Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 41
Filter
1.
Bone ; 187: 117144, 2024 Jun 02.
Article in English | MEDLINE | ID: mdl-38834103

ABSTRACT

Standard microarchitectural analysis of bone using micro-computed tomography produces a large number of parameters that quantify the structure of the trabecular network. Analyses that perform statistical tests on many parameters are at elevated risk of making Type I errors. However, when multiple testing correction procedures are applied, the risk of Type II errors is elevated if the parameters being tested are strongly correlated. In this article, we argue that four commonly used trabecular microarchitectural parameters (thickness, separation, number, and bone volume fraction) are interdependent and describe only two independent properties of the trabecular network. We first derive theoretical relationships between the parameters based on their geometric definitions. Then, we analyze these relationships with an aggregated in vivo dataset with 2987 images from 1434 participants and a synthetically generated dataset with 144 images using principal component analysis (PCA) and linear regression analysis. With PCA, when trabecular thickness, separation, number, and bone volume fraction are combined, we find that 92 % to 97 % of the total variance in the data is explained by the first two principal components. With linear regressions, we find high coefficients of determination (0.827-0.994) and fitted coefficients within expected ranges. These findings suggest that to maximize statistical power in future studies, only two of trabecular thickness, separation, number and bone volume fraction should be used for statistical testing.

2.
J Biomech ; 165: 112000, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38387369

ABSTRACT

Synthetic materials used for valid and reliable implant testing and design should reflect the mechanical and morphometric properties of human bone. Such bone models are already available on the market, but they do not reflect the population variability of human bone, nor are they open-celled porous as human bone is. Biomechanical studies aimed at cementing the fracture or an implant cannot be conducted with them. The aim of this study was to investigate the influence of a cell stabilizer on polyurethane-based cancellous synthetic bone in terms of morphology, compressive mechanics, and opening of the cancellous bone structure for bone cement application. Mechanical properties of cylindrical specimens of the bone surrogates were determined by static compression tests to failure. Furthermore, a morphometric analysis was performed using microcomputed tomography. To prove the open-cell nature of the bone surrogates, an attempt was made to apply bone cement. Effects on the mechanical properties of the polyurethane-based bone surrogates were observed by the addition of polydimethylsiloxane. All mechanical parameters like Young's modulus, ultimate stress and yield stress increased statistically significantly with increasing amounts of cell stabilizer (all p > 0.001), except for yield stress. The analysis of morphometric parameters showed a decrease in trabecular thickness, spacing and connectivity density, which was accompanied by an increase in trabecular number and an increase in pore size. The open-cell nature was proven by the application and distribution of bone cement in specimens with stabilizer, which was visualized by X-ray. In conclusion, the results show that by adding a cell stabilizer, polyurethane-based cancellous bone substrates can be produced that have an open-cell structure similar to human bone. This makes these bone surrogates suitable for biomechanical testing of osteosyntheses and for osteosynthesis cementation issues.


Subject(s)
Bone Cements , Cancellous Bone , Humans , Porosity , Cancellous Bone/diagnostic imaging , X-Ray Microtomography , Polyurethanes/chemistry , Stress, Mechanical , Dimethylpolysiloxanes , Biomechanical Phenomena
3.
bioRxiv ; 2024 Jan 14.
Article in English | MEDLINE | ID: mdl-38106067

ABSTRACT

During peri-puberty, bone growth and the attainment peak bone mass is driven predominantly by sex steroids. This is important when treating transgender and gender diverse youth, who have become increasingly present at pediatric clinics. Analogues of gonadotropin-releasing hormone (GnRH) are commonly prescribed to transgender and gender diverse youth prior to starting gender-affirming hormone therapy (GAHT). However, the impact of GnRH agonists on long bones with the addition of GAHT is relatively unknown. To explore this, we developed a trans-masculine model by introducing either GnRHa or vehicle treatment to female-born mice at a pre-pubertal age. This treatment was followed by male GAHT (testosterone, T) or control treatment three weeks later. Six weeks after T therapy, bone quality was compared between four treatment groups: Control (vehicle only), GnRHa-only, GnRHa + T, and T-only. Bone length/size, bone shape, mechanical properties, and trabecular morphology were modulated by GAHT. Independent of GnRHa administration, mice treated with T had shorter femurs, larger trabecular volume and increased trabecular number, higher trabecular bone mineral density, and wider superstructures on the surface of bone (e.g., third trochanters) when compared to control or GnRHa-only mice. In conclusion, prolonged treatment of GnRHa with subsequent GAHT treatment directly affect the composition, parameters, and morphology of the developing long bone. These findings provide insight to help guide clinical approaches to care for transgender and gender diverse youth.

