Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 35
Filter
Add more filters










Publication year range
1.
J Ethnopharmacol ; 313: 116612, 2023 Sep 15.
Article in English | MEDLINE | ID: mdl-37156448

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: In Brazil, there are species of snakes that become involved in accidents and cause serious health problems to the inhabitants, highlighting the genus Bothrops for being responsible for approximately 90% of accidents reported annually. In the northern region of the country, this genus is responsible for the largest number of accidents, especially among rural dwellers. These populations invest in alternative treatments for with the purpose of improving the symptoms caused by snakebites. The species Mauritia flexuosa L. f., known as buriti, is traditionally used for the treatment of envenomation by snakes. AIM OF THE STUDY: This study aimed to evaluate the antiophidic potential of the oil of Mauritia flexuosa L. f. for Bothrops moojeni H. venom, confronting cultural and scientific knowledge. MATERIALS AND METHODS: The physicochemical properties were determined, and the components present in the oil, extracted from fruit pulp, were analyzed by Gas Chromatography Coupled with Mass Spectrometry. The in vitro inhibitory capacity of the oil for phospholipase, metalloprotease and serine protease activities was investigated. In the in vivo studies, male Swiss mice were used to evaluate the effect of oil on lethality and toxicity, and hemorrhagic, myotoxic and edematogenic activities were assessed. RESULTS: GC‒MS analysis identification of 90.95% of the constituents of the oil, with the main components being 9-eicosenoic acid, (Z)- (34.54%), n-hexadecanoic acid (25.55%) and (E)-9-octadecenoic acid ethyl ester (12.43%). For the substrates, the outcomes indicate that the oil inhibited the activity of the main classes of toxins present in Bothrops moojeni H. venom (VBm) at the highest dose tested (0.5 µL), with inhibition of 84% for the hydrolysis of the selective substrate for serine protease and inhibition of 60% for the hydrolysis of substrates for PLA2 and metalloproteases. The antiophidic activity in vivo was evaluated with two concentrations of the oil: 1.5 mg, the dosage the population, diluted in mineral oil to a volume of 1 tablespoon and 15 mg, administered by gavage 30 min before poisoning and at time zero (concomitant to poisoning), and both concentrations administered by gavage in combination with topical use at time zero. The bleeding time in the group treated with oil at a concentration of 15 mg administered at time zero was significantly lower than that in the control group (p < 0.05). However, a greater inhibition of bleeding time was observed when local application was combined with the gavage treatment at both concentrations tested at time zero (p < 0.05). In the myotoxicity test, oil was efficient in reducing the myotoxic effects induced by the venom at the two concentrations tested, with gavage administration at time zero and gavage plus topical administration at time zero (p < 0.05). CONCLUSIONS: The data obtained show that the oil is safe to use at the concentrations studied and contains fatty acids that may collaborate for cellular-level repair of the injuries caused by Bm poisoning. The in vitro and in vivo experiments showed that oil inhibits the main proteolytic enzymes present in the venom and that it has important activities to control the local effects caused by bothropic venom.


Subject(s)
Bothrops , Crotalid Venoms , Snake Bites , Male , Animals , Mice , Snake Bites/drug therapy , Crotalid Venoms/toxicity , Gas Chromatography-Mass Spectrometry , Serine Proteases
2.
J Ethnopharmacol, v. 313, 116612, mai. 2023
Article in English | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-4909

ABSTRACT

In Brazil, there are species of snakes that become involved in accidents and cause serious health problems to the inhabitants, highlighting the genus Bothrops for being responsible for approximately 90% of accidents reported annually. In the northern region of the country, this genus is responsible for the largest number of accidents, especially among rural dwellers. These populations invest in alternative treatments for with the purpose of improving the symptoms caused by snakebites. The species Mauritia flexuosa L. f., known as buriti, is traditionally used for the treatment of envenomation by snakes. Aim of the study This study aimed to evaluate the antiophidic potential of the oil of Mauritia flexuosa L. f. for Bothrops moojeni H. venom, confronting cultural and scientific knowledge. Materials and methods The physicochemical properties were determined, and the components present in the oil, extracted from fruit pulp, were analyzed by Gas Chromatography Coupled with Mass Spectrometry. The in vitro inhibitory capacity of the oil for phospholipase, metalloprotease and serine protease activities was investigated. In the in vivo studies, male Swiss mice were used to evaluate the effect of oil on lethality and toxicity, and hemorrhagic, myotoxic and edematogenic activities were assessed. Results GC‒MS analysis identification of 90.95% of the constituents of the oil, with the main components being 9-eicosenoic acid, (Z)- (34.54%), n-hexadecanoic acid (25.55%) and (E)-9-octadecenoic acid ethyl ester (12.43%). For the substrates, the outcomes indicate that the oil inhibited the activity of the main classes of toxins present in Bothrops moojeni H. venom (VBm) at the highest dose tested (0.5 μL), with inhibition of 84% for the hydrolysis of the selective substrate for serine protease and inhibition of 60% for the hydrolysis of substrates for PLA2 and metalloproteases. The antiophidic activity in vivo was evaluated with two concentrations of the oil: 1.5 mg, the dosage the population, diluted in mineral oil to a volume of 1 tablespoon and 15 mg, administered by gavage 30 min before poisoning and at time zero (concomitant to poisoning), and both concentrations administered by gavage in combination with topical use at time zero. The bleeding time in the group treated with oil at a concentration of 15 mg administered at time zero was significantly lower than that in the control group (p < 0.05). However, a greater inhibition of bleeding time was observed when local application was combined with the gavage treatment at both concentrations tested at time zero (p < 0.05). In the myotoxicity test, oil was efficient in reducing the myotoxic effects induced by the venom at the two concentrations tested, with gavage administration at time zero and gavage plus topical administration at time zero (p < 0.05). Conclusions The data obtained show that the oil is safe to use at the concentrations studied and contains fatty acids that may collaborate for cellular-level repair of the injuries caused by Bm poisoning. The in vitro and in vivo experiments showed that oil inhibits the main proteolytic enzymes present in the venom and that it has important activities to control the local effects caused by bothropic venom.

