Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 105
Filter
1.
Food Chem ; 458: 140278, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38964103

ABSTRACT

High-content sugar in honey frequently results in severe matrix effects and requires complex pretreatment prior to analysis, posing significant challenges for the rapid analysis of honey. In this study, the reversal polarity nano-electrospray ionization mass spectrometry (RP-Nano-ESI-MS) analysis was developed for the direct evaluation of honey samples. The results indicated that RP-Nano-ESI-MS significantly mitigated the matrix effects induced by high-content sugar through the implementation of online desalting. Furthermore, RP-Nano-ESI-MS has been proven capable of not only differentiating acacia honey adulterated with 10% rape honey, but also effectively distinguishing six types of honey and exhibiting remarkable proficiency in detecting honey adulteration and botanical traceability. Additionally, RP-Nano-ESI-MS exhibited strong quantitative abilities, effectively characterizing variations in amino acid composition among six types of honey with high stability and reproducibility. Our studies underscore the significant potential of RP-Nano-ESI-MS for its rapid in situ analysis of sugar-rich foods like honey, especially in their authenticity verification.

2.
Heliyon ; 10(12): e33094, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38948039

ABSTRACT

The unique floral fingerprint embedded within honey holds valuable clues to its geographical and botanical origin, playing a crucial role in ensuring authenticity and detecting adulteration. Honey from native Apis cerana and Heterotrigona itama bees in Karangasem, Indonesia, was examined utilizing pollen DNA metabarcoding for honey source identification. In this study, we used ITS2 amplicon sequencing to identify floral DNA in honey samples. The finding reveals distinct pollen signatures for each bee species. Results analysis showed A. cerana honey generated 179,267 sequence reads, assembled into Amplicon Sequence Variants (ASVs) with a total size of 485,932 bp and an average GC content of 59 %. H. itama honey generated 177,864 sequence reads, assembled into ASVs with a total size of 350,604 bp and an average GC content of 57 %. A. cerana honey exhibited a rich tapestry of pollen from eleven diverse genera, with Schleichera genus dominating at an impressive relative read abundance of 72.8 %. In contrast, H. itama honey displayed a remarkable mono-dominance of the Syzygium genus, accounting for a staggering 99.95 % of its pollen composition or relative read abundance, highlighting their distinct foraging preferences and floral resource utilization. Notably, all identified pollen taxa were indigenous to Karangasem, solidifying the geographical link between honey and its origin. This study demonstrates pollen DNA metabarcoding may identify honey floral sources. By using pollen profiles from different bee species and their foraging patterns, we may protect consumers against honey adulteration and promote sustainable beekeeping in Karangasem district. Future research could explore expanding the database of reference pollen sequences and investigating the influence of environmental factors on pollen composition in honey. Investigating this technology's economic and social effects on beekeepers and consumers may help promote fair trade and sustainable beekeeping worldwide.

3.
Int J Mol Sci ; 25(12)2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38928296

ABSTRACT

Honey is traditionally used for its medicinal properties attributed to its antibacterial and antioxidant effects. It is considered a natural alternative to conventional antibiotics. This effect has been attributed to their physico-chemical properties, as various chemical parameters can synergistically influence this effect. The aim of this study is to assess Spanish honeys of diverse botanical origins for their antibacterial efficacy against Staphylococcus epidermidis, correlating their physico-chemical attributes, (poly)phenol content, and antioxidant activity. The methods included colour determination via two methodologies, acidity, pH, moisture content, and sugar concentration. (Poly)phenol content was quantified using the Folin-Ciocalteau method, while antioxidant activity was evaluated via the FRAP method. Subsequently, the minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) against S. epidermidis were investigated with different concentrations of honeys. The results revealed a direct relationship between honey darkness, (poly)phenol concentration, antioxidant activity, and antibacterial efficacy. Darker honeys exhibited higher (poly)phenol levels, greater antioxidant activity, and consequently, lower MIC and MBC values, showing enhanced antibacterial properties. These findings underscore the potential of honey as a therapeutic agent against S. epidermidis, particularly in wound healing applications to avoid infection. Further research into honey's multifaceted properties is warranted to unveil novel therapeutic avenues in healthcare.


