Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 947
Filter
1.
Front Chem ; 12: 1390066, 2024.
Article in English | MEDLINE | ID: mdl-38863677

ABSTRACT

Phenoxy radical coupling reactions are widely used in nature for the synthesis of complex molecules such as lignin. Their use in the laboratory has great potential for the production of high value compounds from the polyphenol family. While the enzymes responsible for the generation of the radicals are well known, the behavior of the latter is still enigmatic and difficult to control in a reaction flask. Previous work in our laboratory using the enzymatic secretome of B. cinerea containing laccases has shown that incubation of stilbenes leads to dimers, while incubation of phenylpropanoids leads to dimers as well as larger coupling products. Building on these previous studies, this paper investigates the role of different structural features in phenoxy radical couplings. We first demonstrate that the presence of an exocyclic conjugated double bond plays a role in the generation of efficient reactions. In addition, we show that the formation of phenylpropanoid trimers and tetramers can proceed via a decarboxylation reaction that regenerates this reactive moiety. Lastly, this study investigates the reactivity of other phenolic compounds: stilbene dimers, a dihydro-stilbene, a 4-O-methyl-stilbene and a simple phenol with the enzymatic secretome of B. cinerea. The observed efficient dimerization reactions consistently correlate with the presence of a para-phenol conjugated to an exocyclic double bond. The absence of this structural feature leads to variable results, with some compounds showing low conversion or no reaction at all. This research has allowed the development of a controlled method for the synthesis of specific dimers and tetramers of phenylpropanoid derivatives and novel stilbene derivatives, as well as an understanding of features that can promote efficient radical coupling reactions.

2.
Int J Biol Macromol ; 273(Pt 2): 133108, 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38876246

ABSTRACT

In this study, propolis was first loaded into a conventional oil-in-water emulsion, which was combined with a chitosan film-forming solution to produce propolis emulsion-loaded film (PEF). Strawberries inoculated with Botrytis cinerea coated with PEF and blank emulsion-loaded films (BEF) were stored for 14 days at 4 °C. Compared to BEF, PEF showed superior mechanical and oxygen barrier properties, as well as antioxidant activities, but higher moisture permeability. PEF showed less oil agglomeration on the film surface after drying, as demonstrated by scanning electron microscopy (SEM) analysis. Compared to uncoated strawberries, coatings did not have a significant effect on weight loss or firmness during storage. In contrast, coated strawberries showed elevated total phenolics, anthocyanins, and ascorbic acid retention; however, PEF-coating yielded higher values. Moreover, the PEF coating resulted in a significantly lower reduction of organic acid and total soluble solids. Mold growth was visible in both uncoated and BEF-coated strawberries after 7 days of storage, while PEF-coated fruits showed no visible mold until the end of storage. Starting from day 4, PEF-coated fruits showed lower mold counts (~2 log CFU/g) than other samples. Therefore, the PEF prepared in this study has application potential for the preservation of fresh fruits.

3.
Int J Mol Sci ; 25(11)2024 May 28.
Article in English | MEDLINE | ID: mdl-38892087

ABSTRACT

Utilizing bioinformatics tools, this study expands our understanding of secondary metabolism in Botrytis cinerea, identifying novel genes within polyketide synthase (PKS), non-ribosomal peptide synthetase (NRPS), sesquiterpene cyclase (STC), diterpene cyclase (DTC), and dimethylallyltryptophan synthase (DMATS) families. These findings enrich the genetic framework associated with B. cinerea's pathogenicity and ecological adaptation, offering insights into uncharted metabolic pathways. Significantly, the discovery of previously unannotated genes provides new molecular targets for developing targeted antifungal strategies, promising to enhance crop protection and advance our understanding of fungal biochemistry. This research not only broadens the scope of known secondary metabolites but also opens avenues for future exploration into B. cinerea's biosynthetic capabilities, potentially leading to novel antifungal compounds. Our work underscores the importance of integrating bioinformatics and genomics for fungal research, paving the way for sustainable agricultural practices by pinpointing precise molecular interventions against B. cinerea. This study sets a foundation for further investigations into the fungus's secondary metabolism, with implications for biotechnology and crop disease management.