3.
Academic monograph. São Paulo: Instituto Butantan; 2022. 42 p.
Thesis in Portuguese | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-4201

ABSTRACT

The main objective of this work was to evaluate data on birth of Bothrops moojeni newborns from the Laboratory of Herpetology at Instituto Butantan, in the period of 2002 and 2021, in order to establish relationships between different litters. For this study, females of Bothrops moojeni admitted from the wild, and females born in captivity were compared and analyzed. All females and their offspring had their data collected and analyzed, regarding the proportion of males and females per litter, mass, size, fertility rate, mortality, correlations about mother size and mass, number of offspring and relative litter mass. No significant relationship between maternal investment indices of females in relation to their size and mass were found, however the number of newborns was positively influenced by the body size of females. Data such as average gestation time, time of birth and number of newborn per litter found, were close to data recorded in literature.


Este trabalho teve como objetivo principal avaliar dados sobre nascimento de Bothrops moojeni do plantel do Laboratório de Herpetologia do Instituto Butantan, entre os anos de 2002 a 2021, a fim de estabelecer relações entre as diferentes ninhadas. Para isso, foram comparadas e analisadas fêmeas de Bothrops moojeni que deram entrada provenientes da natureza e fêmeas nascidas em cativeiro. Todas as fêmeas e seus filhotes tiveram seus dados coletados e analisados, com relação à proporção de machos e fêmeas por ninhada, massa, tamanho, taxa de fecundidade, mortalidade, correlações do tamanho e massa da mãe, número de filhotes e massa relativa da ninhada. Não foi observada relação significativa entre índices de investimento materno das fêmeas com relação ao seu tamanho e massa, entretanto a quantidade de recém-nascidos mostrou-se positivamente influenciada pelo tamanho corpóreo das fêmeas. Dados como tempo médio de gestação, época de nascimento e número de filhotes nascidos por ninhada observado se mostrou próximo a dados registrados em literatura.

4.
Toxins (Basel) ; 13(7)2021 06 30.
Article in English | MEDLINE | ID: mdl-34208941

ABSTRACT

Osteoclasts (OCs) are important for bone maintenance, calcium balance, and tissue regeneration regulation and are involved in different inflammatory diseases. Our study aimed to evaluate the effect of Bothrops moojeni's venom and its low and high molecular mass (HMM and LMM) fractions on human peripheral blood mononuclear cell (PBMC)-derived OCs' in vitro differentiation. Bothrops moojeni, a Brazilian lanced-head viper, presents a rich but not well-explored, venom composition. This venom is a potent inducer of inflammation, which can be used as a tool to investigate the inflammatory process. Human PBMCs were isolated and induced to OC differentiation following routine protocol. On the fourth day of differentiation, the venom was added at different concentrations (5, 0.5, and 0.05 µg/mL). We observed a significant reduction of TRAP+ (tartrate-resistant acid phosphatase) OCs at the concentration of 5 µg/mL. We evaluated the F-actin-rich OCs structure's integrity; disruption of its integrity reflects bone adsorption capacity. F-actin rings phalloidin staining demonstrated that venom provoked their disruption in treated OCs. HMM, fraction reduces TRAP+ OCs at a concentration of 5 µg/mL and LMM fraction at 1 µg/mL, respectively. Our results indicate morphological changes that the venom induced cause in OCs. We analyzed the pattern of soluble proteins found in the conditioned cell culture medium OCs treated with venom and its fractions using mass spectrometry (LC-MS/IT-Tof). The proteomic analyses indicate the possible pathways and molecular mechanisms involved in OC reduction after the treatment.


Subject(s)
Crotalid Venoms/toxicity , Osteoclasts/drug effects , Adult , Animals , Bothrops , Cell Differentiation/drug effects , Cell Survival/drug effects , Cells, Cultured , Humans , Leukocytes, Mononuclear/cytology , Leukocytes, Mononuclear/drug effects , Male , Osteoclasts/cytology , Osteoclasts/metabolism , Proteome/drug effects
5.
J Venom Res ; 11: 26-33, 2021.
Article in English | MEDLINE | ID: mdl-34123362

ABSTRACT

Belonging to the Viperidae family, Bothrops moojeni are widely distributed in South America, tropical savanna ecoregion (Cerrado) of Argentina, Bolivia, Brazil, and Paraguay with medical importance in Brazil. Accidents caused by this species have a rapid local action with the development of tissue inflammation, causing erythema, pain, and increased clotting time, which can culminate in gangrene or tissue necrosis. Bothrops moojeni venom has a rich composition that remains underexplored, which is of utmost importance, both for elucidating the envenoming process and the vast library of new bioactive molecules kind of venom can offer. This review aims to analyze which components of the venom have already been characterized towards its structure and biological effect and highlight the pharmacological and biotechnological potential of this venom. Although snake venoms have been studied for their toxic effects for generations, innovative studies address their components as tools for discovering new therapeutic targets and new molecules with pharmacological and biotechnological potential.