Subject(s)
Anti-Bacterial Agents , Antioxidants , Honey , Microbial Sensitivity Tests , Staphylococcus epidermidis , Staphylococcus epidermidis/drug effects , Honey/analysis , Anti-Bacterial Agents/pharmacology , Antioxidants/pharmacology , Spain
4.
Anal Chim Acta ; 1304: 342536, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38637048

ABSTRACT

Honeys of particular botanical origins can be associated with premium market prices, a trait which also makes them susceptible to fraud. Currently available authenticity testing methods for botanical classification of honeys are either time-consuming or only target a few "known" types of markers. Simple and effective methods are therefore needed to monitor and guarantee the authenticity of honey. In this study, a 'dilute-and-shoot' approach using liquid chromatography (LC) coupled to quadrupole time-of-flight-mass spectrometry (QTOF-MS) was applied to the non-targeted fingerprinting of honeys of different floral origin (buckwheat, clover and blueberry). This work investigated for the first time the impact of different instrumental conditions such as the column type, the mobile phase composition, the chromatographic gradient, and the MS fragmentor voltage (in-source collision-induced dissociation) on the botanical classification of honeys as well as the data quality. Results indicated that the data sets obtained for the various LC-QTOF-MS conditions tested were all suitable to discriminate the three honeys of different floral origin regardless of the mathematical model applied (random forest, partial least squares-discriminant analysis, soft independent modelling by class analogy and linear discriminant analysis). The present study investigated different LC-QTOF-MS conditions in a "dilute and shoot" method for honey analysis, in order to establish a relatively fast, simple and reliable analytical method to record the chemical fingerprints of honey. This approach is suitable for marker discovery and will be used for the future development of advanced predictive models for honey botanical origin.


Subject(s)
Honey , Honey/analysis , Mass Spectrometry , Discriminant Analysis , Chromatography, Liquid , Liquid Chromatography-Mass Spectrometry
5.
J Food Sci Technol ; 61(5): 939-949, 2024 May.
Article in English | MEDLINE | ID: mdl-38487291

ABSTRACT

The aim of this work was to give characteristic stable carbon and nitrogen isotope ratio (δ13Choney, δ13Cprotein and δ15N) ranges and examine their relation with botanical origin of honey. Despite that δ13C parameter has primary purpose to detect honey adulteration, stable isotopes generally have become important parameter for detection its botanical and geographical origin. The data about stable isotopes are scarce in comparison to other well-known parameters in honey, and in Croatia there is no data about stable isotopes in unifloral honey. This research includes six characteristic honey types (black locust, chestnut, lime, rape, winter savory, and sage honey) from Croatia. Large number of differences between honey types were found in the analyzed IRMS parameters. PCA analysis has successfully separated winter savory from all other honey types, except sage honey, whose samples differed from black locust samples. Supplementary Information: The online version contains supplementary material available at 10.1007/s13197-023-05888-9.

6.
Foods ; 13(4)2024 Feb 09.
Article in English | MEDLINE | ID: mdl-38397509

ABSTRACT

Nowadays, in people's perceptions, the return to roots in all aspects of life is an increasing temptation. This tendency has also been observed in the medical field, despite the availability of high-level medical services with many years of research, expertise, and trials. Equilibrium is found in the combination of the two tendencies through the inclusion of the scientific experience with the advantages and benefits provided by nature. It is well accepted that the nutritional and medicinal properties of honey are closely related to the botanical origin of the plants at the base of honey production. Despite this, people perceive honey as a natural and subsequently a simple product from a chemical point of view. In reality, honey is a very complex matrix containing more than 200 compounds having a high degree of compositional variability as function of its origin. Therefore, when discussing the nutritional and medicinal properties of honey, the importance of the geographical origin and its link to the honey's composition, due to potential emerging contaminants such as Rare Earth Elements (REEs), should also be considered. This work offers a critical view on the use of honey as a natural superfood, in a direct relationship with its botanical and geographical origin.