4.
Heliyon ; 9(11): e22046, 2023 Nov.
Article in English | MEDLINE | ID: mdl-38027819

ABSTRACT

Objective: The purpose of this investigation was to elucidate the relationship between the zinc and iron intake and the advancement of subchondral sclerosis among patients with osteoarthritis (OA). The goal was to establish personalized, nutritionally-informed strategies designed to retard the progression of subchondral sclerosis and conserve joint structure. Methods: For the purposes of this research, we derived data from the Bone Ancillary Study (BAS), a constituent study of the Osteoarthritis Initiative (OAI). The intake of zinc and iron was evaluated via a food frequency questionnaire. Magnetic Resonance Imaging trabecular morphometry was employed to ascertain the microarchitecture of the subchondral bone. For the analysis of collected data, we employed logistic regression along with generalized additive models (GAMs). Results: The participant cohort was comprised of 474 OA patients (216 females, 258 males, mean [SD] age 64.1[9.2]). Notably, an increment in zinc consumption was linked with a significantly reduced likelihood of deterioration in Tb.N (OR = 0.967, 95 % CI, 0.939-0.996, P-value = 0.026), Tb.Th (OR = 0.958, 95 % CI, 0.929-0.989, P-value = 0.008), and Tb.Sp (OR = 0.967, 95 % CI, 0.939-0.996, P-value = 0.013). An elevation in iron intake seemed to enhance the risk of subchondral sclerosis, as indicated by the GAM. Subgroup analysis revealed an interaction between the effectiveness of zinc intake and factors such as gender, age, radiographic severity, and macronutrient consumption. An increased intake of calcium amplified the beneficial impact of zinc on subchondral sclerosis. Conclusions: Our findings indicate a positive association between elevated zinc intake and a slowdown in the progression of subchondral sclerosis in OA patients, notably among females, middle-aged individuals, and those with higher calcium and magnesium intake. Conversely, a higher iron intake might intensify subchondral sclerosis. These results suggest that personalized, diet-based interventions focusing on zinc consumption, in tandem with adequate calcium intake, could potentially decelerate the progression of subchondral sclerosis in individuals afflicted with OA.

5.
Clin Case Rep ; 11(9): e7881, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37744618

ABSTRACT

A thin patient with a history of eating disorders developed basicervical femoral neck fracture bilaterally and simultaneously due to vitamin D deficiency osteomalacia. A careful evaluation in thin patients with thigh pain, including bone biopsy, is required to avoid overlooking osteomalacia.

6.
Iowa Orthop J ; 43(1): 77-86, 2023.
Article in English | MEDLINE | ID: mdl-37383848

ABSTRACT

Background: Radiotherapy for tumor treatment in or near bones often causes osteopenia and/or osteoporosis, and the resulting increased bone fragility can lead to pathologic fractures. Bone mineral density (BMD) is often used to screen for fracture risk, but no conclusive relationship has been established between BMD and the microstructural/ biomechanical changes in irradiated bone. Understanding the effects of radiation dosing regimen on the bone structure-strength relationship would improve the ability to reduce fracture-related complications resulting from cancer treatment. Methods: Thirty-two C57B6J mice aged 10 - 12 weeks old were randomized to single dose (1 x 25 Gy) and fractionated dose (5 x 5 Gy) irradiation groups. Right hindlimbs were irradiated while the contralateral hindlimbs served as the non-irradiated control. Twelve weeks after irradiation, BMD and bone microstructure were assessed with micro-computed tomography, and mechanical strength/stiffness was assessed with a torsion test. The effects of radiation dosing regimen on bone microstructure and strength were assessed using ANOVA, and bone strength-structure relationships were investigated through correlation analysis of microstructural and mechanical parameters. Results: Fractionated irradiation induced significantly greater losses in BMD in the femur (23% - male mice, p=0.016; 19% - female mice) and the tibia (18% - male mice; 6% - female mice) than the single-dose radiation. The associated reductions in trabecular bone volume (-38%) and trabecular number (-34% to -42%), and the increase in trabecular separation (23% to 29%) were only significant in the male mice with fractionated dosing. There was a significant reduction in fracture torque in the femurs of male (p=0.021) and female (p=0.0017) mice within the fractionated radiation group, but not in the single dose radiation groups. There was moderate correlation between bone microstructure and mechanical strength in the single-dose radiation group (r = 0.54 to 0.73), but no correlation in the fractionated dosing group (r=0.02 to 0.03). Conclusion: Our data indicate more detrimental changes in bone microstructure and mechanical parameters in the fractionated irradiation group compared to the single dose group. This may suggest the potential for protecting bone if a needed therapeutic radiation dose can be delivered in a single session rather than administered in fractions.