6.
Inflammopharmacology ; 29(1): 123-135, 2021 Feb.
Article in English | MEDLINE | ID: mdl-32924074

ABSTRACT

BACKGROUND: Bothrops moojeni snake venom (VBm) has toxins that cause pronounced tissue damage and exacerbated inflammatory reaction. Cannabis sativa L. is a plant species that produces an oil (CSO) rich in unsaturated fatty acids. Nano-emulsions have several advantages, such as better stability and higher penetrating power in membranes. Therefore, this study evaluated the effect of a nano-emulsion based on this herbal derivative (NCS) against VBm-induced inflammation in Wistar rats. METHODS: The CSO and NCS were submitted to physicochemical characterization. The inflammatory process was induced by the VBm (0.10 mg/kg) as follows: rat paw edema, peritonitis, analysis of leukocyte infiltrate in gastrocnemius muscle of rats and formation of granulomatous tissue. RESULTS: No significant changes were observed when the NCS was submitted to the centrifugation and thermal stress tests. There was no phase separation, changes in density (0.978 ± 0.01 g/cm3) and viscosity (0.889 ± 0.15). The droplet diameter ranged from 119.7 ± 065 to 129.3 ± 0.15 nm and the polydispersity index ranged from 0.22 ± 0.008 to 0.23 ± 0.011. The results showed that treatments with CSO (200 and 400 mg/kg) and NCS (100 mg/kg) were able to decrease significantly (p < 0.001) the formation of edema and granulomatous tissue. The CSO and NCS groups significantly attenuated (p < 0.001) the recruitment of inflammatory cells in the tests for peritonitis and leukocyte infiltrate. The histopathological analysis of the gastrocnemius muscle showed a reduction in tissue damage caused by VBm. CONCLUSION: The results obtained in this study showed anti-inflammatory activity of the CSO which may be due to a high UFA content. The nanosizing, as evidenced by the incorporation of the CSO in the NCS improved the effect and opens the perspective for the obtainment of a nanomedicine in which a kinetic stable phytotherapic can be used at low doses.


Subject(s)
Cannabis/chemistry , Crotalid Venoms/toxicity , Inflammation/drug therapy , Plant Oils/pharmacology , Animals , Anti-Inflammatory Agents/administration & dosage , Anti-Inflammatory Agents/pharmacology , Bothrops , Edema/drug therapy , Edema/pathology , Emulsions , Inflammation/pathology , Male , Muscle, Skeletal/drug effects , Muscle, Skeletal/pathology , Nanostructures , Particle Size , Plant Oils/administration & dosage , Rats , Rats, Wistar
7.
Arch Toxicol ; 95(1): 345-353, 2021 01.
Article in English | MEDLINE | ID: mdl-32880718

ABSTRACT

Snakebite envenomation causes > 81,000 deaths and incapacities in another 400,000 people worldwide every year. Snake venoms are complex natural secretions comprised of hundreds of different molecules with a wide range of biological functions that after injection cause local and systemic manifestations. Although several studies have investigated snake venoms, the majority have focused on the protein portion (toxins), without significant attention paid to the lipid fraction. Therefore, an untargeted lipidomic approach based on liquid chromatography with high-resolution mass spectrometry (LC-HRMS) was applied to investigate the lipid constituents of venoms of the snake species Crotalus durissus terrificus and Bothrops moojeni. Phosphatidylcholines (PC), Lyso-PCs, phosphatidylethanolamines (PE), Lyso-PE, phosphatidylserine (PS), phosphatidylinositol (PI), ceramides (Cer), and sphingomyelin (SM) species were detected in the analyzed snake venoms. The identified lipids included bioactive compounds such as platelet-activating factor (PAF) precursor, PAF-like molecules, plasmalogens, ceramides, and sphingomyelins with long fatty acid chain lengths, which may be associated with the systemic responses triggered by C. d. terrificus and B. moojeni envenomation. These responses include platelet aggregation, activation of intercellular adhesion molecule 1 (ICAM1), apoptosis, as well as the production of pro-inflammatory lipid mediators, cytokines, and reactive species. The newly proposed lipidomics strategy provided valuable information regarding the lipid profiles of viperid venoms, which could lead to increased understanding of the complex pathology promoted by snakebite envenomation.