7.
Braz. j. biol ; 842024.
Article in English | LILACS-Express | LILACS, VETINDEX | ID: biblio-1469316

ABSTRACT

Abstract The antioxidant activity of Tetragonisca angustula honey (TAH) and its ethanolic extract (TAEE) were investigated. The total levels of phenolic (TPC) and flavonoids (TFC) were also evaluated. The results for TPC were 19.91 ± 0.38 and 29.37 ± 1.82 mg GAE g-1 and for TFC 0.20 ± 0.02 and 0.14 ± 0.01 mg QE g-1 of TAH and TAEE, respectively. Antioxidant activities were 73.29 ± 0.49% and 93.36 ± 0.27% in the DPPH assay and 71.73 ± 4.07% and 97.86 ± 0.35% in ABTS+ for TAH and TAEE, respectively. The total reducing activity was determined by the method of reducing power (PR) and iron ion (Fe III) and the results varied in PR from 151.7 ± 25.7 and 230.7 ± 25.2 mg GAE L-1, for TAH and TAEE respectively and for (Fe III) in EC50 0.284 in TAEE and 0.687 in TAH. Chemical analysis by HPLC-DAD of the ethanolic extract (TAEE) revealed the presence of ferulic acid as majority phenolic component in the extract. The 1H NMR analysis confirmed this structure and showed the also presence of glucose, citric acid, succinic acid, proline and hydrocarbon derivatives. In addition, the botanical origin was also investigated and showed a multifloral characteristic, having found 19 pollen types with a botanical predominance of the Anacardiaceae family, with Tapirira pollen occurring as predominant (42.6%) and Schinus as secondary (25.7%). The results showed that T. angustula honey is an interesting source of antioxidant phenolic compounds due to its floral origin and can act as a protector of human health when consumed.


Resumo A atividade antioxidante do mel de Tetragonisca angustula (TAH) e seu extrato etanólico (TAEE) foram investigados. Os níveis totais de fenólicos (TPC) e flavonóides (TFC) também foram avaliados. Os resultados para TPC foram 19,91 ± 0,38 e 29,37 ± 1,82 mg GAE g-1 e para TFC 0,20 ± 0,02 e 0,14 ± 0,01 mg QE g-1 de TAH e TAEE, respectivamente. As atividades antioxidantes foram 73,29 ± 0,49% e 93,36 ± 0,27% no ensaio DPPH e 71,73 ± 4,07% e 97,86 ± 0,35% no ABTS+ para TAH e TAEE, respectivamente. A atividade redutora total foi determinada pelo método de poder redutor (PR) e íon ferrico (Fe III) e os resultados variaram em PR de 151,7 ± 25,7 e 230,7 ± 25,2 mg GAE L-1, para TAH e TAEE respectivamente e para (Fe III) em EC50 0,284 em TAEE e 0,687 em TAH. A análise química por HPLC-DAD do extrato etanólico (TAEE) revelou a presença de ácido ferúlico como componente majoritário no extrato. A análise de RMN 1H confirmou esta estrutura e mostrou a presença de glicose, ácido cítrico, ácido succínico, prolina e derivados de hidrocarbonetos no TAEE. Além disso, a origem botânica também foi investigada e apresentou característica multifloral, tendo encontrado 19 tipos polínicos com predomínio botânico da família Anacardiaceae, sendo o pólen Tapirira predominante (42,6%) e o Schinus secundário (25,7%). Os resultados mostraram que o mel de T. angustula é uma interessante fonte de compostos fenólicos antioxidantes devido à sua origem floral e pode atuar como protetor da saúde humana quando consumido.

