levels of adipogenic differentiation markers (PPARγ and C/EBPα) in a concentration-dependent manner. Meanwhile, CPPs notably increased the mRNA and protein expression of ß-catenin, the core protein of the Wnt/ß-catenin signaling pathway, in a concentration-dependent manner. Adding DKK1, a mature inhibitor of the Wnt/ß-catenin signaling pathway, partially suppressed CPP-stimulated ß-catenin activation, and reversed the acceleration of osteogenic differentiation and the inhibition of lipogenic differentiation. Our observations demonstrated CPPs ameliorate bone loss in OVX rats in vivo, and favour osteogenic differentiation while inhibit adipogenic differentiation of rBMSCs in vitro. The findings suggested that CPPs could serve as functional foods for bone health, and have great potential for the prevention and treatment of osteoporosis.

11.
bioRxiv ; 2023 Aug 31.
Article in English | MEDLINE | ID: mdl-37693577

ABSTRACT

Urinary bladder insult can be caused by environmental, genetic, and developmental factors. Depending upon insult severity, the bladder may lose its ability to maintain capacity and intravesical pressures resulting in renal deterioration. Bladder augmentation enterocystoplasty (BAE) is employed to increase bladder capacity to preserve renal function using autologous bowel tissue as a "patch." To avoid the clinical complications associated with this procedure, we have engineered composite grafts comprised of autologous bone marrow mesenchymal stem cells (MSCs) with CD34+ hematopoietic stem/progenitor cells (HSPCs) co-seeded onto a pliable synthetic scaffold [POCO; poly(1,8-octamethylene-citrate-co-octanol)] or a biological scaffold (SIS; small intestinal submucosa) to regenerate bladder tissue in a baboon bladder augmentation model. We set out to determine the protein expression profile of bladder tissue that has undergone regeneration with the aforementioned stem cell seeded scaffolds along with baboons that underwent BAE. Data demonstrate that POCO and SIS grafted animals share high protein homogeneity between native and regenerated tissues while BAE animals displayed heterogenous protein expression between the tissues following long-term engraftment. We posit that stem cell seeded scaffolds can recapitulate tissue that is almost indistinguishable from native tissue at the protein level and may be used in lieu of procedures such as BAE.

12.
Am J Cancer Res ; 13(6): 2504-2516, 2023.
Article in English | MEDLINE | ID: mdl-37424816

ABSTRACT

In this study, we present a multifunctional hybrid hydrogel (MFHH) for the prevention of postoperative tumor recurrence. MFHH consists of two components; component A - containing a gelatin-based cisplatin, which destroys the residual cancer after surgery, and component B - containing macroporous gelatin microcarriers (CultiSpher) loaded with freeze-dried bone marrow stem cells (BMSCs), which activates the wound healing process. We also evaluated the effects of MFHH in a subcutaneous Ehrlich tumor mouse model. MFHH acted as a local delivery system by directly supplying cisplatin to the tumor environment, resulting in excellent anti-cancer effects and minimal side effects. MFHH released cisplatin gradually to destroy the residual tumors, thereby preventing loco-regional recurrence. We have also demonstrated that BMSCs are able to inhibit residual tumor growth. Moreover, CultiSpher loaded with BMSCs acted as an injection 3D scaffold and easily filled the wound defect formed by tumor removal, and the paracrine factors of the freeze-dried BMSCs accelerated the wound healing process. The components of the MFHH can be used both separately and together. However, for the successful application of MFHH in clinical practice, it is necessary to study in more detail the role of paracrine factors of freeze-dried BMSCs in the inhibition or proliferation of residual cancer. These questions will be the focus of our future research.