Subject(s)
Botrytis , Peptide Synthases , Polyketide Synthases , Secondary Metabolism , Botrytis/genetics , Botrytis/pathogenicity , Secondary Metabolism/genetics , Peptide Synthases/genetics , Peptide Synthases/metabolism , Polyketide Synthases/genetics , Polyketide Synthases/metabolism , Fungal Proteins/genetics , Fungal Proteins/metabolism , Computational Biology/methods , Multigene Family , Genes, Fungal
4.
Insects ; 15(6)2024 May 22.
Article in English | MEDLINE | ID: mdl-38921094

ABSTRACT

The brown marmorated stink bug, Halyomorpha halys (Stål) (Hemiptera: Pentatomidae), is an invasive polyphagous pest often observed in vineyards. In Europe, a gap needs to be filled in the knowledge on H. halys seasonal dynamics and damage on grapes. With this study, we described the seasonal dynamics of H. halys and its distribution in multi-cultivar vineyards, and we evaluated the damage on grape clusters induced by different pest densities. In vineyards, the seasonal occurrence of H. halys varied across time and grape cultivars, and the pest was more abundant on Cabernet Franc, Merlot and, to a lesser extent, Pinot gris. Moreover, higher densities of H. halys were found on red berry cultivars than on white ones, and on cultivars ripening late in the season. An edge effect was also detected in pest distribution within vineyards, with more stink bugs observed in the borders. In the study on pest infestation density, H. halys caused damage on berries, showing differences in susceptibility among different cultivars and with regard to the time of infestation (i.e., plant phenological stages). Halyomorpha halys infestation induced an increase in Botrytis cinerea and sour rot incidence, which probably represents the main issue related to the impact of brown marmorated stink bug on grapevine.

5.
Pathogens ; 13(6)2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38921802

ABSTRACT

Most previously studies had considered that plant fungal disease spread widely and quickly by airborne fungi spore. However, little is known about the release dynamics, aerodynamic diameter, and pathogenicity threshold of fungi spore in air of the greenhouse environment. Grape gray mold is caused by Botrytis cinerea; the disease spreads in greenhouses by spores in the air and the spore attaches to the leaf and infects plant through the orifice. In this study, 120 µmol/L propidium monoazide (PMA) were suitable for treatment and quantitation viable spore by quantitative real-time PCR, with a limit detection of 8 spores/mL in spore suspension. In total, 93 strains of B. cinerea with high pathogenicity were isolated and identified from the air samples of grapevines greenhouses by a portable sampler. The particle size of B. cinerea aerosol ranged predominately from 0.65-3.3 µm, accounting for 71.77% of the total amount. The B. cinerea spore aerosols were infective to healthy grape plants, with the lowest concentration that could cause disease being 42 spores/m3. Botrytis cinerea spores collected form six greenhouse in Shandong Province were quantified by PMA-qPCR, with a higher concentration (1182.89 spores/m3) in May and June and a lower concentration in July and August (6.30 spores/m3). This study suggested that spore dispersal in aerosol is an important route for the epidemiology of plant fungal disease, and these data will contribute to the development of new strategies for the effective alleviation and control of plant diseases.

6.
Plants (Basel) ; 13(12)2024 Jun 08.
Article in English | MEDLINE | ID: mdl-38931029

ABSTRACT

Botrytis cinerea is considered the second most important fungal plant pathogen, and can cause serious disease, especially on tomato. The TPK1b gene encodes a receptor-like kinase that can positively regulate plant resistance to B. cinerea. Here, we identified a tomato WRKY transcription factor SlWRKY3 that binds to the W-box on the TPK1b promoter. It can negatively regulate TPK1b transcription, then regulate downstream signaling pathways, and ultimately negatively regulate tomato resistance to B. cinerea. SlWRKY3 interference can enhance resistance to B. cinerea, and SlWRKY3 overexpression leads to susceptibility to B. cinerea. Additionally, we found that B. cinerea can significantly, and rapidly, induce the upregulation of SlWRKY3 expression. In SlWRKY3 transgenic plants, the TPK1b expression level was negatively correlated with SlWRKY3 expression. Compared with the control, the expression of the SA pathway marker gene PR1 was downregulated in W3-OE plants and upregulated in W3-Ri plants when inoculated with B. cinerea for 48 h. Moreover, SlWRKY3 positively regulated ROS production. Overall, SlWRKY3 can inhibit TPK1b transcription in tomato, and negatively regulate resistance to B. cinerea by modulating the downstream SA and ROS pathways.