Subject(s)
Fractures, Bone , Osteoporosis , Animals , Female , Male , Mice , Bone Density , Femur , X-Ray Microtomography
7.
Biol Trace Elem Res ; 201(12): 5786-5793, 2023 Dec.
Article in English | MEDLINE | ID: mdl-36892690

ABSTRACT

The experiment was designed to study the effect of supplemental sources and concentrations of copper on the performance and development and mineralization of tibia bones in broiler chickens. A 42-day feeding experiment was conducted utilising three copper sources, including copper sulphate (CuS), copper chloride (CuCl), and copper propionate (CuP), each with four different concentrations, i.e. 8, 100, 150, and 200 mg/kg. The body weight gain with 200 mg Cu/kg food was noticeably higher during the first 4-6 weeks of age. Due to the interaction between Cu sources and levels, there was no significant change in the body weight gained. The feed intake during various growing phases did differ significantly neither the main effect nor the interaction between different copper sources and levels. A CuP-supplemented diet (200 mg/kg food) considerably (P ≤ 0.05) improved the feed conversion ratio between 4-6 and 0-6 weeks. At the end of the experiment, a total of 72 tibia bones, i.e. six for each treatment were collected. A metabolic trial was conducted to look into mineral retention in broiler chickens on the final 3 days of the trial (40-42 days). Increased tibia bone zinc (Zn) levels were seen with the addition of 8 mg Cu/kg of Cu chloride, 100 mg Cu/kg of Cu propionate, 8 mg Cu/kg of Cu sulphate, and 8 mg/kg of Cu propionate to the diet. At higher levels of Cu (150 and 200 mg/kg diet), there was a significantly (P ≤ 0.01) reduced tibia Zn content. Cu sulphate treatment group had higher (P ≤ 0.01) tibia Cu content (8 mg Cu/kg diet). Cu sulphate supplemented diet had a greater excreta Zn content (P ≤ 0.01) than Cu chloride supplemented diet, and Cu propionate supplemented diet had the lowest excreta Zn content. Excreta with a higher Fe concentration were found in diets supplemented with copper sulphate and copper chloride (P ≤ 0.05) than in diets supplied with copper propionate. Thus, it may be concluded that feeding dietary Cu concentrations up to 200 mg Cu/kg diet, regardless of the different sources, had no negative effects on bone morphometry and mineralization parameters with the exception of a decrease in the tibia's zinc content.


Subject(s)
Chickens , Copper , Animals , Copper/pharmacology , Chickens/metabolism , Copper Sulfate/pharmacology , Copper Sulfate/metabolism , Chlorides/metabolism , Propionates , Minerals/metabolism , Zinc/pharmacology , Dietary Supplements , Diet/veterinary , Body Weight , Sulfates/metabolism , Animal Feed/analysis
8.
Angle Orthod ; 2023 Feb 10.
Article in English | MEDLINE | ID: mdl-36762882

ABSTRACT

OBJECTIVES: To create an orthodontic anchor screw (OAS)-loosening model and to investigate whether filling the bone hole with beta-tricalcium phosphate (ß-TCP) can fix the OAS against orthodontic force. MATERIALS AND METHODS: Bone holes with different diameters (1.6, 2.1, or 2.5 mm) were drilled in the tibias of 11-week-old male Wistar rats, and an OAS (3.0 mm in length and 1.2 mm in diameter) was inserted. After a healing period of 2 or 4 weeks, orthodontic force was applied, and the diameter of the bone hole appropriate for the loosening model was determined. Subsequently, under the loosening model, the bone hole was filled with ß-TCP, orthodontic force was applied, and movement of the OAS and surrounding tissue changes were evaluated by micro-computed tomography images and histological specimen analysis. RESULTS: The bone hole of 1.6 mm in diameter was employed as the OAS-loosening model. When ß-TCP was inserted into the bone hole, the linear distance and mesial tipping angle of the OAS movement decreased markedly. Furthermore, the values of bone morphometry significantly increased with ß-TCP filling. CONCLUSIONS: An OAS-loosening model was established in rats and demonstrated that the loosening OAS was stabilized by ß-TCP filling through bone formation. ß-TCP may be useful for fixation of a loosening OAS.