13.
J Orthop Surg (Hong Kong) ; 31(2): 10225536231175237, 2023.
Article in English | MEDLINE | ID: mdl-37144863

ABSTRACT

BACKGROUND: Prosthetic-joint infection (PJI) is one of the severest complications after arthroplasty. However, antibiotics are not effective in the bacteria in biofilm outside the prosthetic-joint. Antimicrobial peptides have an efficient antimicrobial activity in staphylococcus aureus compared with conventional antibiotics. METHODS: Bone marrow stem cells (BMSCs) were isolated, cultured and transfected with cathelicidins antimicrobial peptides proline-arginine-rich 39 amino acid peptide (PR-39) lentivirus. The expression of PR-39 gene in BMSCs was detected by RT-PCR, and the antibacterial activity of PR-39 was measured by agar diffusion method. The transfection efficiency was detected by fluorescence microscopy. The infection model of artificial knee joint in rabbits were established. Kirschner wire was used as the knee joint implant to implant the distal femur through the femoral intercondylar fossa of rabbits. 24 rabbits were randomly divided into 2 groups for the above operations: group A was inoculated 0.5 mL into the joint cavity immediately after the incision was sutured 1 × 107 Staphylococcus aureus of colony forming unit (CFU), group B was inoculated with Staphylococcus aureus and PR-39. After operation, the wound conditions and histological changes were observed by X-ray and optical microscope respectively, CRP and erythrocyte sedimentation rate were measured by test assay. RESULTS: The transfection efficiency of lentivirus vectortransfected BMSCs was 74.09%. The supernatant of lentivirus vector had obvious inhibitory effect on Staphylococcus aureus, and the antibacterial rate was 98.43%. 100% infection observed in group A while few infection observed in group B; serum CRP and ESR at a high level in group A while decreased in group B after operation. There were no significant difference in CRP and ESR between the pLV/PR-39 group and pLV/EGFP group at day 1 and 3 respectively after surgery. However, CRP and ESR in the pLV/PR-39 groupwere significantly lower than the pLV/EGFP group at day 7 and 14 respectively after operation. CONCLUSIONS: Rabbits planted BMSCs expressing PR-39 were significantly increased resistance to Staphylococcus aureus in PJI than control group thus showing great potential for preventing implant-associated infection. It will provide a potential new therapeutic agent for implant-associated infection.


Subject(s)
Prosthesis-Related Infections , Staphylococcal Infections , Animals , Rabbits , Cathelicidins , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Antimicrobial Cationic Peptides , Staphylococcal Infections/prevention & control , Staphylococcus aureus , Prosthesis-Related Infections/prevention & control
14.
Metab Brain Dis ; 38(6): 1895-1903, 2023 08.
Article in English | MEDLINE | ID: mdl-37014525

ABSTRACT

Neuropathic pain is a chronic condition that causes long-term burning sensations. Despite significant efforts, current treatments for neuropathic pain are ineffective in curing the condition, which means new therapeutic options must be developed. One such option is the use of stem cell therapy in combination with anti-inflammatory herbal components, which has shown promise in treating neuropathic pain. The study aimed to investigate the effects of bone marrow mesenchymal stem cells (BM-MSCs) with luteolin on sensory deficits and pathological changes in a neuropathic model. The results showed that luteolin, either alone or in combination with BM-MSCs, effectively reduced sensory deficits related to mechanical and thermal hypersensitivity. In addition, luteolin alone and combined with BM-MSCs reduced oxidative stress in neuropathic rats and inhibited cellular responses, particularly reactive astrocytes. The study concluded that combining luteolin and BM-MSCs may offer an effective therapeutic strategy for patients with neuropathic pain, although further research is needed.


Subject(s)
Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells , Neuralgia , Rats , Animals , Luteolin/pharmacology , Luteolin/therapeutic use , Neuralgia/drug therapy , Neuralgia/etiology , Anti-Inflammatory Agents
15.
J Stomatol Oral Maxillofac Surg ; 124(6): 101479, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37080358

ABSTRACT

Recent studies have shown that bisphosphonates can also impact osteoblasts besides osteoclasts. This study aimed to evaluate the effects of different concentrations of Zoledronic acid (ZA) during the osteogenic differentiation of human Bone Marrow Stem Cells (hBMSCs) in vitro. Thus, osteogenic differentiation of hBMSCs was conducted with different concentrations of Zoledronic Acid (ZA) (0, 0.1, 1.0, and 5.0 µM) for the first 3 days. Cell metabolism was quantified at 1-, 3-, 7-, and 14 days. At 7- and 14-days, the following analyses were performed: 1) mineralization nodule assay, 2) LIVE/DEAD™, 3) cell adhesion and spreading, 4) alkaline phosphatase (ALP) activity, and 5) qPCR analysis for RUNX-2), ALPL, and COL1 A1. Data were analyzed by ANOVA 2-way, followed by Tukey's post hoc test (p < 0.05). Cell metabolism (3-, 7-, and 14-days) (p < 0.001), mineralization (7-, 14-days) (p < 0.001), and ALP activity (14-days) (p < 0.001) were reduced in ZA 5.0 µM when compared to control (no ZA). Also, ZA 5.0 µM downregulated the expression of RUNX2 at 7- and 14-days (p < 0.001). It is possible to conclude that ZA (5.0 µM) can impair hBMSC differentiation into osteoblasts and interferes with its mineralization phase.