7.
Appl Microbiol Biotechnol ; 108(1): 398, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38940906

ABSTRACT

Grey mould caused by Botrytis cinerea is a devastating disease responsible for large losses to agricultural production, and B. cinerea is a necrotrophic model fungal plant pathogen. Membrane proteins are important targets of fungicides and hotspots in the research and development of fungicide products. Wuyiencin affects the permeability and pathogenicity of B. cinerea, parallel reaction monitoring revealed the association of membrane protein Bcsdr2, and the bacteriostatic mechanism of wuyiencin was elucidated. In the present work, we generated and characterised ΔBcsdr2 deletion and complemented mutant B. cinerea strains. The ΔBcsdr2 deletion mutants exhibited biofilm loss and dissolution, and their functional activity was illustrated by reduced necrotic colonisation on strawberry and grape fruits. Targeted deletion of Bcsdr2 also blocked several phenotypic defects in aspects of mycelial growth, conidiation and virulence. All phenotypic defects were restored by targeted gene complementation. The roles of Bcsdr2 in biofilms and pathogenicity were also supported by quantitative real-time RT-PCR results showing that phosphatidylserine decarboxylase synthesis gene Bcpsd and chitin synthase gene BcCHSV II were downregulated in the early stages of infection for the ΔBcsdr2 strain. The results suggest that Bcsdr2 plays important roles in regulating various cellular processes in B. cinerea. KEY POINTS: • The mechanism of wuyiencin inhibits B. cinerea is closely associated with membrane proteins. • Wuyiencin can downregulate the expression of the membrane protein Bcsdr2 in B. cinerea. • Bcsdr2 is involved in regulating B. cinerea virulence, growth and development.


Subject(s)
Biofilms , Botrytis , Fragaria , Fungal Proteins , Hyphae , Membrane Proteins , Plant Diseases , Botrytis/pathogenicity , Botrytis/genetics , Botrytis/growth & development , Botrytis/drug effects , Biofilms/growth & development , Biofilms/drug effects , Virulence , Hyphae/growth & development , Hyphae/drug effects , Plant Diseases/microbiology , Fragaria/microbiology , Fungal Proteins/genetics , Fungal Proteins/metabolism , Membrane Proteins/genetics , Membrane Proteins/metabolism , Vitis/microbiology , Spores, Fungal/growth & development , Spores, Fungal/drug effects , Spores, Fungal/genetics , Gene Deletion
8.
Microb Cell Fact ; 23(1): 185, 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38926702

ABSTRACT

BACKGROUND: Currently, industrial fermentation of Botrytis cinerea is a significant source of abscisic acid (ABA). The crucial role of ABA in plants and its wide range of applications in agricultural production have resulted in the constant discovery of new derivatives and analogues. While modifying the ABA synthesis pathway of existing strains to produce ABA derivatives is a viable option, it is hindered by the limited synthesis capacity of these strains, which hinders further development and application. RESULTS: In this study, we knocked out the bcaba4 gene of B. cinerea TB-31 to obtain the 1',4'-trans-ABA-diol producing strain ZX2. We then studied the fermentation broth of the batch-fed fermentation of the ZX2 strain using metabolomic analysis. The results showed significant accumulation of 3-hydroxy-3-methylglutaric acid, mevalonic acid, and mevalonolactone during the fermentation process, indicating potential rate-limiting steps in the 1',4'-trans-ABA-diol synthesis pathway. This may be hindering the flow of the synthetic pathway. Additionally, analysis of the transcript levels of terpene synthesis pathway genes in this strain revealed a correlation between the bchmgr, bcerg12, and bcaba1-3 genes and 1',4'-trans-ABA-diol synthesis. To further increase the yield of 1',4'-trans-ABA-diol, we constructed a pCBg418 plasmid suitable for the Agrobacterium tumefaciens-mediated transformation (ATMT) system and transformed it to obtain a single-gene overexpression strain. We found that overexpression of bchmgr, bcerg12, bcaba1, bcaba2, and bcaba3 genes increased the yield of 1',4'-trans-ABA-diol. The highest yielding ZX2 A3 strain was eventually screened, which produced a 1',4'-trans-ABA-diol concentration of 7.96 mg/g DCW (54.4 mg/L) in 144 h of shake flask fermentation. This represents a 2.1-fold increase compared to the ZX2 strain. CONCLUSIONS: We utilized metabolic engineering techniques to alter the ABA-synthesizing strain B. cinerea, resulting in the creation of the mutant strain ZX2, which has the ability to produce 1',4'-trans-ABA-diol. By overexpressing the crucial genes involved in the 1',4'-trans-ABA-diol synthesis pathway in ZX2, we observed a substantial increase in the production of 1',4'-trans-ABA-diol.