9.
Int J Mol Sci ; 23(21)2022 Oct 22.
Article in English | MEDLINE | ID: mdl-36361534

ABSTRACT

Hypoxia may be associated with alterations in bone remodeling, but the published results are contradictory. The aim of this study was to characterize the bone morphometry changes subject to hypoxia for a better understanding of the bone response to hypoxia and its possible clinical consequences on the bone metabolism. This study analyzed the bone morphometry parameters by micro-computed tomography (µCT) in rat and guinea pig normobaric hypoxia models. Adult male and female Wistar rats were exposed to chronic hypoxia for 7 and 15 days. Additionally, adult male guinea pigs were exposed to chronic hypoxia for 15 days. The results showed that rats exposed to chronic constant and intermittent hypoxic conditions had a worse trabecular and cortical bone health than control rats (under a normoxic condition). Rats under chronic constant hypoxia were associated with a more deteriorated cortical tibia thickness, trabecular femur and tibia bone volume over the total volume (BV/TV), tibia trabecular number (Tb.N), and trabecular femur and tibia bone mineral density (BMD). In the case of chronic intermittent hypoxia, rats subjected to intermittent hypoxia had a lower cortical femur tissue mineral density (TMD), lower trabecular tibia BV/TV, and lower trabecular thickness (Tb.Th) of the tibia and lower tibia Tb.N. The results also showed that obese rats under a hypoxic condition had worse values for the femur and tibia BV/TV, tibia trabecular separation (Tb.Sp), femur and tibia Tb.N, and BMD for the femur and tibia than normoweight rats under a hypoxic condition. In conclusion, hypoxia and obesity may modify bone remodeling, and thus bone microarchitecture, and they might lead to reductions in the bone strength and therefore increase the risk of fragility fracture.


Subject(s)
Bone Density , Tibia , Rats , Guinea Pigs , Male , Female , Animals , Bone Density/physiology , X-Ray Microtomography , Rats, Sprague-Dawley , Rats, Wistar , Tibia/diagnostic imaging , Tibia/physiology , Obesity , Models, Animal , Hypoxia
10.
Head Face Med ; 18(1): 33, 2022 Nov 11.
Article in English | MEDLINE | ID: mdl-36357936

ABSTRACT

BACKGROUND: The evaluation of bone remodelling and dental root resorption can be performed by histological techniques or micro-computed tomography (micro-CT). The present study aimed to evaluate the relationship between these two procedures in the context of cleft repair in a rat model. METHODS: The reconstructed maxillae and the orthodontically-moved first molar of 12 rats were analysed for correlations between the histological and radiological findings retrospectively. The alveolar cleft repairs were performed using bone autografts or (human) xenografts. Four weeks after the operation, the intervention of the first molar protraction was initiated and lasted for eight weeks. The newly formed bone and the root resorption lacunae were determined via histology. In the micro-CT analysis, the average change of bone mineral density (BMD), bone volume fraction (BV/TV), trabecular thickness and trabecular separation of the jaw, as well as the volume of the root resorptions were determined. The Pearson correlation coefficient was applied to study the associations between groups. RESULTS: Positive correlations were found only between the newly formed bone (histology) and BMD changes (micro-CT) in the autograft group (r = 0.812, 95% CI: 0.001 to 0.979, p = 0.05). The relationship of newly formed bone and BV/TV was similar but not statistically significant (r = 0.691, 95% CI: -0.274 to 0.963, p = 0.013). Regarding root resorption, no significant correlations were found. CONCLUSIONS: Due to the lack of correlation between histological and radiological findings of bone remodelling and the development of root resorptions, both methods should be combined in this cleft model in rats for a comprehensive analysis.


Subject(s)
Root Resorption , Humans , Rats , Animals , Root Resorption/diagnostic imaging , X-Ray Microtomography/methods , Rodentia , Retrospective Studies , Bone Remodeling , Bone Density
11.
Clin Exp Dent Res ; 8(6): 1487-1495, 2022 12.
Article in English | MEDLINE | ID: mdl-35933703

