Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 49
Filter
1.
J Chromatogr A ; 1717: 464690, 2024 Feb 22.
Article in English | MEDLINE | ID: mdl-38309188

ABSTRACT

The extensive use of pesticides to control pest infestations has led to the development of analytical methods to determine pesticide residues in food matrices to prevent food exposure. However, most developed analytical methods do not consider impact on the environment in terms of the toxicity of the chemicals used and the amount of waste produced. An environmentally-friendly method, based on a miniaturized matrix solid-phase dispersion followed by high-performance liquid chromatography-tandem mass spectrometry, for the analysis of fourteen pesticides in tomatoes, was exploited. For the recovery of pesticides from tomato samples, a low transition temperature mixture (LTTM), containing choline chloride and sesamol 1:3 molar ratio, was employed. Extraction parameters like sample-to-dispersant ratio, extraction solvent volume and LTTM volume were optimized through a Box-Behnken design. The 1:4 sample-to-dispersant ratio, 900 µL of ethanol as extraction solvent and 50 µL of LTTM ensured the best result considering the pesticides' peak areas. The optimized analytical method was validated obtaining the following results: linearity range was between LOQ and 5 mg kg-1 with a minimum R2 of 0.9944 for tebufenozide, values in the range of 0.001-0.023 and 0.004-0.076 mg kg-1 were obtained for LOD and LOQ respectively, while peak areas intra-day and inter-day repeatability were maximum of 10.19 and 9.15 %, respectively. The analytical method was then applied to real samples studying whole, pulp and peel tomato pool. The analysis of whole and tomato pulp revealed the presence of seven and eight of the fourteen investigated pesticides, respectively. However, their concentration was lower than the limit of quantification. In tomato peel, five pesticides, namely dimethomorph, methoxyfenozide, pyraclostrobin, pyriproxyfen, and spiromesifen were quantified and their concentrations were below maximum residue levels.


Subject(s)
Pesticide Residues , Pesticides , Solanum lycopersicum , Pesticides/analysis , Chromatography, High Pressure Liquid/methods , Tandem Mass Spectrometry/methods , Transition Temperature , Pesticide Residues/analysis , Solvents/chemistry , Solid Phase Extraction/methods
2.
Biotechnol J ; 19(1): e2300147, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37897145

ABSTRACT

BACKGROUND/AIMS: Natural and synthetic biocompatible polymers have received significant attention in the pharmaceutical industry due to their rapid and effective healing properties in the wound healing process. The aim of this study was to optimize the extraction of onions, the preparation of sodium alginate/collagen/hydrogen boron nitride (NaAlg/Col/h-BN) membranes using the Box-Behnken experimental design, and determine the optimal conditions for quercetin release. The study also aimed to investigate the antimicrobial and antioxidant activities of the prepared membranes and their therapeutic properties. METHODS AND RESULTS: The prepared membranes were characterized by scanning electron microscopy (SEM), fourier transform infrared (FTIR), differential scanning calorimetry (DSC), and X-ray diffraction (XRD). Antimicrobial activities were tested against Gram-negative (Gr-) Escherichia coli ATCC 25922, Klebsiella pneumonia, Enterobacter aerogenes, Gram-positive (Gr+) Staphylococcus aureus ATCC 25923, and Candida albicans ATCC 10231 pathogens. In vitro release studies were conducted to examine the therapeutic properties of the prepared membranes. The optimum conditions for the extraction of onions and the preparation of NaAlg/Col/h-BN membranes were found to be EtOH = 75 mL, t = 2 h, T = 45°C, and NaAlg = 1.0 g, Col = 2.0 g, and h-BN = 6% wt, respectively. The prepared membranes exhibited serious antimicrobial properties against S. aureus and C. albicans. The membranes also promoted the controlled release of quercetin for 24 h in vitro, indicating their potential as a new approach in wound treatment. CONCLUSION: The study concludes that quercetin-filled NaAlg/Col/h-BN membranes have promising therapeutic properties for wound healing. The membranes exhibited significant antimicrobial and antioxidant properties, and their controlled release of quercetin suggests their potential for use in wound healing applications.