Subject(s)
Abscisic Acid , Botrytis , Fermentation , Metabolic Engineering , Botrytis/metabolism , Botrytis/genetics , Abscisic Acid/metabolism , Metabolic Engineering/methods , Fungal Proteins/genetics , Fungal Proteins/metabolism
9.
Microbiol Resour Announc ; : e0124923, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38888324

ABSTRACT

Bacillus atrophaeus strain TL401 exhibits biocontrol activity against Botrytis cinerea on tomato and plant growth promotion. Here, we present the draft genome sequence of strain ITL401, which includes a circular chromosome with 4,213,034 bp and a guanine-cytosine content of 43.39%.

10.
mSphere ; : e0066723, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38864637

ABSTRACT

Botrytis cinerea is a necrotrophic phytopathogen able to attack more than 200 different plant species causing strong yield losses worldwide. Many synthetic fungicides have been developed to control this disease, resulting in the rise of fungicide-resistance B. cinerea strains. The aim of this study was to identify Streptomyces strains showing antagonistic activity against B. cinerea to contribute to plant protection in an environmentally friendly way. We isolated 15 Actinomycete strains from 9 different Swiss soils. The culture filtrates of three isolates showing antifungal activity inhibited spore germination and delayed mycelial growth of B. cinerea. Infection experiments showed that Arabidopsis thaliana plants were more resistant to this pathogen after leaf treatment with the Streptomyces filtrates. Bioassay-guided isolation of the active compounds revealed the presence of germicidins A and B as well as of oligomycins A, B, and E. While germicidins were mostly inactive, oligomycin B reduced the mycelial growth of B. cinerea significantly. Moreover, all three oligomycins inhibited this fungus' spore germination, suggesting that these molecules might contribute to the Streptomyces's ability to protect plants against infection by the broad host-pathogen Botrytis cinerea. IMPORTANCE: This study reports the isolation of new Streptomyces strains with strong plant-protective potential mediated by their production of specialized metabolites. Using the broad host range pathogenic fungus Botrytis cinerea, we demonstrate that the cell-free filtrate of selected Streptomyces isolates efficiently inhibits different developmental stages of the fungus, including mycelial growth and the epidemiologically relevant spore germination. Beyond in vitro experiments, the strains and their metabolites also efficiently protected plants against the disease caused by this pathogen. This work further identifies oligomycins as active compounds involved in the observed antifungal activity of the strains. This work shows that we can harness the natural ability of soil-borne microbes and of their metabolites to efficiently fight other microbes responsible for significant crop losses. This opens the way to the development of environmentally friendly health protection measures for crops of agronomical relevance, based on these newly isolated strains or their metabolic extracts containing oligomycins.

11.
Food Microbiol ; 122: 104564, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38839226

ABSTRACT

Botrytis cinerea is a destructive necrotrophic phytopathogen causing overwhelming diseases in more than 1400 plant species, especially fruit crops, resulting in significant economic losses worldwide. The pathogen causes rotting of fruits at both pre-harvest and postharvest stages. Aside from causing gray mold of the mature fruits, the fungus infects leaves, flowers, and seeds, which makes it a notorious phytopathogen. Worldwide, in the majority of fruit crops, B. cinerea causes gray mold. In order to effectively control this pathogen, extensive research has been conducted due to its wide host range and the huge economic losses it causes. It is advantageous to explore detection and diagnosis techniques of B. cinerea to provide the fundamental basis for mitigation strategies. Botrytis cinerea has been identified and quantified in fruit/plant samples at pre- and post-infection levels using various detection techniques including DNA markers, volatile organic compounds, qPCR, chip-digital PCR, and PCR-based nucleic acid sensors. In addition, cultural, physical, chemical, biological, and botanical methods have all been used to combat Botrytis fruit rot. This review discusses research progress made on estimating economic losses, detection and diagnosis, as well as management strategies, including cultural, physical, chemical, and biological studies on B. cinerea along with knowledge gaps and potential areas for future research.