8.
Braz. j. biol ; 84: e253599, 2024. tab, graf
Article in English | LILACS, VETINDEX | ID: biblio-1355891

ABSTRACT

Abstract The antioxidant activity of Tetragonisca angustula honey (TAH) and its ethanolic extract (TAEE) were investigated. The total levels of phenolic (TPC) and flavonoids (TFC) were also evaluated. The results for TPC were 19.91 ± 0.38 and 29.37 ± 1.82 mg GAE g-1 and for TFC 0.20 ± 0.02 and 0.14 ± 0.01 mg QE g-1 of TAH and TAEE, respectively. Antioxidant activities were 73.29 ± 0.49% and 93.36 ± 0.27% in the DPPH● assay and 71.73 ± 4.07% and 97.86 ± 0.35% in ABTS●+ for TAH and TAEE, respectively. The total reducing activity was determined by the method of reducing power (PR) and iron ion (Fe III) and the results varied in PR from 151.7 ± 25.7 and 230.7 ± 25.2 mg GAE L-1, for TAH and TAEE respectively and for (Fe III) in EC50 0.284 in TAEE and 0.687 in TAH. Chemical analysis by HPLC-DAD of the ethanolic extract (TAEE) revealed the presence of ferulic acid as majority phenolic component in the extract. The 1H NMR analysis confirmed this structure and showed the also presence of glucose, citric acid, succinic acid, proline and hydrocarbon derivatives. In addition, the botanical origin was also investigated and showed a multifloral characteristic, having found 19 pollen types with a botanical predominance of the Anacardiaceae family, with Tapirira pollen occurring as predominant (42.6%) and Schinus as secondary (25.7%). The results showed that T. angustula honey is an interesting source of antioxidant phenolic compounds due to its floral origin and can act as a protector of human health when consumed.


Resumo A atividade antioxidante do mel de Tetragonisca angustula (TAH) e seu extrato etanólico (TAEE) foram investigados. Os níveis totais de fenólicos (TPC) e flavonóides (TFC) também foram avaliados. Os resultados para TPC foram 19,91 ± 0,38 e 29,37 ± 1,82 mg GAE g-1 e para TFC 0,20 ± 0,02 e 0,14 ± 0,01 mg QE g-1 de TAH e TAEE, respectivamente. As atividades antioxidantes foram 73,29 ± 0,49% e 93,36 ± 0,27% no ensaio DPPH● e 71,73 ± 4,07% e 97,86 ± 0,35% no ABTS●+ para TAH e TAEE, respectivamente. A atividade redutora total foi determinada pelo método de poder redutor (PR) e íon ferrico (Fe III) e os resultados variaram em PR de 151,7 ± 25,7 e 230,7 ± 25,2 mg GAE L-1, para TAH e TAEE respectivamente e para (Fe III) em EC50 0,284 em TAEE e 0,687 em TAH. A análise química por HPLC-DAD do extrato etanólico (TAEE) revelou a presença de ácido ferúlico como componente majoritário no extrato. A análise de RMN 1H confirmou esta estrutura e mostrou a presença de glicose, ácido cítrico, ácido succínico, prolina e derivados de hidrocarbonetos no TAEE. Além disso, a origem botânica também foi investigada e apresentou característica multifloral, tendo encontrado 19 tipos polínicos com predomínio botânico da família Anacardiaceae, sendo o pólen Tapirira predominante (42,6%) e o Schinus secundário (25,7%). Os resultados mostraram que o mel de T. angustula é uma interessante fonte de compostos fenólicos antioxidantes devido à sua origem floral e pode atuar como protetor da saúde humana quando consumido.