Subject(s)
Anti-Infective Agents , Boron Compounds , Quercetin , Quercetin/pharmacology , Antioxidants/pharmacology , Antioxidants/chemistry , Anti-Bacterial Agents/pharmacology , Alginates/pharmacology , Alginates/chemistry , Staphylococcus aureus , Research Design , Delayed-Action Preparations , Collagen , Polymers/chemistry , Bandages
3.
Mar Drugs ; 21(6)2023 May 28.
Article in English | MEDLINE | ID: mdl-37367656

ABSTRACT

Microalgal biomass is characterized by high protein, carbohydrates, and lipids concentrations. However, their qualitative and quantitative compositions depend not only on the cultivated species but also on the cultivation conditions. Focusing on the microalgae's ability to accumulate significant fatty acids (FAs) amounts, they can be valorized either as dietary supplements or for biofuel production, depending on the accumulated biomolecules. In this study, a local isolate (Nephroselmis sp.) was precultured under autotrophic conditions, while the Box-Behnken experimental design followed using the parameters of nitrogen (0-250 mg/L), salinity (30-70 ppt) and illuminance (40-260 µmol m-2 s-1) to evaluate the accumulated biomolecules, with an emphasis on the amount of FAs and its profile. Regardless of the cultivation conditions, the FAs of C14:0, C16:0, and C18:0 were found in all samples (up to 8% w/w in total), while the unsaturated C16:1 and C18:1 were also characterized by their high accumulations. Additionally, the polyunsaturated FAs, including the valuable C20:5n3 (EPA), had accumulated when the nitrogen concentration was sufficient, and the salinity levels remained low (30 ppt). Specifically, EPA approached 30% of the total FAs. Therefore, Nephroselmis sp. could be considered as an alternative EPA source compared to the already-known species used in food supplementation.


Subject(s)
Chlorophyta , Microalgae , Lipids/pharmacology , Biomass , Nitrogen/metabolism , Salinity , Fatty Acids/metabolism , Chlorophyta/metabolism , Microalgae/metabolism
4.
Environ Res ; 231(Pt 3): 116223, 2023 08 15.
Article in English | MEDLINE | ID: mdl-37245577

ABSTRACT

Pharmaceuticals in water are a growing environmental concern, as they can harm aquatic life and human health. To address this issue, an adsorbent made from coffee waste that effectively removes ibuprofen (a common pharmaceutical pollutant) from wastewater was developed. The experimental adsorption phase was planned using a Design of Experiments approach with Box-Behnken strategy. The relation between the ibuprofen removal efficiency and various independent variables, including adsorbent weight (0.01-0.1 g) and pH (3-9), was evaluated via a regression model with 3-level and 4-factors using the Response surface methodology (RSM) . The optimal ibuprofen removal was achieved after 15 min using 0.1 g adsorbent at 32.4 °C and pH = 6.9. Moreover, the process was optimized using two powerful bio-inspired metaheuristics (Bacterial Foraging Optimization and Virus Optimization Algorithm). The adsorption kinetics, equilibrium, and thermodynamics of ibuprofen onto waste coffee-derived activated carbon were modeled at the identified optimal conditions. The Langmuir and Freundlich adsorption isotherms were implemented to investigate adsorption equilibrium, and thermodynamic parameters were also calculated. According to the Langmuir isotherm model, the adsorbent's maximum adsorption capacity was 350.00 mg g-1 at 35 °C. The findings revealed that the ibuprofen adsorption was well-matched with the Freundlich isotherm model, indicating multilayer adsorption on heterogeneous sites. The computed positive enthalpy value showed the endothermic nature of ibuprofen adsorption at the adsorbate interface.


Subject(s)
Coffee , Water Pollutants, Chemical , Humans , Ibuprofen , Adsorption , Kinetics , Water Pollutants, Chemical/analysis , Thermodynamics , Hydrogen-Ion Concentration
5.
Chemosphere ; 332: 138854, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37149103