Subject(s)
Botrytis , Fruit , Plant Diseases , Botrytis/genetics , Plant Diseases/microbiology , Fruit/microbiology , Crops, Agricultural/microbiology
12.
Plant Dis ; 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38840485

ABSTRACT

Hydrangea (Hydrangea macrophylla), commonly referred to as big leaf hydrangea, is a species within the Hydrangeaceae family notable for its ornamental value. Characterized by its vividly colored sepals and lush, striking inflorescences, this species is globally esteemed as both a potted and landscape plant. Notably, in 2022, an alarming incidence of stem rot was observed in approximately 40% of H. macrophylla plants aged between six and twelve months within 16 greenhouses situated in Nanjing City (N 31°14', E 118°22'), Jiangsu Province, China. Initial symptoms of the disease manifested as wet gray-black spots at the base of the seedlings and stems, progressing to a necrotic gray-white discoloration in the stems and accompanied by the growth of gray mold on the affected parts. This infection ultimately led to the wilting of the leaves and the death of the seedlings. For pathogen identification, stem tissues at the interface of diseased and healthy sections were excised, surface-sterilized with 75 % ethanol for 30 s, followed by a 2 - 3 min treatment with 3% sodium hypochlorite, and subsequently rinsed three times with sterile water before air drying. Sections measuring 2 - 3 mm were then cultured on potato dextrose agar (PDA) medium, supplemented with 50 mg/mL rifampicin (RFP), and incubated at 25 ℃ for 3 - 5 d (Zhou et al. 2022). Upon 2 - 3 days of incubation, notable growth of fungal colonies was observed. Mycelial clusters from the periphery of these colonies were subsequently transferred to fresh PDA plates and incubated at 25 ℃ for an additional 5 - 7 d. A particular colony, designated JSNJ2022-2 and now preserved at the Jiangsu Academy of Agricultural Sciences, was selected for detailed examination. This colony exhibited a flocculent texture, with a coloration ranging from grey-white to light brown. It was characterized by the presence of irregularly formed, hard sclerotia within the hyphae. The conidiophores were observed to be slender and erect, featuring dendritic branches at their extremities. The conidia were clustered on the conidiophore like grapes. These conidia were generally colorless or grey, oval in shape, smooth and transparent, and measured between 6.4 - 12.2 × 7.3 - 18.2 µm (n = 50). For genetic analysis, genomic DNA (gDNA) was extracted using the DNA secure Plant Kit (Tiangen Biotech, Beijing, China). Polymerase chain reaction (PCR) amplification was performed using a set of universal primers of ITS1/ITS4 (White et al. 1990), primers corresponding to the specific sequences of glyceraldehyde-3-phosphate dehydrogenase (G3PDH), heat-shock protein 60 (HSP60), and DNA-dependent RNA polymerase subunit II (RPB2) (Yang et al. 2020). The resultant PCR products were sequenced, and the resulting sequences were submitted to the GenBank database, under the accession numbers OP131597, OP142320, OP142321, and OP142322, respectively. BLAST analysis of the sequences obtained from the isolate JSNJ2022-2 revealed a high degree of genetic similarity, ranging from 99 to 100%, with known sequences of Botrytis cinerea (accessions MK051124.1, MH796662.1, MH479931.1, and KU760986.1). To elucidate the phylogenetic position of the isolate, a phylogenetic tree was constructed using the maximum likelihood method, supported by 1,000 bootstrap replications, in the Mega7 software (Kumar et al. 2016). The results of this analysis confirmed that the strains under study clustered within the same branch as B. cinerea. To establish the pathogenicity of the isolate, Koch's postulates (Falkow 1988) were employed. Healthy potted H. macrophylla seedlings, approximately three months old, were wound inoculated at the base of the seedlings with a 6 mm diameter mycelium plug of JSNJ2002-2 cultivated on PDA for 3 days, which was subsequently covered with moistened degreasing cotton. Control plants were treated with moistened degreasing cloths minus the pathogen. Post-inoculation, these plants were placed in a growth chamber maintained at 25 ℃ with a relative humidity range of 60 - 80%. After a 3-d incubation period, the inoculated plants displayed symptoms identical to those initially observed in the greenhouse. The pathogen was successfully re-isolated from these inoculated plants and was morphologically re-confirmed as B. cinerea, thus satisfying the criteria of Koch's postulates. To our knowledge, this report represents the first documented incidence of B. cinerea causing stem rot in H. macrophylla in China.