Subject(s)
Bothrops , Ceramides/metabolism , Crotalid Venoms/metabolism , Crotalus , Lipidomics , Phospholipids/metabolism , Snake Bites , Sphingomyelins/metabolism , Animals , Ceramides/toxicity , Chromatography, High Pressure Liquid , Crotalid Venoms/toxicity , Phospholipids/toxicity , Sphingomyelins/toxicity , Tandem Mass Spectrometry
8.
Toxins, v. 13, n. 7, 459, jun. 2021
Article in English | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-3886

ABSTRACT

Osteoclasts (OCs) are important for bone maintenance, calcium balance, and tissue regeneration regulation and are involved in different inflammatory diseases. Our study aimed to evaluate the effect of Bothrops moojeni’s venom and its low and high molecular mass (HMM and LMM) fractions on human peripheral blood mononuclear cell (PBMC)-derived OCs’ in vitro differentiation. Bothrops moojeni, a Brazilian lanced-head viper, presents a rich but not well-explored, venom composition. This venom is a potent inducer of inflammation, which can be used as a tool to investigate the inflammatory process. Human PBMCs were isolated and induced to OC differentiation following routine protocol. On the fourth day of differentiation, the venom was added at different concentrations (5, 0.5, and 0.05 µg/mL). We observed a significant reduction of TRAP+ (tartrate-resistant acid phosphatase) OCs at the concentration of 5 µg/mL. We evaluated the F-actin-rich OCs structure’s integrity; disruption of its integrity reflects bone adsorption capacity. F-actin rings phalloidin staining demonstrated that venom provoked their disruption in treated OCs. HMM, fraction reduces TRAP+ OCs at a concentration of 5 µg/mL and LMM fraction at 1 µg/mL, respectively. Our results indicate morphological changes that the venom induced cause in OCs. We analyzed the pattern of soluble proteins found in the conditioned cell culture medium OCs treated with venom and its fractions using mass spectrometry (LC-MS/IT-Tof). The proteomic analyses indicate the possible pathways and molecular mechanisms involved in OC reduction after the treatment.

9.
J Venom Res, v. 11, p. 26-33, maio. 2021
Article in English | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-3862

ABSTRACT

Belonging to the Viperidae family, Bothrops moojeni are widely distributed in South America, tropical savanna ecoregion (Cerrado) of Argentina, Bolivia, Brazil, and Paraguay with medical importance in Brazil. Accidents caused by this species have a rapid local action with the development of tissue inflammation, causing erythema, pain, and increased clotting time, which can culminate in gangrene or tissue necrosis. Bothrops moojeni venom has a rich composition that remains underexplored, which is of utmost importance, both for elucidating the envenoming process and the vast library of new bioactive molecules kind of venom can offer. This review aims to analyze which components of the venom have already been characterized towards its structure and biological effect and highlight the pharmacological and biotechnological potential of this venom. Although snake venoms have been studied for their toxic effects for generations, innovative studies address their components as tools for discovering new therapeutic targets and new molecules with pharmacological and biotechnological potential.

10.
J Venom Anim Toxins Incl Trop Dis ; 26: e20200123, 2020 Dec 14.
Article in English | MEDLINE | ID: mdl-33354202

ABSTRACT

BACKGROUND: Resistance to apoptosis in chronic myeloid leukemia (CML) is associated with constitutive tyrosine kinase activity of the Bcr-Abl oncoprotein. The deregulated expression of apoptosis-related genes and alteration in epigenetic machinery may also contribute to apoptosis resistance in CML. Tyrosine kinase inhibitors target the Bcr-Abl oncoprotein and are used in CML treatment. The resistance of CML patients to tyrosine kinase inhibitors has guided the search for new compounds that may induce apoptosis in Bcr-Abl+ leukemic cells and improve the disease treatment. METHODS: In the present study, we investigated whether the L-amino acid oxidase isolated from Bothrops moojeni snake venom (BmooLAAO-I) (i) was cytotoxic to Bcr-Abl+ cell lines (HL-60.Bcr-Abl, K562-S, and K562-R), HL-60 (acute promyelocytic leukemia) cells, the non-tumor cell line HEK-293, and peripheral blood mononuclear cells (PBMC); and (ii) affected epigenetic mechanisms, including DNA methylation and microRNAs expression in vitro. RESULTS: BmooLAAO-I induced ROS production, apoptosis, and differential DNA methylation pattern of regulatory apoptosis genes. The toxin upregulated expression of the pro-apoptotic genes BID and FADD and downregulated DFFA expression in leukemic cell lines, as well as increased miR-16 expression - whose major predicted target is the anti-apoptotic gene BCL2 - in Bcr-Abl+ cells. CONCLUSION: BmooLAAO-I exerts selective antitumor action mediated by H2O2 release and induces apoptosis, and alterations in epigenetic mechanisms. These results support future investigations on the effect of BmooLAAO-I on in vivo models to determine its potential in CML therapy.

11.
Biochimie ; 179: 54-64, 2020 Dec.
Article in English | MEDLINE | ID: mdl-32946987

ABSTRACT

Snakebite envenoming is still a worrying health problem in countries under development, being recognized as a neglected disease by the World Health Organization. In Latin America, snakes from the genus Bothrops are widely spread and in Brazil, the Bothrops moojeni is a medically important species. The pharmacological effects of bothropic snake venoms include pain, blisters, bleeding, necrosis and even amputation of the affected limb. Snake venom metalloproteinases are enzymes abundantly present in venom from Bothrops snakes. These enzymes can cause hemorrhagic effects and lead to myonecrosis due to ischemia. Here, we present BmooMP-I, a new P-I class of metalloproteinase (this class only has the catalytic domain in the mature form) isolated from B. moojeni venom. This protein is able to express fibrinogenolytic and gelatinase activities, which play important roles in the prey's immobilization and digestion, and also induces weak hemorrhagic effect. The primary sequence assignment was done by a novel method, SEQUENCE SLIDER, which combines crystallographic, bioinformatics and mass spectrometry data. The high-resolution crystal structure reveals the monomeric assembly and the conserved metal binding site H141ExxH145xxG148xxH151 with the natural substitution Gly148Asp that does not interfere in the zinc coordination. The presence of a structural calcium ion on the surface of the protein, which can play an important role in the stabilization of hemorrhagic toxins, was observed in the BmooMP-I structure. Due to the relevant local and systemic effects of snake venom metalloproteinases, studies involving these proteins help to better understand the pathological effects of snakebite envenoming.