ABSTRACT

The overuse of chelating soil washing agents for removal of heavy metal can release soil nutrients and negatively affect organisms. Therefore, developing novel washing agents that can overcome these shortcomings is necessary. In this study, we tested potassium as a main solute of novel washing agent for cesium-contaminated field soil, owing to the physicochemical similarities between potassium and cesium. Response surface methodology was combined with a four-factor, three-level Box-Behnken design to determine the superlative washing conditions of the potassium-based solution for the removal of cesium from the soil. The parameters that were considered were the following: potassium concentration, liquid-to-soil ratio, washing time, and pH. Twenty-seven sets of experiments were conducted using the Box-Behnken design, and a second-order polynomial regression equation model was obtained from the results. Analysis of variance proved the significance and goodness of fit of the derived model. Three-dimensional response surface plots displayed the results of each parameter and their reciprocal interactions. The washing conditions that achieved the highest cesium removal efficiency (81.3%) in field soil contaminated at 1.47 mg/kg were determined to be the following: a potassium concentration of 1 M, a liquid-to-soil ratio of 20, washing time of 2 h, and a pH of 2.


Subject(s)
Environmental Restoration and Remediation , Metals, Heavy , Soil Pollutants , Potassium , Soil/chemistry , Soil Pollutants/analysis , Metals, Heavy/analysis , Chelating Agents/chemistry , Cesium/analysis
6.
Environ Sci Pollut Res Int ; 30(26): 68084-68100, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37119481

ABSTRACT

Box-Behnken experimental design was utilized to model and optimize the photocatalytic removal of methylene blue (MB) using ZnO-BiFeO3 composite under visible light (LED). Three catalysts with different ZnO:BiFeO3 molar ratios (2:1, 1:2, and 1:1) were synthesized successfully using the hydrothermal method. The structural, morphological, and optical properties of the synthesized photocatalysts were analyzed by X-ray diffraction (XRD), Field Emission Scanning Electron Microscope (FESEM), Energy Dispersive X-ray Spectroscopy (EDX), Fourier Transform Infrared Spectra (FT-IR), Ultraviolet Visible Spectrometer (UV-vis), Transmission Electron Microscopy(TEM), High-Resolution Transmission Electron Microscopy (HR-TEM), and Photoluminescence (PL) Spectrophotometry. FESEM showed the relatively uniform distribution of BiFeO3 crystalline particles on ZnO ones. UV-vis analysis showed that the photocatalytic performance of pure ZnO and BiFeO3 under visible light irradiation is weak, while ZnO-BiFeO3 with a 2:1 molar ratio composite with a bandgap of about 2.37 eV showed high performance. This improved photocatalytic activity may be due to the heterogeneous synergistic effect of the p-n junction. In order to optimize the experimental conditions, four factors of initial MB concentration (5 to 20 mg/L), pH (3 to 12), catalyst dosage (0.5 to 1.25 mg/L), and light intensity (4 to 18 W) were selected as independent input variables. Box-Behnken experimental design method (BBD) suggested a quadratic polynomial equation to fit the experimental data. The results of the analysis of variance (ANOVA) confirmed the goodness of fit for the suggested model (predicted- and adjusted-R2 0.99). The optimum conditions for maximizing the photocatalytic MB degradation were found to be an initial MB concentration of 11 mg/L, pH of 11.7, catalyst dosage of 0.716 mg/L, and light intensity of 11.4 W. Under the optimum conditions, the highest photocatalytic MB degradation of 62.9% was obtained, which is in reasonable agreement with the predicted value of 69%.


Subject(s)
Zinc Oxide , Zinc Oxide/chemistry , Methylene Blue/chemistry , Spectroscopy, Fourier Transform Infrared , Light , Microscopy, Electron, Transmission
7.
Foods ; 11(23)2022 Nov 22.
Article in English | MEDLINE | ID: mdl-36496562

