Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters











Database
Language
Publication year range
1.
J Environ Manage ; 315: 115204, 2022 Aug 01.
Article in English | MEDLINE | ID: mdl-35523072

ABSTRACT

This investigation reports the photocatalytic performance of the tungsten doped titania (TiO2:W or TW) with and without coating of chlorophyll (Chl) for the removal of the RhB dye from the drinking water. These particles were also supported on recycled plastic bottle caps (Bcap) to form other photocatalytic composites (TW/Bcap and TW + Chl/Bcap). The SEM images demonstrated that the TW particles without Chl had irregular shapes and sizes of 0.8-12 µm. The TW particles coated by the Chl presented shapes of quasi-rounded grains and smaller particle sizes of 0.8-1.8 µm. The photocatalytyic experiments showed that the photocatalyst powders containing Chl removed completely the RhB dye from the water after 2h under UV-VIS light, while the photocatalyst without Chl removed a maximum of 95% of the RhB. Interestingly, the TW/Bcap and TW + Chl/Bcap composites removed 94-100% of the RhB after 2h. Those ones removed such dye by photocatalysis and by physical adsorption at the same time (as confirmed by the absorbance and FTIR measurements), therefore, the removal of RhB was still very high. Scavenger experiments were also achieved and found that the •OH radicals are the main oxidizing species generated by the photocatalysts with and without Chl. The •O2- radicals and holes (h+) were the secondary oxidizing species. The presence of the chlorophyll on the photocatalyst increased in general the light absorption and the photocurrent. Overall, our work demonstrated that making composites with recycled plastic bottle caps is a feasible alternative to remove dyes from contaminated drinking water with high efficiency and low cost.


Subject(s)
Drinking Water , Catalysis , Chlorophyll , Coloring Agents , Plastics , Rhodamines , Titanium
SELECTION OF CITATIONS
SEARCH DETAIL