Subject(s)
Bothrops/metabolism , Crotalid Venoms/enzymology , Metalloproteases/chemistry , Metalloproteases/pharmacology , Amino Acid Sequence , Animals , Calcium/chemistry , Cations/chemistry , Computational Biology , Crotalid Venoms/chemistry , Crotalid Venoms/isolation & purification , Crotalid Venoms/pharmacology , Crystallization , Crystallography, X-Ray , Databases, Protein , Fibrinogen/metabolism , Gelatin/metabolism , Hemorrhage/enzymology , Mass Spectrometry , Metalloproteases/isolation & purification , Mice , Models, Molecular , Sequence Alignment , Sequence Analysis, Protein , Skin/enzymology , Skin/metabolism
12.
Int Immunopharmacol ; 80: 106154, 2020 Mar.
Article in English | MEDLINE | ID: mdl-31962250

ABSTRACT

Bothrops snake venoms contain biologically active components, including L-amino acid oxidases (LAAO) that induce significant leukocyte accumulation at inflammatory sites characterized by early neutrophil infiltration. As it remains unclear how snake venoms modulate neutrophil activation and chemokine production, here we examined whether Bothrops moojeni crude venom (BmV) and its LAAO (BmooLAAO-I) affect expression of the surface activation markers CD11b and CD66b, production of the chemokines CCL2/MCP-1, CCL5/RANTES, CXCL8/IL-8, CXCL9/MIG, and CXCL-10/IP-10, and activation of oxidative burst in human neutrophils. Cell viability, expression of activation markers, and chemokine production were assessed by flow cytometry, while the oxidative burst response was measured by chemiluminescence. BmV at 50 and 75 µg/mL reduced CXCL8/IL-8 (p < 0.001 and p < 0.01, respectively) and CCL2/MCP-1 production (p < 0.05), while BmooLAAO-I at the same concentrations reduced only CCL2/MCP-1 production (p < 0.01). These effects were accompanied by CD11b upregulation (p < 0.05 for 50 and 75 µg/mL BmV; p < 0.01 for 50 and 75 µg/mL BmooLAAO-I) and CD66b downregulation (p < 0.05 for 50 and 75 µg/mL BmV). Both BmV and BmooLAAO-I at concentrations ranging from 0.625 to 5 µg/mL suppressed the oxidative burst of neutrophils stimulated with phorbol 12-myristate 13-acetate, while BmooLAAO-I at 2.5 and 5 µg/mL also suppressed the neutrophil response stimulated with opsonized zymosan. Considering that neutrophils participate in the pathogenesis of autoimmune and inflammatory diseases, the findings reported herein indicate that BmV and BmooLAAO-I are potential immunomodulating agents.


Subject(s)
Bothrops , Crotalid Venoms/pharmacology , L-Amino Acid Oxidase/pharmacology , Neutrophils/drug effects , Reptilian Proteins/pharmacology , Adult , Animals , CD11b Antigen/metabolism , Cell Survival/drug effects , Cells, Cultured , Cytokines/metabolism , Down-Regulation/drug effects , Female , Humans , Male , Middle Aged , Neutrophils/metabolism , Respiratory Burst/drug effects , Up-Regulation/drug effects
13.
Academic monograph. São Paulo: Secretaria de Estado da Saúde de São Paulo. Centro de Formação de Recursos Humanos para o SUS/SP Dr. Antônio Guilherme de SouzaInstituto Butantan; 2020. 37 p.
Thesis in Portuguese | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP, SESSP-ESPECIALIZACAOSESPROD, Sec. Est. Saúde SP | ID: bud-3748

ABSTRACT

Os venenos de serpentes são misturas complexas constituídas, em grande parte, de proteínas enzimáticas ou não; somando aproximadamente 90% do peso seco do veneno. O estudo da composição dos venenos colabora com o contínuo avanço biotecnológico, com o desenvolvimento de fármacos e na compreensão dos processos bioquímicos e fisiopatológicos dos organismos. O “grupo Bothrops atrox” corresponde a um conjunto de serpentes peçonhentas amplamente distribuídas na região neotropical e que apresenta um complexo padrão de variação morfológica interespecífico e intraespecífico. Por meio de experimentos in vitro e in vivo, e contribuindo para o melhor entendimento das variações interespecíficas, bem como da filogenia dentro do complexo, foi proposto um modelo de estudo composto por análises biológicas e bioquímicas de 4 amostras de “Pools” de venenos (1 amostra por espécie) de exemplares machos e fêmeas, de diversas idades e procedências das espécies Bothrops atrox, B. leucurus, B. marajoensis e B. moojeni, visando uma análise comparativa por meio da quantificação proteica, análise dos perfis eletroforéticos e de zimografia dos venenos bem como determinação da Dose Mínima Coagulante, atividade hemorrágica, letalidade e a soroneutralização destas atividades pelo antiveneno botrópico. Os venenos das espécies estudadas apresentaram semelhanças em relação à algumas atividades bioquímicas, porém mostrando maiores particularidades nos testes de atividade biológica, sendo as atividades hemorragica e de letalidade, assim como suas respectivas soroneutralizações.