Subject(s)
Humans , Animals , Honey/analysis , Antioxidants , Phenols/analysis , Brazil , Coumaric Acids
9.
Heliyon ; 9(12): e20030, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38125457

ABSTRACT

Physalis Calyx seu Fructus is the dry calyx or the calyx with fruit of the Solanaceae plant Physalis alkekengi L. var. franchetii (Mast.) Makino, with a long history of use in medicine and food. However, despite its many potential therapeutic and culinary applications, P. alkekengi is not being exploited for these applications on a large scale. This study analysed various research related to the different chemical components of P. alkekengi, including steroids, flavonoids, alkaloids, phenylpropanoids, sucrose esters, piperazines, volatile oils, polysaccharides, amino acids, and trace elements. In addition, research related to the pharmacological activities of P. alkekengi, including its anti-inflammatory, anti microbial, antioxidative, hypoglycaemic, analgesic, anti-tumour, and immunomodulatory effects were investigated. Research articles from 1974 to 2023 were obtained from websites such as Google Scholar, Baidu Scholar, and China National Knowledge Infrastructure, and journal databases such as Scopus and PubMed, with the keywords such as Physalis alkekengi, components, effects, and activities. This study aims to provide a comprehensive understanding of the progress of phytochemical and pharmacological research on the phytochemical and pharmacological aspects of P. alkekengi and a reference for the better exploitation of P. alkekengi in the food and pharmaceutical industries.

10.
Compr Rev Food Sci Food Saf ; 22(5): 3870-3909, 2023 09.
Article in English | MEDLINE | ID: mdl-37548598

ABSTRACT

Dietary supplements are legally considered foods despite frequently including medicinal plants as ingredients. Currently, the consumption of herbal dietary supplements, also known as plant food supplements (PFS), is increasing worldwide and some raw botanicals, highly demanded due to their popularity, extensive use, and/or well-established pharmacological effects, have been attaining high prices in the international markets. Therefore, botanical adulteration for profit increase can occur along the whole PFS industry chain, from raw botanicals to plant extracts, until final PFS. Besides the substitution of high-value species, unintentional mislabeling can happen in morphologically similar species. Both cases represent a health risk for consumers, prompting the development of numerous works to access botanical adulterations in PFS. Among different approaches proposed for this purpose, mass spectrometry (MS)-based techniques have often been reported as the most promising, particularly when hyphenated with chromatographic techniques. Thus, this review aims at describing an overview of the developments in this field, focusing on the applications of MS-based techniques to targeted and untargeted analysis to detect botanical adulterations in plant materials, extracts, and PFS.


Subject(s)
Dietary Supplements , Plants, Medicinal , Mass Spectrometry/methods , Drug Contamination
11.
Foods ; 12(14)2023 Jul 11.
Article in English | MEDLINE | ID: mdl-37509753

ABSTRACT

Camellia bee pollen (CBP) is a major kind of bee product which is collected by honeybees from tea tree (Camellia sinensis L.) flowers and agglutinated into pellets via oral secretion. Due to its special healthcare value, the authenticity of its botanical origin is of great interest. This study aimed at distinguishing CBP from other bee pollen, including rose, apricot, lotus, rape, and wuweizi bee pollen, based on a non-targeted metabolomics approach using ultra-high performance liquid chromatography-mass spectrometry. Among the bee pollen groups, 54 differential compounds were identified, including flavonol glycosides and flavone glycosides, catechins, amino acids, and organic acids. A clear separation between CBP and all other samples was observed in the score plots of the principal component analysis, indicating distinctive metabolic profiles of CBP. Notably, L-theanine (864.83-2204.26 mg/kg) and epicatechin gallate (94.08-401.82 mg/kg) were identified exclusively in all CBP and were proposed as marker compounds of CBP. Our study unravels the distinctive metabolic profiles of CBP and provides specific and quantified metabolite indicators for the assessment of authentic CBP.