ABSTRACT

Deep eutectic solvents represent an important alternative in the field of green solvents due to their low volatility, non-toxicity, and low synthesis cost. In the present investigation, we propose the production of enriched polyphenolic extracts from maritime pine forest residues via an ultrasound-assisted approach. A Box-Behnken experimental design with a response surface methodology was used with six variables to be optimized: solid-to-solvent ratio, water percentage, temperature and time of extraction, amplitude, and catalyst concentration. The mixture of levulinic and formic acids achieved the highest extraction yield of polyphenols from pine needle and bark biomass. In addition, the solid-to-solvent ratio was found to be the only influential variable in the extraction (p-value: 0.0000). The optimal conditions were established as: 0.1 g of sample in 10 mL of LA:FA (70:30%, v/v) with 0% water and 0 M H2SO4 heated to 30 °C and extracted during 40 min with an ultrasound amplitude of 80% at 37 kHz. The bioactive properties of polyphenol-enriched extracts have been proven with significant antioxidant (45.90 ± 2.10 and 66.96 ± 2.75 mg Trolox equivalents/g dw) and antimicrobial activities. The possibility to recycle and reuse the solvent was also demonstrated; levulinic acid was successfully recovered from the extracts and reused in novel extractions on pine residues. This research shows an important alternative to obtaining polyphenol-enriched extracts from forest residues that are commonly discarded without any clear application, thus opening an important window toward the valorization of such residues.

8.
Heliyon ; 8(12): e12164, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36582690

ABSTRACT

This study aimed to develop nutritious, gluten-free bread with high quality characteristics using a mixture of chickpea, carob and rice flours as substitutes of wheat flour. To optimize the bread formulation, a Box-Behnken experimental design was conducted to evaluate the effect of the corresponding flour blend addition, proofing time and water amount addition on the physicochemical, technological and sensory properties of the obtained formulated bread. The optimized formulation was calculated to contain 70% of mixture flour and 100% of water, with a proofing time of 40 minutes. This formulation produced bread with greater specific volume ( 3.73 ± 0.37 cm3/g) and less baking loss ( 22.98 ± 0.94 % ) than those of control (+) bread ( 2.93 ± 0.21 cm3/g and 31.65 ± 0.72 % , respectively). Findings proved that the mixture flour based on chickpeas, carob and rice represents a good alternative to make gluten-free bread with acceptable baking properties.

9.
J Pharm Sci ; 111(12): 3304-3317, 2022 12.
Article in English | MEDLINE | ID: mdl-36007556

ABSTRACT

Preclinical studies suggest that most of statins or 3­hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase inhibitors possess pleiotropic anticancer activity. The aim of the present work was to investigate the conjugation of the statin fluvastatin (FLV) with scorpion venom (SV), a natural peptide with proven anticancer properties, to enhance FLV cytotoxic activity and prepare colon targeted FLV-SV nanoconjugate beads for management of colon cancer. Response surface design was applied for the optimization of FLV-SV nanoconjugates. FLV-SV particle size and zeta potential were selected as responses. Cytotoxicity of optimized FLV-SV nanoconjugates was carried out on Caco2 cell line. Colon targeted alginate coated Eudragit S100 (ES100) beads for the optimized formula were prepared with the utilization of barium sulfate (BaSO4) as radiopaque contrast substance. Results revealed that optimized FLV-SV nanoconjugates showed a size of 71.21 nm, while the zeta potential was equal to 29.13 mV. Caco2 cells were considerably more sensitive to the FLV-SV formula (half-maximal inhibitory concentration (IC50) = 11.91 µg/mL) compared to SV and FLV used individually, as shown by values of IC50 equal to 30.23 µg/mL and 47.68 µg/mL, respectively. In vivo imaging of colon targeted beads, carried out by employing real-time X-ray radiography, confirmed the efficiency of colon targeted beads. Overall our results indicate that the optimized FLV-SV nanoconjugate loaded alginate coated ES100 beads could represent a promising approach for colon cancer with efficient colon targeting ability.


Subject(s)
Colonic Neoplasms , Hydroxymethylglutaryl-CoA Reductase Inhibitors , Scorpion Venoms , Humans , Fluvastatin , Nanoconjugates , Caco-2 Cells , Colonic Neoplasms/diagnostic imaging , Colonic Neoplasms/drug therapy , Alginates
10.
Pharmaceutics ; 14(4)2022 Apr 18.
Article in English | MEDLINE | ID: mdl-35456714