13.
Comput Biol Med ; 178: 108686, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38850956

ABSTRACT

Iron-binding protein (Ibp) has protective effect on pathogen exposed to H2O2 in defense response of plants. Ibp in Botrytis cinerea (BcIbp) is related to its virulence. Bcibp mutation lead to virulence deficiencies in B. cinerea. BcIbp is involved in the Fe3+ homeostasis regulation. Recognition the binding site and binding pattern of ferric iron and iron-binding protein in B. cinerea are vital to understand its function. In this study, molecular dynamics (MD) simulations, gaussian accelerated molecular dynamics (GaMD) simulations, dynamic cross correlation analysis and quantum chemical energy calculation were used to explore binding pattern of ferric iron. MD results showed that the C-terminal region had little effect on the stability of residues in the Fe3+-binding pocket. Energy calculations suggested the most likely coordination pattern for ferric iron in iron-binding protein. These results will help to understand the binding of ferric iron to iron-binding protein and provide new ideas for regulating the virulence of B. cinerea.

14.
Microbiol Res ; 286: 127792, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38852300

ABSTRACT

Botrytis cinerea is the phytopathogenic fungus responsible for the gray mold disease that affects crops worldwide. Essential oils (EOs) have emerged as a sustainable tool to reduce the adverse impact of synthetic fungicides. Nevertheless, the scarce information about the physiological mechanism action and the limitations to applying EOs has restricted its use. This study focused on elucidating the physiological action mechanisms and prospection of lipid nanoparticles to apply EO of Mentha piperita. The results showed that the EO of M. piperita at 500, 700, and 900 µL L-1 inhibited the mycelial growth at 100 %. The inhibition of spore germination of B. cinerea reached 31.43 % at 900 µL L-1. The EO of M. piperita decreased the dry weight and increased pH, electrical conductivity, and cellular material absorbing OD260 nm of cultures of B. cinerea. The fluorescence technique revealed that EO reduced hyphae width, mitochondrial activity, and viability, and increased ROS production. The formulation of EO of M. piperita loaded- solid lipid nanoparticles (SLN) at 500, 700, and 900 µL L-1 had particle size ∼ 200 nm, polydispersity index < 0.2, and stability. Also, the thermogravimetric analysis indicated that the EO of M. piperita-loaded SLN has great thermal stability at 50 °C. EO of M. piperita-loaded SLN reduced the mycelial growth of B. cinerea by 70 %, while SLN formulation (without EO) reached 42 % inhibition. These results supported that EO of M. piperita-loaded SLN is a sustainable tool for reducing the disease produced by B. cinerea.

15.
Photochem Photobiol Sci ; 23(6): 1117-1128, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38750328

ABSTRACT

Botrytis cinerea is a severe threat in agriculture, as it can infect over 200 different crop species with gray mold affecting food yields and quality. The conventional treatment using fungicides lead to emerging resistance over the past decades. Here, we introduce Photodynamic Inactivation (PDI) as a strategy to combat B. cinerea infections, independent of fungicide resistance. PDI uses photoactive compounds, which upon illumination create reactive oxygen species toxic for killing target organisms. This study focuses on different formulations of sodium-magnesium-chlorophyllin (Chl, food additive E140) as photoactive compound in combination with EDTA disodium salt dihydrate (Na2EDTA) as cell-wall permeabilizer and a surfactant. In an in vitro experiment, three different photosensitizers (PS) with varying Chl and Na2EDTA concentrations were tested against five B. cinerea strains with different resistance mechanisms. We showed that all B. cinerea mycelial spheres of all tested strains were eradicated with concentrations as low as 224 µM Chl and 3.076 mM Na2EDTA (LED illumination with main wavelength of 395 nm, radiant exposure 106 J cm-2). To further test PDI as a Botrytis treatment strategy in agriculture a greenhouse trial was performed on B. cinerea infected bell pepper plants (Capsicum annum L). Two different rates (560 or 1120 g Ha-1) of PS formulation (0.204 M Chl and 1.279 M Na2EDTA) and a combination of PS formulation with 0.05% of the surfactant BRIJ L4 (560 g Ha-1) were applied weekly for 4 weeks by spray application. Foliar lesions, percentage of leaves affected, percentage of leaf area diseased and AUDPC were significantly reduced, while percentage of marketable plants were increased by all treatments compared to a water treated control, however, did not statistically differ from each other. No phytotoxicity was observed in any treatment. These results add to the proposition of employing PDI with the naturally sourced PS Chl in agricultural settings aimed at controlling B. cinerea disease. This approach seems to be effective regardless of the evolving resistance mechanisms observed in response to conventional antifungal treatments.