ABSTRACT

OBJECTIVES: The aim of this study is to investigate the long-term effects on jaw and femur bone induced by oncologic doses of zoledronic acid in a young rat model. MATERIAL AND METHODS: Six 12-week-old male Wistar rats received zoledronic acid (0.6 mg/kg) and six control rats received saline solution in the same volume. Compounds were administered intraperitoneally in five doses every 28 days. Euthanasia was performed 150 days after therapy onset. After animal sacrifice, their mandibles and femurs were scanned ex vivo using a high-resolution (14 µm) micro-computed tomography. Morphometric bone parameters were calculated using CT-Analyzer (Bruker, Belgium) between the first and second mandibular molars and in the distal femur metaphysis and epiphysis. RESULTS: The treatment group as compared to the controls showed a significantly (p < .05) increased bone quantity (↑BV/TV, ↓Po[Tot], ↑Tb.Th), bone density (↑TMD, ↑BMD), and osteosclerosis of the trabecular bone (↓Tb.Sp, ↓Conn.Dn, ↓Tb.Pf, ↓SMI) in all anatomical sites. Bone remodeling suppression due to zoledronic acid treatment was more pronounced (p < .05) in the femoral metaphysis relative to the mandible and epiphysis. The exploratory linear discriminant analysis showed that for the mandible, it was mainly the bone quantity-related morphometric indices (BV/TV and Tb.Th), while for the femoral epiphysis and metaphysis, it was bone structure-related (Tb.Pf and Tb.N), which are of primary importance to study the treatment effect. CONCLUSION: High doses of bisphosphonates can differently affect the bone quantity, density, and structure in long bones and jawbones. In the metaphysis, bone changes were primarily concentrated in the region of the growth plate. Future studies may consider the use of bone morphometric indices to evaluate the effect of bisphosphonates.


Subject(s)
Diphosphonates , Femur , Male , Rats , Animals , Zoledronic Acid/pharmacology , X-Ray Microtomography/methods , Rats, Wistar , Diphosphonates/pharmacology , Diphosphonates/therapeutic use , Femur/diagnostic imaging
12.
J Oral Rehabil ; 49(10): 1012-1019, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35842739

ABSTRACT

BACKGROUND: Previous clinical observational studies have suggested that orthodontic tooth movement (OTM) is related, at least partly, to the mass and/or capabilities of the masticatory muscles. OBJECTIVES: Our study aimed to examine the influence of masticatory muscle mass on the OTM in an animal experimental model in which the masseter muscle was modulated by botulinum neurotoxin type A (BTX) injection. METHODS: Eighteen Wistar rats were equally divided into two groups: BTX injection and control. BTX was injected bilaterally into the masseter muscles. Three days after the injection, the maxillary left first molars were orthodontically moved for 14 days. At the end of the experiment, micro-computed tomography was performed to evaluate the rate of OTM and bone morphometry. The masseter muscles were weighed and prepared for histological analyses. RESULTS: The masseter muscle mass in the BTX group was less than that in the control group, and histological findings showed atrophy of muscle fibres. The rate of OTM was significantly higher in the BTX group than in the control group. Furthermore, a negative correlation was detected between masseter muscle mass and OTM in the BTX group. Bone morphometry showed no difference between the control and BTX groups. CONCLUSION: Decreased masseter muscle mass was found to be closely related to an increase in the rate of OTM in rats using BTX injection to modify the masseter muscle mass. Masseter muscle mass could be a predictive factor for OTM in rats injected with BTX.


Subject(s)
Botulinum Toxins, Type A , Masseter Muscle , Animals , Botulinum Toxins, Type A/pharmacology , Masseter Muscle/diagnostic imaging , Masseter Muscle/pathology , Rats , Rats, Wistar , Tooth Movement Techniques , X-Ray Microtomography
13.
Bone Rep ; 16: 101592, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35637974

ABSTRACT

Objective: Characterise the spatiotemporal responses of trabecular and cortical bone to complete spinal cord injury (SCI) in the skeletally mature rat in the acute (4-week) period following injury. Methods: The spinal cord of 5-month old male rats was transected at the T9 level. Outcome measures were assessed using micro-computed tomography, three-point bending and serum markers at 1-, 2-, and 4-weeks post-transection. Comparison was made with time-0 and sham animals. Results: Lower levels of circulating serum bone formation markers and higher bone resorption markers suggested uncoupled bone turnover as early at 1-week post-transection. Micro-computed tomography showed metaphyseal and epiphyseal trabecular bone loss was observed only at 4-weeks post-transection. The bone loss was site-specific with a more severe reduction in trabecular BV/TV observed in the metaphyseal (50%) relative to epiphyseal (19%) region. Metaphyseal trabecular bone exhibited a 54% reduction in connectivity density while the epiphyseal trabecular bone was unaffected. Cortical bone deficits were not seen over the time periods examined. Conclusions: The study demonstrates that the skeletally mature spinal cord transected rat model replicates the biphasic pattern of osteoporotic changes observed in the human SCI population, providing a relevant model for testing the efficacy of interventions against SCI-induced osteoporosis.