ABSTRACT

Tolmetin sodium (TLM) is a non-steroidal anti-inflammatory drug (NSAIDs). TLM is used to treat inflammation, skeletal muscle injuries, and discomfort associated with bone disorders. Because of the delayed absorption from the gastro intestinal tract (GIT), the currently available TLM dosage forms have a rather protracted start to the effect, according to pharmacokinetic studies. The aim of this study was to create a combination for TLM fast dissolving tablets (TLM-FDT) that would boost the drug's bioavailability by increasing pre-gastric absorption. The TLM-FDTs were developed using a Box-Behnken experimental design with varied doses of crospovidone (CP), croscarmellose sodium (CCS) as super-disintegrants, and camphor as a sublimating agent. In addition, the current study used response surface approach to explore the influence of various formulation and process factors on tablet qualities in order to verify an optimized TLM-FDTs formulation. The optimized TLM-FDTs formula was subsequently evaluated for its in vivo anti-inflammatory activity. TLM-FDTs have good friability, disintegration time, drug release, and wetting time, as well as fast disintegration and dissolution behavior. Significant increase in drug bioavailability and reliable anti-inflammatory efficacy were also observed, as evidenced by considerable reductions in paw thickness in rats following carrageenan-induced rat paw edema. For optimizing and analyzing the effect of super-disintegrants and sublimating agents in the TLM-FDTs formula, the three-factor, three-level full factorial design is a suitable tool. TLM-FDTs are a possible drug delivery system for enhancing TLM bioavailability and could be used to treat rheumatoid arthritis.

11.
Materials (Basel) ; 15(8)2022 Apr 11.
Article in English | MEDLINE | ID: mdl-35454495

ABSTRACT

The nontoxicity, worldwide availability and low production cost of cuttlefish bone products qualify them an excellent biocoagulant to treat food industry wastewater. In this study, cuttlefish bone liquid waste from the deproteinization step was used as a biocoagulant to treat food industry wastewater. This work concerns a waste that has never before been investigated. The objectives of this work were: the recovery of waste resulting from cuttlefish bone deproteinization, the replacementof chemical coagulants with natural ones to preserve the environment, and the enhancement ofthe value of fishery byproducts. A quantitative characterization of the industrial effluents of a Moroccan food processing plant was performed. The physicochemical properties of the raw cuttlefish bone powder and the deproteinization liquid extract were determined using specific analysis techniques: SEM/EDX, FTIR, XRD and 1H-NMR. The protein content of the deproteinization liquid was determined by OPA fluorescent assay. The zeta potential of the liquid extract was also determined. The obtained analytical results showed that the deproteinization liquid waste contained an adequate amount of soluble chitin fractions that could be used in food wastewater treatment. The effects of the coagulant dose and pH on the food industrial effluents were studied to confirm the effectiveness of the deproteinization liquid extract. Under optimal conditions, the coagulant showed satisfactory results. Process optimization was performed using the Box-Behnken design and response surface methodology. Thus, the optimal removal efficiencies predicted using this model for turbidity (99.68%), BOD5 (97.76%), and COD (82.92%) were obtained at a dosage of 8 mL biocoagulant in 0.5 L of food processing wastewater at an alkaline pH of 11.

12.
Materials (Basel) ; 14(23)2021 Nov 23.
Article in English | MEDLINE | ID: mdl-34885287

ABSTRACT

A novel liquid chitosan-based biocoagulant for treating wastewater from a Moroccan fish processing plant was successfully prepared from shrimp shells (Parapenaeus longirostris), the most abundant fish by-products in the country. The shells were characterized using scanning electron microscopy, energy-dispersive X-ray spectroscopy, X-ray diffraction, and Fourier transforms infrared spectroscopy. Using chitosan without adding acetic acid helps to minimize its negative impact on the environment. At the same time, the recovery of marine shellfish represents a promising solution for the management of solid fish waste. In order to test the treatment efficiency of the biocoagulant developed, a qualitative characterization of these effluents was carried out beforehand. The optimization process was conducted in two steps: jar-test experiments and modeling of the experimental results. The first step covered the preliminary assessment to identify the most influential operational parameters (experimental conditions), whereas the second step concerned the study of the effects of three significant operational parameters and their interactions using a Box-Behnken experimental design. The variables involved were the concentration of coagulant (X1), the initial pH (X2), and the temperature (X3) of the wastewater samples, while the responses were the removal rates of turbidity (Y1) and BOD5 (Y2). The regression models and response surface contour plots revealed that chitosan as a liquid biocoagulant was effective in removing turbidity (98%) and BOD5 (53%) during the treatment. The optimal experimental conditions were found to be an alkaline media (pH = 10.5) and a biocoagulant dose of 5.5 mL in 0.5 L of fish processing wastewater maintained at 20 °C.