Subject(s)
Diphosphonates , Osteogenesis , Humans , Zoledronic Acid/pharmacology , Diphosphonates/pharmacology , Cell Differentiation , Bone Marrow Cells
16.
Subcell Biochem ; 103: 13-29, 2023.
Article in English | MEDLINE | ID: mdl-37120462

ABSTRACT

Bone is a living organ that exhibits active metabolic processes, presenting constant bone formation and resorption. The bone cells that maintain local homeostasis are osteoblasts, osteoclasts, osteocytes and bone marrow stem cells, their progenitor cells. Osteoblasts are the main cells that govern bone formation, osteoclasts are involved in bone resorption, and osteocytes, the most abundant bone cells, also participate in bone remodeling. All these cells have active metabolic activities, are interconnected and influence each other, having both autocrine and paracrine effects. Ageing is associated with multiple and complex bone metabolic changes, some of which are currently incompletely elucidated. Ageing causes important functional changes in bone metabolism, influencing all resident cells, including the mineralization process of the extracellular matrix. With advancing age, a decrease in bone mass, the appearance of specific changes in the local microarchitecture, a reduction in mineralized components and in load-bearing capacity, as well as the appearance of an abnormal response to different humoral molecules have been observed. The present review points out the most important data regarding the formation, activation, functioning, and interconnection of these bone cells, as well as data on the metabolic changes that occur due to ageing.


Subject(s)
Osteoclasts , Osteocytes , Osteocytes/metabolism , Osteoclasts/metabolism , Osteoblasts/metabolism , Bone and Bones
17.
Mol Biol Rep ; 50(5): 4619-4629, 2023 May.
Article in English | MEDLINE | ID: mdl-36929285

ABSTRACT

Rheumatoid arthritis is an autoimmune disorder characterized by swelling in synovial joints and erosion of bones. The disease is normally treated with conventional drugs which provide only temporary relief to the symptoms. Over the past few years, mesenchymal stromal cells have become the center of attention for treating this disease due to their immuno-modulatory and anti-inflammatory characteristics. Various studies on treatment of rheumatoid arthritis by using these cells have shown positive outcomes in terms of reduction in the level of pain as well as improvement of the function and structure of joints. Mesenchymal stromal cells can be derived from multiple sources, however, the ones derived from bone marrow are considered most beneficial for treating several disorders including rheumatoid arthritis on account of being safer and more effective. This review summarizes all the preclinical and clinical studies which were conducted over the last ten years for therapy of rheumatoid arthritis utilizing these cells. The literature was reviewed using the terms "mesenchymal stem/stromal cells and rheumatoid arthritis'' and "bone marrow derived mesenchymal stromal cells and therapy of rheumatoid arthritis''. Data was extracted to enable the readers to have access to the most relevant information regarding advancement in therapeutic potential of these stromal cells. Additionally, this review will also help in fulfilling any gap in current knowledge of readers about the outcome of using these cells in animal models, cell line and in patients suffering from rheumatoid arthritis and other autoimmune disorders as well.


Subject(s)
Arthritis, Rheumatoid , Autoimmune Diseases , Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells , Animals , Bone Marrow/metabolism , Arthritis, Rheumatoid/metabolism , Mesenchymal Stem Cells/metabolism , Stromal Cells/metabolism , Bone Marrow Cells/metabolism
18.
Stem Cell Investig ; 10: 3, 2023.
Article in English | MEDLINE | ID: mdl-36761253