12.
Molecules ; 28(11)2023 May 24.
Article in English | MEDLINE | ID: mdl-37298771

ABSTRACT

The botanical origin of honey determines its composition and hence properties and product quality. As a highly valued food product worldwide, assurance of the authenticity of honey is required to prevent potential fraud. In this work, the characterisation of Spanish honeys from 11 different botanical origins was carried out by headspace gas chromatography coupled with mass spectrometry (HS-GC-MS). A total of 27 volatile compounds were monitored, including aldehydes, alcohols, ketones, carboxylic acids, esters and monoterpenes. Samples were grouped into five categories of botanical origins: rosemary, orange blossom, albaida, thousand flower and "others" (the remaining origins studied, due to the limitation of samples available). Method validation was performed based on linearity and limits of detection and quantification, allowing the quantification of 21 compounds in the different honeys studied. Furthermore, an orthogonal partial least squares-discriminant analysis (OPLS-DA) chemometric model allowed the classification of honey into the five established categories, achieving a 100% and 91.67% classification and validation success rate, respectively. The application of the proposed methodology was tested by analysing 16 honey samples of unknown floral origin, classifying 4 as orange blossom, 4 as thousand flower and 8 as belonging to other botanical origins.


Subject(s)
Honey , Volatile Organic Compounds , Gas Chromatography-Mass Spectrometry/methods , Honey/analysis , Volatile Organic Compounds/analysis , Discriminant Analysis , Flowers/chemistry
13.
Foods ; 12(12)2023 Jun 07.
Article in English | MEDLINE | ID: mdl-37372514

ABSTRACT

(1) Background: Propolis has attracted attention in recent years due to its important pharmacological effects. The present study aimed to investigate the botanical origins of 39 propolis samples and evaluate their antioxidant activities; (2) Methods: A HPLC-PDA system was used to analyze the phenolic compositions of propolis and poplar bud resin samples. The antioxidant activities of propolis samples were evaluated by oxygen radical absorption capacity (ORAC) and superoxide anion free radical scavenging capacity assay; (3) Results: Our study shows that 17 propolis samples were characterized by five predominant flavonoids, including 5-methoxy pinobanksin, pinobanksin, pinocembrin, pinobanksin-3-acetate, and chrysin, while 22 propolis samples were characterized by four flavonoids (pinobanksin, pinocembrin, pinobanksin-3-acetate, and chrysin). The average contents of characteristic flavonoids reached up to over 70% and 65% of total phenolics, respectively. Furthermore, the botanical origins of the two types of propolis samples were identified as Populus × euramericana cv. 'Neva' and Populus Simonii × P. nigra, respectively; (4) Conclusions: Most notably, our results reveal that these propolis samples presented excellent antioxidant activities due to their high contents of flavonoid. These flavonoid-rich propolis samples can thus be used to develop low-allergen and high-antioxidant nutraceuticals.

14.
Heliyon ; 9(5): e16047, 2023 May.
Article in English | MEDLINE | ID: mdl-37215831

ABSTRACT

The availability of bee forage limits honeybee productivity and is very important for beekeepers. Therefore, the current study aimed to identify the major botanical resources of honeybee, A. mellifera scutellata, in Southwest Ethiopia. Between October 2019 and October 2020, 69 group discussions (8-12 beekeepers), field observations, and pollen analysis were used to collect data. A total of 72 honey samples were collected from five districts at different seasons for pollen analysis. Most of the honey samples tested (93.06%) were multifloral, while 6.94% were monofloral. Melissopalynological analysis indicated that Eucalyptus camaldulensis (52.02%) was the predominant pollen type and is considered monofloral honey. Terminalia spp. (25.96%), Guizotia spp. (17.80%), and Bidens spp. (17.61%) were secondary pollen types and classified as multifloral honey. Terminalia spp., Guizotia spp., Vernonia spp., Bidens ssp., Plantago spp., and E. camaldulensis were pollen types recorded in honey samples in all agroecologies. Beekeepers ranked Schefflera abyssinica, Vernonia amygdalina, and Cordia africana as the first source of pollen and nectar for honeybees in highland, midland, and lowland, respectively. Additionally, V. amygdalina, Coffea arabica, Croton macrostachyus, and C. africana were commonly observed bee flora in all agroecologies. Honey bee management, such as bee forage shortages, the occurrence of brood and swarming, varied significantly (P < 0.05) among different agroecologies. In the present study, 53 honeybee plants were identified as pollen and nectar sources for honeybees. Various herbs (41.50%), trees (30.20%), and shrubs (28.30%) played a major role in honey production. Thus, beekeeping should be integrated with vegetation conservation for livelihood improvement and food security. Furthermore, existing bee flora should be cultivated in areas to increase the harvesting of honeybee products and improve the apiculture industry.