13.
Environ Pollut ; 274: 116577, 2021 Apr 01.
Article in English | MEDLINE | ID: mdl-33540256

ABSTRACT

Owing to its physicochemical similarity to strontium (Sr), calcium (Ca) was tested as a key component of a soil washing solution for Sr-contaminated soil collected near a nuclear power plant. A four-factor, three-level Box-Behnken experimental design combined with response surface modeling was employed to determine the optimal Sr washing condition for Ca-based solution. The Ca concentration (0.1-1 M), liquid-to-soil ratio (5-20), washing time (0.5-2 h), and pH (2.0-7.0) were tested as the independent variables. From the Box-Behnken design, 27 sets of experimental conditions were selected, and a second-order polynomial regression equation was derived. The significance of the independent parameters and interactions was tested by analysis of variance. Ca concentration was found to be the most influential factor. To determine whether the four variables were independent, three-dimensional (3D) response surface plots were established. The optimal washing condition was determined to be as follows: 1 M Ca, L/S ratio of 20, 1 h washing, and pH = 2. Under this condition, the highest Sr removal efficiency (68.2%) was achieved on a soil contaminated with 90.1 mg/kg of Sr. Results from five-step sequential extraction before and after washing showed that 84.0% and 82.9% of exchangeable and carbonate-bound Sr were released, respectively. In addition, more tightly bound Sr, such as Fe/Mn oxides-bound and organic matter-bound Sr, were also removed (86.2% and 64.5% removal, respectively).


Subject(s)
Soil Pollutants , Soil , Calcium , Environmental Pollution , Soil Pollutants/analysis , Strontium
14.
Methods Mol Biol ; 2197: 135-150, 2021.
Article in English | MEDLINE | ID: mdl-32827135

ABSTRACT

Therapeutic applications of plasmid DNA (pDNA) have significantly advanced during the last years. Currently, several pDNA-based drugs are already in the market, whereas several others have entered phases 2 and 3 of clinical trials. The present and future demand for pDNA requires the development of efficient bioprocesses to produce it. Commonly, pDNA is produced by cultures of Escherichia coli. It has been previously demonstrated that specific strains of E. coli with a modified substrate transport system can be able to attain high cell densities in batch mode, due to the very low overflow metabolism displayed. However, the large amounts of oxygen demanded can lead to microaerobic conditions after some hours of cultivation, even at small scale. Typically, the inherent problems for these cultures are the high oxygen demand and the accumulation of acetate, a metabolic byproduct that is synthesized aerobically when the glucose rate exceeds the limits.In recent years, several researches have been focused on the study of induction of plasmid DNA as well as strategies for fermentation using semi-defined mediums. These studies conceived relevant results that allow us to design a production platform for enhanced plasmid DNA. So, the main goal of this chapter is to show how the development of an experimental design directed to aromatic amino acids pathway can improve the yield of a therapeutic plasmid DNA by culture of a new strain of Escherichia coli VH33.


Subject(s)
Fermentation , Plasmids/biosynthesis , Plasmids/genetics , Vaccines, DNA/genetics , Vaccines, DNA/immunology , Bioreactors , Escherichia coli/genetics , Plasmids/administration & dosage , Plasmids/immunology , Research Design , Transformation, Genetic , Vaccines, DNA/administration & dosage
15.
Int J Biol Macromol ; 160: 971-978, 2020 Oct 01.
Article in English | MEDLINE | ID: mdl-32464211