14.
J Mech Behav Biomed Mater ; 129: 105146, 2022 05.
Article in English | MEDLINE | ID: mdl-35247861

ABSTRACT

Synthetic bones for biomechanical testing and surgeon training have become more important due to their numerous advantages compared to human bones. Several bone models are already available on the market, but most of them do not reflect the full range of versatile properties that characterize human bone like population-level influences, size, stiffness, bone-implant-interface or morphometry. Thus, the objectives of this study were to develop synthetic trabecular bone surrogates from polyurethane and varying additives and to determine their elastic and plastic mechanical compressive and additionally morphometric properties. Another aim was to investigate the influence of varying additives on aforementioned properties and finally compare the results with published data from human trabecular bone. Additives used were blowing agents to create a porous structure, mineral fillers to manipulate the basic polyurethane resin, and cell stabilizers to achieve an open porous composition. Mechanical properties were obtained from static compression tests until failure while morphometric analysis was carried out using microcomputed tomography. Thereby, the blowing agent showed the strongest influence on mechanical and morphometric properties with mean Young's moduli ranging from 627 ± 37 MPa (0% blowing agent) to 154 ± 15 MPa (0.25% blowing agent) while the variation of mineral filler content resulted in small standard deviations of approximately 10-20 MPa with a constant proportion of blowing agent. The achieved mechanical properties of the developed synthetic bones, such as the Young's modulus, ultimate stress and yield stress were in accordance with human trabecular bone, while yield strain for all groups was noticeably higher compared to human trabecular bone. Additionally, morphometric analysis showed results indicating similar morphometry of the custom-made synthetic bone and human cancellous bone. Although recreating bone structures in physiological conditions is not simple, the results of the current study show the possibility of developing synthetic bone materials with characteristics like human trabecular bone.


Subject(s)
Cancellous Bone , Polyurethanes , Biomechanical Phenomena , Bone Density , Bone and Bones , Humans , Stress, Mechanical , X-Ray Microtomography
15.
Front Med (Lausanne) ; 8: 781219, 2021.
Article in English | MEDLINE | ID: mdl-34881273

ABSTRACT

Bisphosphonate has great potential in KOA therapy, but whether the anti-resorption mechanism of bisphosphonate aggravates sclerosis of subchondral bone remains unclear. We found that bisphosphonate use did not increase sclerosis of subchondral bone in established KOA, perhaps resolving some concerns about bisphosphonate in patients with KOA. Introduction: Most studies have focused on the protective effect of bisphosphonate on early knee osteoarthritis (KOA) through its anti-resorption mechanism in osteoclasts. However, late KOA has a decreased rate of resorption, which is the opposite of early KOA. The risk of subchondral bone sclerosis in late KOA after using bisphosphonate has not been investigated using morphometry. Methods: Forty-five patients who had ever used bisphosphonate (or 33 patients with current use) were matched with controls through propensity matching methods, including age, body mass index (BMI), sex, health status (12-Item Short Form Survey physical health score), physical activity level (Physical Activity Scale for the Elderly score), vitamin D use, and calcium use. At the baseline and 12-month (or 18-month) follow-up, bone mineral density (BMD) of the tibia and hip was measured by dual-energy X-ray absorptiometry (DXA), and medial tibial subchondral bone morphometry: bone volume fraction (BV/TV), trabecular thickness (Tb.Th), trabecular number (Tb.N), and trabecular separation (Tb.Sp) were calculated based on 3-T trabecular MRI. Data were obtained from the Bone Ancillary Study in the Osteoarthritis Initiative (OAI) project. Results: The yearly percentage change in hip BMD of the current bisphosphonate-use group was significantly greater than that of the non-bisphosphonate-use group (0.7% vs. -1%, P = 0.02). The other outcomes (BV/TV, Tb.N, Tb.Sp, Tb.Th, tibia medial BMD, and tibia lateral BMD) between the two groups presented no significant difference. The non-bisphosphonate-use group experienced a significant increase in Tb.Th [2%, 95% CI = (1%, 4%), P = 0.01], while the bisphosphonate-use group presented no significant change [1%, 95% CI = (-2%, 4%), P = 0.54]. Conclusions: Bisphosphonate use did not increase sclerosis of subchondral bone in established KOA. Bisphosphonate might have a stage-dependent effect on subchondral bone in KOA initiation and progression.