14.
Academic monograph. São Paulo: Secretaria de Estado da Saúde de São Paulo. Centro de Formação de Recursos Humanos para o SUS/SP Dr. Antônio Guilherme de SouzaInstituto Butantan; 2020. 34 p.
Thesis in Portuguese | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP, SESSP-ESPECIALIZACAOSESPROD, Sec. Est. Saúde SP | ID: bud-3735

ABSTRACT

The reproductive biology of snakes is gaining more attention because it is an event that contains unique characteristics, such as sperm storage, seasonal and biennial cycles, copulations that occur in autumn-winter and parturition in summer and parental care among other characteristics. However, we need to go deeper into what concerns the courtship and copulation behavior of these animals[...]


A biologia reprodutiva das serpentes vem ganhando mais atenção por ser um evento que contém características únicas, como por exemplo, a estocagem de esperma, ciclos sazonal e bienal, cópulas que ocorrem no outono-inverno e parturição no verão, cuidado parental, e entre outras características. Contudo precisamos nos aprofundar no que se diz respeito ao comportamento de corte e cópula desses animais. Por exemplo, cada espécie do gênero Bothrops tem um tipo de display de comportamento como, por exemplo, a Bothrops moojeni que faz a dança combate entre os machos. Entretanto esses comportamentos não têm sido tão valorizados pela literatura, pois ainda as descrições desses comportamentos são bastante escassas por terem poucas espécies estudadas, dificultando o conhecimento dos tais comportamentos para uma futura comparação entre as futuras espécies estudadas. Para este trabalho a espécie escolhida foi a Bothrops moojeni, um animal que pertence ao grupo atrox, encontrado no Cerrado do Brasil Central. Foram feito 4 pareamentos, com 9 animais utilizados, sendo que dois casais tiveram sucesso de cópula e os outros dois casais não tiveram cópulas. Os registros foram feitos através de sistema de filmagem instalado na sala de reprodução do Biotério do Laboratório de Herpetologia do Instituto Butantan. Foi possível registrar seus “displays” de comportamento entre machos e depois o comportamento deles na presença da fêmea e caracterizar comportamentos como: ponte corpórea, submissão, montar tipo 2, cabeça erguida tipo 2, roçar, levantamento caudal e acoplagem cloacal, que são rituais de comportamento de corte e cópula. Também verificamos que agosto foi o período de maior atividade reprodutiva em cativeiro. Esses dados poderão contribuir com estudos futuros a respeito do comportamento reprodutivo desses Viperidae.

15.
J. venom. anim. toxins incl. trop. dis ; 26: e20200123, 2020. graf
Article in English | LILACS, VETINDEX | ID: biblio-1143219

ABSTRACT

Resistance to apoptosis in chronic myeloid leukemia (CML) is associated with constitutive tyrosine kinase activity of the Bcr-Abl oncoprotein. The deregulated expression of apoptosis-related genes and alteration in epigenetic machinery may also contribute to apoptosis resistance in CML. Tyrosine kinase inhibitors target the Bcr-Abl oncoprotein and are used in CML treatment. The resistance of CML patients to tyrosine kinase inhibitors has guided the search for new compounds that may induce apoptosis in Bcr-Abl+ leukemic cells and improve the disease treatment. Methods: In the present study, we investigated whether the L-amino acid oxidase isolated from Bothrops moojeni snake venom (BmooLAAO-I) (i) was cytotoxic to Bcr-Abl+ cell lines (HL-60.Bcr-Abl, K562-S, and K562-R), HL-60 (acute promyelocytic leukemia) cells, the non-tumor cell line HEK-293, and peripheral blood mononuclear cells (PBMC); and (ii) affected epigenetic mechanisms, including DNA methylation and microRNAs expression in vitro. Results: BmooLAAO-I induced ROS production, apoptosis, and differential DNA methylation pattern of regulatory apoptosis genes. The toxin upregulated expression of the pro-apoptotic genes BID and FADD and downregulated DFFA expression in leukemic cell lines, as well as increased miR-16 expression - whose major predicted target is the anti-apoptotic gene BCL2 - in Bcr-Abl+ cells. Conclusion: BmooLAAO-I exerts selective antitumor action mediated by H2O2 release and induces apoptosis, and alterations in epigenetic mechanisms. These results support future investigations on the effect of BmooLAAO-I on in vivo models to determine its potential in CML therapy.(AU)


Subject(s)
Animals , Leukemia, Myelogenous, Chronic, BCR-ABL Positive , Apoptosis , Bothrops , L-Amino Acid Oxidase , In Vitro Techniques
16.
Int J Exp Pathol ; 99(5): 226-235, 2018 10.
Article in English | MEDLINE | ID: mdl-30456925