Subject(s)
Botrytis , Photosensitizing Agents , Botrytis/drug effects , Photosensitizing Agents/pharmacology , Photosensitizing Agents/chemistry , Plant Diseases/microbiology , Plant Diseases/prevention & control , Edetic Acid/pharmacology , Edetic Acid/chemistry , Drug Resistance, Fungal/drug effects , Fungicides, Industrial/pharmacology , Fungicides, Industrial/chemistry , Agriculture , Chlorophyllides , Microbial Sensitivity Tests , Light
16.
J Fungi (Basel) ; 10(5)2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38786679

ABSTRACT

Gray mold, caused by Botrytis cinerea, poses significant threats to various crops, while it can be remarkably inhibited by ε-poly-L-lysine (ε-PL). A previous study found that B. cinerea extracts could stimulate the ε-PL biosynthesis of Streptomyces albulus, while it is unclear whether the impact of the B. cinerea signal on ε-PL biosynthesis is direct or indirect. This study evaluated the role of elevated reactive oxygen species (ROS) in efficient ε-PL biosynthesis after B. cinerea induction, and its underlying mechanism was disclosed with a transcriptome analysis. The microbial call from B. cinerea could arouse ROS elevation in cells, which fall in a proper level that positively influenced the ε-PL biosynthesis. A systematic transcriptional analysis revealed that this proper dose of intracellular ROS could induce a global transcriptional promotion on key pathways in ε-PL biosynthesis, including the embden-meyerhof-parnas pathway, the pentose phosphate pathway, the tricarboxylic acid cycle, the diaminopimelic acid pathway, ε-PL accumulation, cell respiration, and energy synthesis, in which sigma factor HrdD and the transcriptional regulators of TcrA, TetR, FurA, and MerR might be involved. In addition, the intracellular ROS elevation also resulted in a global modification of secondary metabolite biosynthesis, highlighting the secondary signaling role of intracellular ROS in ε-PL production. This work disclosed the transcriptional mechanism of efficient ε-PL production that resulted from an intracellular ROS elevation after B. cinerea elicitors' induction, which was of great significance in industrial ε-PL production as well as the biocontrol of gray mold disease.

17.
Int J Mol Sci ; 25(10)2024 May 08.
Article in English | MEDLINE | ID: mdl-38791163

ABSTRACT

The genome sequencing of Botrytis cinerea supplies a general overview of the map of genes involved in secondary metabolite synthesis. B. cinerea genomic data reveals that this phytopathogenic fungus has seven sesquiterpene cyclase (Bcstc) genes that encode proteins involved in the farnesyl diphosphate cyclization. Three sesquiterpene cyclases (BcStc1, BcStc5 and BcStc7) are characterized, related to the biosynthesis of botrydial, abscisic acid and (+)-4-epi-eremophilenol, respectively. However, the role of the other four sesquiterpene cyclases (BcStc2, BcStc3, BcStc4 and BcStc6) remains unknown. BcStc3 is a well-conserved protein with homologues in many fungal species, and here, we undertake its functional characterization in the lifecycle of the fungus. A null mutant ΔBcstc3 and an overexpressed-Bcstc3 transformant (OvBcstc3) are generated, and both strains show the deregulation of those other sesquiterpene cyclase-encoding genes (Bcstc1, Bcstc5 and Bcstc7). These results suggest a co-regulation of the expression of the sesquiterpene cyclase gene family in B. cinerea. The phenotypic characterization of both transformants reveals that BcStc3 is involved in oxidative stress tolerance, the production of reactive oxygen species and virulence. The metabolomic analysis allows the isolation of characteristic polyketides and eremophilenols from the secondary metabolism of B. cinerea, although no sesquiterpenes different from those already described are identified.