16.
Bone ; 149: 115973, 2021 08.
Article in English | MEDLINE | ID: mdl-33895434

ABSTRACT

INTRODUCTION: High-resolution peripheral quantitative computed tomography (HR-pQCT), which enables in vivo analysis of bone morphometry, is widely used in osteoporosis research. The scan position is usually determined by the fixed offset method; however, there are concerns that the scan position can become relatively proximal if limb length is short. The present study compared bone mineral density and morphometry measured using the fixed and relative offset methods, in which the scan position is determined based on the lengths of the forearm and lower leg, and investigated factors responsible for measurement differences between the two methods. METHODS: A total of 150 healthy Japanese subjects, comprising 75 men and 75 women, with a mean age of 45.1 years, were enrolled in this study. The distal radius and tibia were scanned using the fixed and relative offset methods; the fixed offset method involved scanning the radius and tibia at 9 mm and 22 mm, respectively, proximal to their distal articular surfaces. By contrast, the relative offset method entailed scanning the radius at 4% of the forearm length and the tibia at 7.3% of the lower leg length, proximal to their respective distal articular surfaces. The percent overlap between the scan positions of the two methods was measured using the scout views. Measurement values obtained with the two methods were compared. The correlation between the differences in the values among the two methods and forearm length, lower leg length, and body height was examined. RESULTS: The subjects had a mean height of 164.3 ± 14.3 cm, mean forearm length of 252.9 ± 17.3 mm, and mean lower leg length of 346.7 ± 22.3 mm. The mean percent overlap was 85.0 ± 9.1% (59.2-99.6%) for the radius and 79.8 ± 12.5% (48.3-99.8%) for the tibia. Fixed offset scanning yielded higher total volumetric bone mineral density (Tt.vBMD) and cortical vBMD (Ct.vBMD) and greater cortical thickness (Ct.Th) (all p < 0.001). The differences between the two methods in terms of Tt.vBMD, Ct.vBMD and Ct.Th were significantly greater with shorter forearm length, lower leg length, and body height (radius: 0.51 < |r| < 0.63, tibia: 0.61 < |r| < 0.95). CONCLUSION: Measurements of bone mineral density and morphometry obtained using the fixed offset method differed from those obtained using the relative offset method, which takes body size into account. Shorter body height, forearm length, and lower leg length were found to correlate with greater measurement differences. In populations with smaller stature, use of the fixed offset method results in relatively proximal images; thus, caution should be exercised when comparing groups of different height.


Subject(s)
Bone Density , Osteoporosis , Female , Humans , Male , Middle Aged , Osteoporosis/diagnostic imaging , Radius/diagnostic imaging , Tibia/diagnostic imaging , Tomography, X-Ray Computed
17.
Bone ; 148: 115931, 2021 07.
Article in English | MEDLINE | ID: mdl-33766803

ABSTRACT

There is currently a gap in the literature that quantitatively describes the complex bone microarchitecture within the diploë (trabecular bone) and cortical layers of the human calvarium. The purpose of this study was to determine the morphometric properties of the diploë and cortical tables of the human calvarium in which key interacting factors of sex, location on the calvarium, and layers of the sandwich structure were considered. Micro-computed tomography (micro-CT) was utilized to capture images at 18 µm resolution of male (n = 26) and female (n = 24) embalmed calvarium specimens in the frontal and parietal regions (N = 50). All images were post-processed and analyzed using vendor bundled CT-Analyzer software to determine the morphometric properties of the diploë and cortical layers. A two-way mixed (repeated measures) analysis of variance (ANOVA) was used to determine diploë morphometric properties accounting for factors of sex and location. A three-way mixed ANOVA was performed to determine cortical morphometric properties accounting for factors of cortical layer (inner and outer table), sex, and location. The study revealed no two-way interaction effects between sex and location on the diploë morphometry except for fractal dimension. Trabecular thickness and separation in the diploë were significantly greater in the male specimens; however, females showed a greater number of trabeculae and fractal dimension on average. Parietal specimens revealed a greater porosity, trabecular separation, and deviation from an ideal plate structure, but a lesser number of trabeculae and connectivity compared to the frontal location. Additionally, the study observed a lower density and greater porosity in the inner cortical layer than the outer which may be due to clear distinctions between each layer's physiological environment. The study provides valuable insight into the quantitative morphometry of the calvarium in which finite element modelers of the skull can refer to when designing detailed heterogenous or subject-specific skull models to effectively predict injury. Furthermore, this study contributes towards the recent developments on physical surrogate models of the skull which require approximate measures of calvarium bone architecture in order to effectively fabricate a model and then accurately simulate a traumatic head impact event.