ABSTRACT

Ophidic accidents are among the problems of public health in Brazil. The components from bothropic venom are responsible for many systemic clinical complications resulting from envenomation. The present work aimed to analyse the systemic changes induced in mice after intraperitoneal administration of BmooTX-I, a myotoxic acidic phospholipase A2 isolated from Bothrops moojeni venom. Urinalysis was performed and the following plasma biochemical markers were documented: urea, creatinine and uric acid (renal function); glucose and amylase (pancreatic function); alanine aminotransferase, alkaline phosphatase and gamma-GT (intra- and extrahepatic function); creatine kinase and enzymatic lactate (muscle function). Our results showed that after the intraperitoneal injection of BmooTX-I the urine of these animals showed glycosuria, proteinuria, haematuria, bacteriuria, bilirubinuria, polyuria and nitrite. The plasma biochemical analysis showed alterations in levels of urea, creatinine and uric acid. Amylase concentration was not altered significantly, but the plasma glucose increased significantly compared to controls. The plasma levels of alanine aminotransferase and alkaline phosphatase decreased and increased, respectively, in these same animals. On the other hand, the plasma γGT concentration did not undergo significant modification compared to the control group. The plasma concentration of CK increased, while the enzymatic lactate concentration decreased after the injection of the BmooTX-I. Therefore, in mice BmooTX-I is capable of causing systemic alterations which manifest as renal, muscular, hepatic and pancreatic impairment.


Subject(s)
Bothrops , Crotalid Venoms/enzymology , Phospholipases A2/toxicity , Animals , Biomarkers/blood , Biomarkers/urine , Creatine Kinase/blood , Crotalid Venoms/chemistry , Crotalid Venoms/toxicity , Injections, Intraperitoneal , Kidney/drug effects , Liver/drug effects , Male , Mice , Muscle, Skeletal/drug effects , Pancreas/drug effects , Phospholipases A2/isolation & purification
17.
Toxins (Basel) ; 10(12)2018 11 28.
Article in English | MEDLINE | ID: mdl-30487389

ABSTRACT

Snake venom serine proteases (SVSPs) are enzymes that are capable of interfering in various parts of the blood coagulation cascade, which makes them interesting candidates for the development of new therapeutic drugs. Herein, we isolated and characterized Moojase, a potent coagulant enzyme from Bothrops moojeni snake venom. The toxin was isolated from the crude venom using a two-step chromatographic procedure. Moojase is a glycoprotein with N-linked glycans, molecular mass of 30.3 kDa and acidic character (pI 5.80⁻6.88). Sequencing of Moojase indicated that it is an isoform of Batroxobin. Moojase was able to clot platelet-poor plasma and fibrinogen solutions in a dose-dependent manner, indicating thrombin-like properties. Moojase also rapidly induced the proteolysis of the Aα chains of human fibrinogen, followed by the degradation of the Bß chains after extended periods of incubation, and these effects were inhibited by PMSF, SDS and DTT, but not by benzamidine or EDTA. RP-HPLC analysis of its fibrinogenolysis confirmed the main generation of fibrinopeptide A. Moojase also induced the fibrinolysis of fibrin clots formed in vitro, and the aggregation of washed platelets, as well as significant amidolytic activity on substrates for thrombin, plasma kallikrein, factor Xia, and factor XIIa. Furthermore, thermofluor analyses and the esterase activity of Moojase demonstrated its very high stability at different pH buffers and temperatures. Thus, studies such as this for Moojase should increase knowledge on SVSPs, allowing their bioprospection as valuable prototypes in the development of new drugs, or as biotechnological tools.


Subject(s)
Reptilian Proteins , Serine Proteases , Snake Venoms/enzymology , Adult , Animals , Blood Coagulation/drug effects , Bothrops , Enzyme Stability , Female , Fibrinogen/metabolism , Humans , Male , Platelet Aggregation/drug effects , Reptilian Proteins/chemistry , Reptilian Proteins/isolation & purification , Reptilian Proteins/pharmacology , Serine Proteases/chemistry , Serine Proteases/isolation & purification , Serine Proteases/pharmacology , Young Adult
18.
Toxins (Basel) ; 10(5)2018 04 26.
Article in English | MEDLINE | ID: mdl-29701671

ABSTRACT

Venom composition varies across snakes from all taxonomic levels and is influenced by the snakes’ age, habitat, diet, and sexual dimorphism. The present study reports the first in-depth investigation of venom composition in male and female Bothrops moojeni (B. moojeni) snakes (BmooM and BmooF, respectively) through three proteomics approaches associated with functional, cytotoxic, and immunoreactivity characterization. Compared with BmooM venom, BmooF venom exhibited weaker hyaluronidase, metalloproteinase, and phospholipase activity; stronger recognition by anti-bothropic serum; 1.4-fold stronger cytotoxicity; and greater number of peptides. The increased L-amino acid oxidase expression probably accounted for the stronger immunoreactivity and cytotoxicity of BmooF venom. BmooF and BmooM venom shared only 19% peptides. Some venom components were gender-specific, such as phospholipases B, phospholipase inhibitor, and hyaluronidases in BmooM, and cysteine-rich secretory proteins in BmooF. In conclusion, we describe herein the first proteomics study of B. moojeni snake venom and an in-depth characterization of gender-specific differences in venom composition. Altogether, our findings not only stress the importance of considering the snake’s gender during antivenom production, but also help to identify new potential drugs and biotechnological tools.