ABSTRACT

An active chitosan-based film, blended with the hydrolysable tannin-rich extract obtained from fibrous chestnut wood (Castanea sativa Mill.), underwent a simultaneous engineering optimization in terms of measured moisture content (MC), tensile strength (TS), elongation at break (EB), and total phenolic content (TPC). The optimal product formulation for a homogeneous film-forming solution was sought by designing an empirical Box-Behnken model simulation, based on three independent variables: the concentrations of chitosan (1.5-2.0% (w/v)), extracted powder-form chestnut extract (0.5-1.0% (w/v)) and plasticizer glycerol (30.0-90.0% (w/w); determined per mass of polysaccharide). Obtained linear (MC), quadratic (TS or EB), and two-factor interaction (TPC) sets were found to be significant (p < 0.05), to fit well with characteristic experimental data (0.969 < R2 < 0.992), and could be considered predictive. Although all system parameters were influential, the level of polyol played a vital continuous role in defining EB, MC, and TS, while the variation of the chestnut extract caused an expected connected change in affecting TPC. The component relationship formula of chemical mixture fractions (1.93% (w/v) of chitosan, 0.97% (w/v) chestnut extract and 30.0% (w/w) of glycerol) yielded the final applicable material of adequate physico-mechanical properties (MC = 17.0%, TS = 16.7 MPa, EB = 10.4%, and TPC = 19.4 mgGAE gfilm-1). Further statistical validation of the concept revealed a sufficient specific accuracy with the computed maximal absolute residual error up to 22.2%. Herein-proposed design methodology can thus be translated to smart packaging fabrication generally.


Subject(s)
Biocompatible Materials/chemistry , Chitosan/chemistry , Food Packaging , Membranes, Artificial , Algorithms , Chemical Phenomena , Food Packaging/methods , Mechanical Phenomena , Models, Theoretical , Molecular Weight , Spectroscopy, Fourier Transform Infrared
16.
Microorganisms ; 8(5)2020 May 11.
Article in English | MEDLINE | ID: mdl-32403428

ABSTRACT

Talaromyces albobiverticillius 30548 is a marine-derived pigment producing filamentous fungus, isolated from the La Réunion island, in the Indian Ocean. The objective of this study was to examine and optimize the submerged fermentation (SmF) process parameters such as initial pH (4-9), temperature (21-27 °C), agitation speed (100-200 rpm), and fermentation time (0-336 h), for maximum production of pigments (orange and red) and biomass, using the Box-Behnken Experimental Design and Response Surface Modeling (BBED and RSM). This methodology allowed consideration of multifactorial interactions between a set of parameters. Experiments were carried out based on the BBED using 250 mL shake flasks, with a 100 mL working volume of potato dextrose broth (PDB). From the experimental data, mathematical models were developed to predict the pigments and biomass yields. The individual and interactive effects of the process variables on the responses were also investigated (RSM). The optimal conditions for maximum production of pigments and biomass were derived by the numerical optimization method, as follows-initial pH of 6.4, temperature of 24 °C, agitation speed of 164 rpm, and fermentation time of 149 h, respectively.

17.
Int J Nanomedicine ; 15: 2529-2539, 2020.
Article in English | MEDLINE | ID: mdl-32346290

ABSTRACT

BACKGROUND: Peptic ulcer disease, a painful lesion of the gastric mucosa, is considered one of the most common gastrointestinal disorders. This study aims to investigate the formulation of pumpkin seed oil (PSO)-based nanostructured lipid carriers (NLCs) to utilize PSO as the liquid lipid component of NLCs and to achieve oil dispersion in the nano-range in the stomach. METHODS: Box-Behnken design was utilized to deduce the optimum formula with minimum particle size. The optimized PSO-NLCs formula was investigated for gastric ulcer protective effects in Wistar rats by evaluating ulcer index and determination of gastric mucosa oxidative stress parameters. RESULTS: PSO was successfully incorporated as the liquid lipid (LL) component of NLCs. The prepared optimum PSO-NLCs formula showed a size of 64.3 nm. Pretreatment of animals using the optimized PSO-NLCs formula showed significantly (p< 0.001) lower ulcer index compared to indomethacin alone group and significantly (p<0.05) less mucosal lesions compared to the raw oil. CONCLUSION: These results indicated great potential for future application of optimized PSO-NLCs formula for antiulcer effect in non-steroidal anti-inflammatory drug (NSAID)-induced gastric ulcer.