Subject(s)
Models, Theoretical , Skull , Bone Density , Female , Humans , Male , Porosity , Skull/diagnostic imaging , X-Ray Microtomography
18.
Bone Rep ; 12: 100261, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32455148

ABSTRACT

MicroCT-based morphological parameters are often used to quantify the structural properties of trabecular bone. Various software tools are available for calculating these parameters. Studies that examine the comparability of their results are rare. Four different software tools were used to analyse a set of 701 microCT images from human trabecular bone samples. Bone volume to total volume (BV/TV), bone surface (BS), trabecular thickness (Tb. Th.) and degree of anisotropy (DA) were evaluated. BV/TV shows very low difference (-0.18 ± 0.15%). The difference in BS could be reduced below 5% if artificial cut surfaces are not included. Tb. Th. and Tb. Sp. show differences of maximal -12% although the same theoretical background is used. DA is most critical with differences from 4.75 ± 3.70% (medtool vs. Scanco), over -38.61 ± 13.15% (BoneJ vs. Scanco), up to 80.52 ± 50.04% (medtool vs. BoneJ). Quantitative results should be considered with caution, especially when comparing different studies. Introducing standardization procedures and the disclosure of underlying algorithms and their respective implementations could improve this issue.

19.
Int J Implant Dent ; 5(1): 32, 2019 Sep 10.
Article in English | MEDLINE | ID: mdl-31502091

ABSTRACT

BACKGROUND: Bovine bone grafts have been widely used in dentistry for guided tissue regeneration and can support new bone formation in direct contact with the graft. The aim of this study was to compare the morphometric and bone density changes after using two different bovine bone graft blocks in segmental osseous defects in the mandible of rabbits following different postoperative periods. MATERIAL AND METHODS: Critical size segmental defects were surgically created bilaterally in the jaw of 18 rabbits. The defects were filled with either deproteinized bovine bone mineral with 10% collagen (DBBM-C; BioOss Collagen®), lyophilized bovine medullary bone (LBMB; Orthogen®), or left untreated according to a split-mouth design. Animals were sacrificed after 3 or 6 months of healing. The hemimandibles were scanned ex vivo using a high-resolution (19 µm) microcomputed tomography. Morphometric and bone density parameters were calculated in the region of the defect using CT-Analyser (Bruker). Initial graft blocks were used as baseline. RESULTS: DBBM-C presented a denser microarchitecture, in comparison to LBMB at baseline. DBBM-C and LBMB grafted regions showed a similar progressive remodeling, with a significant decrease in structure complexity and maintenance of bone volume fraction during the postoperative follow-up periods. Both graft materials showed an enhanced bone replacement and more complex structure compared to untreated defects. The apparent fusion between the graft and host bone was observed only in the defects filled with LBMB. CONCLUSION: LBMB grafts showed a similar behavior as DBBM-C regarding structural remodeling. In LBMB samples, apparent integration between the host bone and the graft was present.

20.
Ann Anat ; 226: 57-63, 2019 Nov.
Article in English | MEDLINE | ID: mdl-31330307

ABSTRACT

BACKGROUND: Bone ageing is governed by the linked activities of short-lived osteoblasts and osteoclasts in conjunction with long-lived osteocytes present in osseous structure. Besides their maintenance function, osteogenic cells also gain specific positional information, which may potentially trigger ageing-associated cellular deviations in terminally differentiated osteocytes differently in cranial versus postcranial tissues. METHODS: We therefore investigated bone taken from deceased aged humans explanted at five distinct anatomical positions throughout the body and assessed physical and biological determinants applying radiologic and histologic measures. RESULTS: We were able to show that significantly more osteocytes reside in aged cortical bone at cranial positions than within axial or limb skeleton. These cellular states and conditions were not found in the corresponding trabecular bone, where osteocyte numbers remain also high at postcranial positions. Parallel comparative analyses of bone microstructure as analyzed by means of computer tomography showed no significant differences. CONCLUSIONS: Considering differences and commonalities regarding the bone samples, such as loading, mechanisms of ossification or the surrounding stromal cell compartment, our findings indicate that positional information laid down during ontogenetic processes is instructive during the entire life thus potentially also moulding spatial-specific mechanistic distinctions of bone ageing.


Subject(s)
Aging/physiology , Osteocytes , Skull/cytology , Skull/growth & development , Aged , Aged, 80 and over , Bone Development , Cadaver , Cell Count , Female , Humans , Male , Middle Aged , Regeneration , Skeleton , Stromal Cells/ultrastructure , X-Ray Microtomography
SELECTION OF CITATIONS
SEARCH DETAIL
...