Subject(s)
Bothrops/metabolism , Crotalid Venoms/chemistry , Peptides/metabolism , Reptilian Proteins/metabolism , Animals , Cell Survival/drug effects , Crotalid Venoms/toxicity , Female , Humans , Hyaluronoglucosaminidase/metabolism , L-Amino Acid Oxidase/metabolism , Leukocytes, Mononuclear/drug effects , Male , Metalloproteases/metabolism , Phospholipases/metabolism , Proteomics , Serine Proteases/metabolism
19.
Article in English | MEDLINE | ID: mdl-30598659

ABSTRACT

BACKGROUND: Chronic myeloid leukemia (CML) is a BCR-ABL1 + myeloproliferative neoplasm marked by increased myeloproliferation and presence of leukemic cells resistant to apoptosis. The current first-line therapy for CML is administration of the tyrosine kinase inhibitors imatinib mesylate, dasatinib or nilotinib. Although effective to treat CML, some patients have become resistant to this therapy, leading to disease progression and death. Thus, the discovery of new compounds to improve CML therapy is still challenging. Here we addressed whether MjTX-I, a phospholipase A2 isolated from Bothrops moojeni snake venom, affects the viability of imatinib mesylate-resistant Bcr-Abl+ cell lines. METHODS: We examined the cytotoxic and pro-apoptotic effect of MjTX-I in K562-S and K562-R Bcr-Abl+ cells and in the non-tumor HEK-293 cell line and peripheral blood mononuclear cells, using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide and the hypotonic fluorescent solution methods, associated with detection of caspases 3, 8, and 9 activation and poly (ADP-ribose) polymerase (PARP) cleavage. We also analyzed the MjTX-I potential to modulate the expression of apoptosis-related genes in K562-S and K562-R cells. RESULTS: MjTX-I decreased the viability of K562-S and K562-R cells by 60 to 65%, without affecting the viability of the non-tumor cells, i.e. it exerted selective cytotoxicity towards Bcr-Abl+ cell lines. In leukemic cell lines, the toxin induced apoptosis, activated caspases 3, 8, and 9, cleaved PARP, downregulated expression of the anti-apoptotic gene BCL-2, and upregulated expression of the pro-apoptotic gene BAD. CONCLUSION: The antitumor effect of MjTX-I is associated with its potential to induce apoptosis and cytotoxicity in Bcr-Abl positive cell lines sensitive and resistant to imatinib mesylate, indicating that MjTX-I is a promising candidate drug to upgrade the CML therapy.

20.
J. venom. anim. toxins incl. trop. dis ; 24: 40, 2018. tab, graf, ilus
Article in English | LILACS, VETINDEX | ID: biblio-984691

ABSTRACT

A leucemia mieloide crônica (LMC) é uma neoplasia mieloproliferativa BCR-ABL1 + marcada por aumento da mieloproliferação e presença de células leucêmicas resistentes à apoptose. A terapia de primeira linha atual para a LMC é a administração de inibidores da tirosina quinase, mesilato de imatinibe, dasatinibe ou nilotinibe. Embora eficaz no tratamento da LMC, alguns pacientes se tornaram resistentes a essa terapia, levando à progressão da doença e à morte. Assim, a descoberta de novos compostos para melhorar a terapia da LMC ainda é um desafio. Aqui, os destinatários se MjTX-I, uma fosfolipase A 2 isolado a partir de Bothrops moojeni de veneno de cobra, afecta a viabilidade de Bcr-Abl de mesilato de imatinib-resistente + linhas celulares. Métodos: Examinamos o efeito citotóxico e pró-apoptótico de MjTX-I em células K562-S e K562-R Bcr-Abl + e na linha de células HEK-293 não tumorais e células mononucleares de sangue periférico, usando o 3- (4, Brometo de 5-dimetiltiazol-2-il) -2,5-difeniltetrazólio e os métodos de solução fluorescente hipotônica, associados à detecção de ativação de caspases 3, 8 e 9 e clivagem de poli (ADP-ribose) polimerase (PARP). Também analisamos o potencial MjTX-I para modular a expressão de genes relacionados à apoptose em células K562-S e K562-R. Resultados: O MjTX-I diminuiu a viabilidade das células K562-S e K562-R em 60 a 65%, sem afetar a viabilidade das células não tumorais, ou seja, exerceu citotoxicidade seletiva para as linhagens celulares Bcr-Abl + . Em linhas de células leucêmicas, a toxina induziu apoptose, caspases 3, 8 e 9 ativadas, PARP clivada, expressão negativa do gene anti-apoptótico BCL-2 e expressão aumentada do gene pró-apoptótico BAD. Conclusão: O efeito antitumoral de MjTX-I está associado ao seu potencial para induzir apoptose e citotoxicidade em linhagens celulares positivas para Bcr-Abl sensíveis e resistentes ao mesilato de imatinibe, indicando que MjTX-I é um candidato promissor a fármaco para atualizar a terapia de LMC.(AU)


Subject(s)
Animals , Snake Venoms , Leukemia, Myeloid/diagnosis , Bothrops , Cytotoxins/analysis , Phospholipases A2/isolation & purification , Neoplasms , Apoptosis
SELECTION OF CITATIONS
SEARCH DETAIL
...