Subject(s)
Anti-Inflammatory Agents, Non-Steroidal/therapeutic use , Cucurbita/chemistry , Drug Carriers/chemistry , Lipids/chemistry , Nanostructures/chemistry , Plant Oils/chemistry , Stomach Ulcer/drug therapy , Animals , Disease Models, Animal , Gastric Mucosa/drug effects , Gastric Mucosa/pathology , Indomethacin/therapeutic use , Male , Oxidative Stress/drug effects , Particle Size , Rats, Wistar , Reproducibility of Results , Spectroscopy, Fourier Transform Infrared , Stomach/drug effects , Stomach/pathology , Stomach Ulcer/pathology
18.
Environ Monit Assess ; 192(4): 253, 2020 Mar 28.
Article in English | MEDLINE | ID: mdl-32222945

ABSTRACT

This study describes the development of a sensitive and accurate dispersive liquid-liquid microextraction strategy for the preconcentration and determination of selected pesticides in wastewater and lake water samples by gas chromatography-mass spectrometry. Determination of these pesticides at high accuracy and precision is important because they can be still be found in environmental samples. The type of extraction solvent and type of disperser solvent were optimized using the univariate approach. Furthermore, a Box-Behnken experimental design was used to set up a working model made up of 18 combinations of three variables, tested at three levels. The parameters fitted into the design model were volume of extraction solvent, disperser solvent volume, and mixing period. Analysis of variance was used to evaluate the experimental data to determine the significance of extraction variables and their interactions, before selecting optimum extraction conditions. The method was then applied to aqueous standard solutions between 2.0 and 500 µg L-1, and the limit of detection (LOD) and quantification (LOQ) values obtained for the analytes were between 0.37-2.8 and 1.2-9.4 µg L-1, respectively. The percent recoveries were calculated in the range of 92-114 and 96-110% for wastewater and lake water, respectively. These results validated the accuracy and applicability of the method to the selected matrices.


Subject(s)
Environmental Monitoring , Liquid Phase Microextraction , Pesticides/analysis , Water Pollutants, Chemical , Chlorpyrifos , Endosulfan , Gas Chromatography-Mass Spectrometry , Lakes/chemistry , Phenylcarbamates , Thiadiazoles/analysis , Wastewater/chemistry
19.
Mater Sci Eng C Mater Biol Appl ; 107: 110266, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31761238

ABSTRACT

The purpose of this study was to facilely develop biomimetic amino modified mesoporous silica xerogel (AMSX) and study how AMSX regulated loading and in vitro sustained delivery of carboxyl-containing drug levorotary ofloxacin (LOFL). Characteristics of AMSX, including morphology, porous structure, elements and crystalline state were investigated and pharmaceutical performance of AMSX for the delivery of LOFL was studied. The result showed that AMSX was accumulational spherical nanoparticles with mesoporous structure. Hydrogen bonding force was formed between carboxylic groups of LOFL and amino groups grafted on the surface of AMSX. Furthermore, a three-level three-factorial Box-Behnken experimental design was applied to optimize the amount of major agent for synthesizing AMSX with expected drug loading capacity and also to figure out how AMSX regulated in vitro delivery of LOFL. It is believed that the present work will provide novel insights for designing mesoporous silica as drug carrier and favored the development of sustained release system.


Subject(s)
Gels/chemistry , Ofloxacin/chemistry , Silicon Dioxide/chemistry , Drug Carriers/chemistry , Hydrogen Bonding , Nanoparticles/chemistry , Ofloxacin/metabolism , Porosity , Wettability
20.
Spectrochim Acta A Mol Biomol Spectrosc ; 213: 218-227, 2019 Apr 15.
Article in English | MEDLINE | ID: mdl-30690305

ABSTRACT

This article describes synthesis of NiFe2O4 decorated exfoliated graphite particles and its application for pipette tip solid phase extraction of methyl orange (MO) and acid red 18 (AR) dyes from seawater samples prior to their determination by spectrophotometry. Various parameters that effect extraction efficiency such as volume and pH of sample, type and volume of eluent solvent, number of cycles of extraction and elution, type and amount of added salt and concentration of surfactant were investigated and optimized using two methods of one-variable-at-a-time and Box-Behnken response surface methodology. Seven factors in three levels were used for experimental design. Under optimum condition, the linear range of method was 5-250 µg/L for both analytes. The limits of detection achieved were 0.9 and 1.0 µg/L, for MO and AR, respectively. The proposed method was successfully applied for the determination of dyes in seawater samples.

SELECTION OF CITATIONS
SEARCH DETAIL
...