ABSTRACT

Background: Efficiently delivering nucleic acid into mammalian cells is essential to overexpress genes for assessing gene functions. Human bone marrow stem cells (hBMSCs) are the most studied tissue-derived stem cells. Adeno-associated viruses (AAVs) have been used to deliver DNA into hBMSCs for various purposes. Current literature reported that transduction efficiencies of up to 65% could be achieved by AAV gene delivery into hBMSCs. Further improvement of efficiency is needed and possible. This study tested a selection of AAV serotypes for high-efficient DNA delivery into hBMSCs. Methods: hBMSCs from different donors were infected with different serotypes of AAVs containing the enhanced green fluorescence protein (eGFP) reporter gene driven by the CMV promoter. Green fluorescence was monitored in the infected cells at five-day intervals. Cells were collected at designated time points after the infection for reverse-transcription polymerase chain reaction (RT-PCR) and quantitative reverse-transcription polymerase chain reaction (qRT-PCR) to assess eGFP mRNA transcription. Results: The results indicated that the order of transduction efficiency of the AAV serotypes was AAV2 > AAV2.7m8 > AAV6 > AAV6.2 > AAV1 > AAV-DJ. AAV2 could achieve almost 100% transduction at the multiplicity of infection (MOI) greater than 100K. Over 90% of cells could be transduced at 20K to 50K MOI. About 80% transduction was seen at MOIs of 10K and 15K. RT-PCR analysis showed that eGFP mRNA could be detected from day 5 to day 30 post-AAV infection. The differences in the observed transduction efficiencies of the hBMSCs from different patients indicate donor-to-donor variability, and increased eGFP mRNA was generally seen after day 15 post-AAV2 infection. Maximal eGFP transcription was detected on day 30 post-infection. Conclusions: We conclude that AAV2 and AAV2.7m8 at an MOI of 100K or greater can efficiently deliver transgene into hBMSCs with up to near 100% transduction efficiency for sustained expression over one month. However, donor-to-donor variation exists in transduction efficiency and transgene expression, especially at MOIs less than 100K.

19.
Cells ; 12(2)2023 01 06.
Article in English | MEDLINE | ID: mdl-36672176

ABSTRACT

Many clinical trials have attempted to use stem cells to treat ischemic heart diseases (IHD), but the benefits have been modest. Though coronary collaterals can be a "natural bypass" for IHD patients, the regulation of coronary collateral growth (CCG) and the role of endogenous stem cells in CCG are not fully understood. In this study, we used a bone marrow transplantation scheme to study the role of bone marrow stem cells (BMSCs) in a rat model of CCG. Transgenic GFP rats were used to trace BMSCs after transplantation; GFP bone marrow was harvested or sorted for bone marrow transplantation. After recovering from transplantation, the recipient rats underwent 10 days of repetitive ischemia (RI), with echocardiography before and after RI, to measure cardiac function and myocardial blood flow. At the end of RI, the rats were sacrificed for the collection of bone marrow for flow cytometry or heart tissue for imaging analysis. Our study shows that upon RI stimulation, BMSCs homed to the recipient rat hearts' collateral-dependent zone (CZ), proliferated, differentiated into endothelial cells, and engrafted in the vascular wall for collateral growth. These RI-induced collaterals improved coronary blood flow and cardiac function in the recipients' hearts during ischemia. Depletion of donor CD34+ BMSCs led to impaired CCG in the recipient rats, indicating that this cell population is essential to the process. Overall, these results show that BMSCs contribute to CCG and suggest that regulation of the function of BMSCs to promote CCG might be a potential therapeutic approach for IHD.


Subject(s)
Collateral Circulation , Myocardial Ischemia , Rats , Animals , Collateral Circulation/physiology , Bone Marrow , Endothelial Cells , Myocardial Ischemia/therapy , Ischemia , Stem Cells
20.
Reprod Biomed Online ; 46(3): 543-565, 2023 03.
Article in English | MEDLINE | ID: mdl-36710157

ABSTRACT

The ovary has a comparatively short functional lifespan compared with other organs, and genetic and pathological injuries can further shorten its functional life. Thus, preserving ovarian function should be considered in the context of women with threats to ovarian reserve, such as ageing, premature ovarian insufficiency (POI) and diminished ovarian reserve (DOR). Indeed, one-third of women with POI retain resting follicles that can be reactivated to produce competent oocytes, as proved by the in-vitro activation of dormant follicles. This paper discusses mechanisms and clinical data relating to new therapeutic strategies using ovarian fragmentation, stem cells or platelet-rich plasma to regain ovarian function in women of older age (>38 years) or with POI or DOR. Follicle reactivation techniques show promising experimental outcomes and have been successful in some cases, when POI is established or DOR diagnosed; however, there is scarce clinical evidence to warrant their widespread clinical use. Beyond these contexts, also discussed is how new insights into the biological mechanisms governing follicular dynamics and oocyte competence may play a role in reversing ovarian damage, as no technique modifies oocyte quality. Additional studies should focus on increasing follicle number and quality. Finally, there is a small but important subgroup of women lacking residual follicles and requiring oocyte generation from stem cells.


Subject(s)
Menopause, Premature , Ovarian Diseases , Ovarian Reserve , Primary Ovarian Insufficiency , Humans , Female , Primary Ovarian Insufficiency/therapy , Ovarian Follicle/physiology , Oocytes , Ovarian Reserve/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...