Subject(s)
Botrytis , Sesquiterpenes , Botrytis/genetics , Botrytis/metabolism , Sesquiterpenes/metabolism , Fungal Proteins/metabolism , Fungal Proteins/genetics , Gene Expression Regulation, Fungal , Oxidative Stress , Carbon-Carbon Lyases
18.
Virus Genes ; 2024 May 08.
Article in English | MEDLINE | ID: mdl-38717669

ABSTRACT

A wide diversity of mycoviruses has been reported from Botrytis species, some with the potential to suppress the pathogenic abilities of this fungus. Considering their importance, this study was devised to find potential hypovirulence-associated mycoviruses found in Botrytis cinerea strains isolated from Pakistani strawberry fields. Here we report the complete genome characterization of two fusariviruses co-infecting a single isolate of phytopathogenic fungus B. cinerea (Kst14a). The viral genomes were sequenced by deep sequencing using total RNA fractions of the Kst14a isolate. The identified viruses were tentatively named Botrytis cinerea fusarivirus 9 (BcFV9) and Botrytis cinerea fusarivirus 3a (BcFV3a). Both viruses had a single-segmented (ssRNA) genome having a size of 6424 and 8370 nucleotides encoding two discontinuous open reading frames (ORFs). ORF-1 of both mycoviruses encodes for a polyprotein having a conserved domain of RNA-dependent RNA polymerase (RdRP) and a helicase domain (Hel) which function in RNA replication, while ORF2 encodes a hypothetical protein with an unknown function, respectively. Phylogenetic analysis indicated that BcFV9 made a clade with the genus Alphafusarivirus and BcFV3a fall in the genus Betafusarivirus in the family Fusariviridae. To our knowledge, this is the first report of two fusariviruses identified in isolates of B. cinerea from Pakistan. Both mycoviruses successfully transfected to a compatible strain of B. cinerea (Mst11). A comparison of virus-free (VF) and virus-infected (VI) isogenic lines showed the presence of these viruses was causing hypovirulence in infected strains. Virus-infected strains also had a small lesion size while testing the pathogenicity via apple assay.

19.
Sci Total Environ ; 932: 173109, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38729361

ABSTRACT

The influence of endophytic microbial community on plant growth and disease resistance is of considerable importance. Prior research indicates that pre-treatment of kiwifruit with the biocontrol yeast Debaryomyces hansenii suppresses gray mold disease induced by Botrytis cinerea. However, the specific underlying mechanisms remain unclear. In this study, Metagenomic sequencing was utilized to analyze the composition of the endophytic microbiome of kiwifruit under three distinct conditions: the healthy state, kiwifruit inoculated with B. cinerea, and kiwifruit treated with D. hansenii prior to inoculation with B. cinerea. Results revealed a dominance of Proteobacteria in all treatment groups, accompanied by a notable increase in the relative abundance of Actinobacteria and Firmicutes. Ascomycota emerged as the major dominant group within the fungal community. Treatment with D. hansenii induced significant alterations in microbial community diversity, specifically enhancing the relative abundance of yeast and exerting an inhibitory effect on B. cinerea. The introduction of D. hansenii also enriched genes associated with energy metabolism and signal transduction, positively influencing the overall structure and function of the microbial community. Our findings highlight the potential of D. hansenii to modulate microbial dynamics, inhibit pathogenic organisms, and positively influence functional attributes of the microbial community.


Subject(s)
Actinidia , Botrytis , Endophytes , Microbiota , Plant Diseases , Endophytes/physiology , Botrytis/physiology , Actinidia/microbiology , Plant Diseases/microbiology , Plant Diseases/prevention & control , Fruit/microbiology , Disease Resistance , Debaryomyces/physiology , Ascomycota/physiology
20.
Plant Methods ; 20(1): 60, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38698422

ABSTRACT

BACKGROUND: Despite major efforts over the last decades, the rising demands of the growing global population makes it of paramount importance to increase crop yields and reduce losses caused by plant pathogens. One way to tackle this is to screen novel resistant genotypes and immunity-inducing agents, which must be conducted in a high-throughput manner. RESULTS: Colour-analyzer is a free web-based tool that can be used to rapidly measure the formation of lesions on leaves. Pixel colour values are often used to distinguish infected from healthy tissues. Some programs employ colour models, such as RGB, HSV or L*a*b*. Colour-analyzer uses two colour models, utilizing both HSV (Hue, Saturation, Value) and L*a*b* values. We found that the a* b* values of the L*a*b* colour model provided the clearest distinction between infected and healthy tissue, while the H and S channels were best to distinguish the leaf area from the background. CONCLUSION: By combining the a* and b* channels to determine the lesion area, while using the H and S channels to determine the leaf area, Colour-analyzer provides highly accurate information on the size of the lesion as well as the percentage of infected tissue in a high throughput manner and can accelerate the plant immunity research field.

SELECTION OF CITATIONS
SEARCH DETAIL
...