15.
Food Chem ; 418: 135976, 2023 Aug 30.
Article in English | MEDLINE | ID: mdl-36963136

ABSTRACT

The botanical origins of honey are important for the quality control and commercialization of honey. In this research, we established a nanoliter electrospray ionization mass spectrometry (Nano-ESI-MS) method to identify Castanopsis honey (CH), Eurya honey (EH), Dendropanax dentiger honey (DH), and Triadica cochinchinensis honey (TH). In total, 38 compounds were identified based on the collision-induced dissociation experiments by Nano-ESI-MS with 16 differential compounds and 7 quantified as potential differential markers. These four types of honey were distinguished from each other by their mass spectrometry data combined with multivariate analysis with three out of the 7 differential markers, i.e., phenethylamine, tricoumaroyl spermidine, and (+/-)-abscisic acid, identified as potential markers for CH, EH, and DH, respectively. Both the qualitative and quantitative results derived from Nano-ESI-MS were further verified by UPLC-Q/TOF-MS. Our studies provided the significant potential of the Nano-ESI-MS method in the identification of the botanical origins of different kinds of honey.


Subject(s)
Honey , Spectrometry, Mass, Electrospray Ionization , Spectrometry, Mass, Electrospray Ionization/methods , Chromatography, High Pressure Liquid/methods , Honey/analysis , Multivariate Analysis
16.
Food Chem ; 415: 135727, 2023 Jul 30.
Article in English | MEDLINE | ID: mdl-36871408

ABSTRACT

The objective of this study was to investigate the phenolic composition and biological properties of chestnut honeys of 41 stations in Turkey's the Black Sea and Marmara regions. A total of sixteen phenolic compounds and organic acids were detected using HPLC-DAD and levulinic, gallic, protocatechuic, vanilic, trans-cinnamic acids and (4-hydroxyphenyl) ethanol were identified in all studied chestnut honeys. Antioxidant activities were measured by ABTS•+, ß-carotene-linoleic acid, CUPRAC, DPPH•, and metal chelating assays. Antimicrobial activities were carried out against gram positive, gram negative bacteria and Candida species using well diffusion test. Anti-inflammatory activities were evaluated against COX-1 and COX-2 whereas enzyme inhibitory activities were assessed on AChE, BChE, urease, and tyrosinase. The chemometric classification of chestnut honeys were carried out using PCA and HCA and it was seen that some phenolic compounds contributed significantly to the classification of chestnut honeys from various geographical origin.


Subject(s)
Chemometrics , Honey , Turkey , Honey/analysis , Phenols/analysis , Antioxidants/pharmacology
17.
Molecules ; 28(4)2023 Feb 11.
Article in English | MEDLINE | ID: mdl-36838725

ABSTRACT

Extra virgin olive oil (EVOO) possesses a high-value rank in the food industry, thus making it a common target for adulteration. Hence, several methods have been essentially made available over the years. However, the issue of authentication remains unresolved with national and food safety organizations globally struggling to regulate and control its market. Over the course of this study, the aim was to determine the origin of EVOOs suggesting a high-throughput, state-of-the-art method that could be easily adopted. A rapid, NMR-based untargeted metabolite profiling method was applied and complemented by multivariate analysis (MVA) and statistical total correlation spectroscopy (STOCSY). STOCSY is a valuable statistical tool contributing to the biomarker identification process and was employed for the first time in EVOO analysis. Market samples from three Mediterranean countries of Spain, Italy, and Greece, blended samples from these countries, as well as monocultivar samples from Greece were analyzed. The NMR spectra were collected, with the help of chemometrics acting as "fingerprints" leading to the discovery of certain chemical classes and single biomarkers that were related to the classification of the samples into groups based on their origin.


Subject(s)
Olive Oil , Olive Oil/chemistry , Magnetic Resonance Spectroscopy , Multivariate Analysis , Italy , Spain
18.
Chem Biodivers ; 20(3): e202201124, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36730100

ABSTRACT

Bee bread is a unique natural product made by bees and good for human health. It has many bioactive molecules that can treat or prevent diseases. In this study, melissopalynological methods were used to examine five bee bread samples. Major plant sources found in bee bread were Lotus spp., Trifolium spp., and Xeranthemum spp., which are from the Fabaceae and Asteraceae families. Then, the amount of phenolic compounds and major carotenoids in bee bread (BB) samples were quantified. Gallic acid, caffeic acid, quercetin, and kaempferol were found in all BB samples, with ß-carotene being the most abundant carotenoid in all but BB1. In addition, the total phenolic/flavonoid content and antioxidant activities of all BB samples were determined. Total flavonoid, total phenolic, DPPH⋅, and ABTS⋅+ values were varied between 5.6-10.00 mg GAE/g DW, 1.2-4.3 mg QE/g DW, 1.2-5.5 mg TEAC/g DW, and 2.6-15.4 mg TEAC/g DW, respectively.


Subject(s)
Antioxidants , Propolis , Animals , Humans , Antioxidants/pharmacology , Asteraceae/chemistry , Bees/chemistry , Bees/metabolism , Carotenoids/chemistry , Carotenoids/pharmacology , Flavonoids , Phenols/chemistry , Phenols/pharmacology , Propolis/chemistry
19.
J Agric Food Chem ; 71(5): 2637-2643, 2023 Feb 08.
Article in English | MEDLINE | ID: mdl-36701260

ABSTRACT

Mass spectrometry based quasi-electronic nose using solid-phase microextraction to introduce volatiles directly to mass spectrometer without chromatographic separation (HS-SPME-MS) was used to discriminate 45 raw spirits produced from C3 (potato, rye, wheat) and C4 (corn, sorghum) plants. The samples were also subjected to isotope ratio mass spectrometry (IRMS), which unequivocally distinguished C3 from C4 samples; however, no clear differentiation was observed for C3 samples. On the contrary, HS-SPME-MS, which uses unresolved volatile compounds "fingerprints" in a form of ions of a given m/z range and various intensities provided excellent sample classification and prediction after OPLS-DA data processing verified also by the artificial neural network (ANN).


Subject(s)
Volatile Organic Compounds , Gas Chromatography-Mass Spectrometry/methods , Volatile Organic Compounds/chemistry , Mass Spectrometry/methods , Isotopes/analysis , Alcoholic Beverages/analysis , Solid Phase Microextraction/methods
20.
Molecules ; 27(24)2022 Dec 15.
Article in English | MEDLINE | ID: mdl-36558078

ABSTRACT

The controversial question of whether optical rotation data can be used to distinguish floral from honeydew honey was investigated. Specific optical rotation angles were determined for 41 honey samples, including floral, honeydew, and adulterated honey, indicating that moderate to high positive optical rotation angles were found for all adulterated samples measured. A strong correlation between the sugar profile and the specific optical rotation angle of honey was confirmed, and a method based on 13C NMR metabolomics was proposed to calculate specific optical rotation angles with good correlation with the experimental values. The results indicate that optical rotation is not a reliable method for distinguishing the origin of honey but could indicate adulteration.


Subject(s)
Honey , Honey/analysis , Optical Rotation , Magnetic Resonance Spectroscopy
SELECTION OF CITATIONS
SEARCH DETAIL
...