Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.571
Filter
1.
Article in English | MEDLINE | ID: mdl-38845301

ABSTRACT

Metastasis to the brain is a frequent complication of advanced melanoma. Historically, patients with melanoma brain metastasis (MBM) have had dismal outcomes, but outcomes have improved with the development of more effective treatments, including stereotactic radiosurgery and effective immune and targeted therapies. Despite these advances, MBM remains a leading cause of death from this disease, and many therapies show decreased efficacy against these tumors compared with extracranial metastases. This differential efficacy may be because of recently revealed unique molecular and immune features of MBMs-which may also provide rational new therapeutic strategies.

2.
Cancer Med ; 13(11): e7364, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38847084

ABSTRACT

PURPOSE: Lung cancer (LC) and breast cancer (BC) are the most common causes of brain metastases (BMs). Time from primary diagnosis to BM (TPDBM) refers to the time interval between initial LC or BC diagnosis and development of BM. This research aims to identify clinical, molecular, and therapeutic risk factors associated with shorter TPDBM. METHODS: We retrospectively reviewed all diagnosed LC and BC patients with BM at Harbin Medical University Cancer Hospital from 2016 to 2020. A total of 570 patients with LC brain metastasis (LCBM) and 173 patients with breast cancer brain metastasis (BCBM) patients who met the inclusion criteria were enrolled for further analysis. BM free survival time curves were generated using Kaplan-Meier analyses. Univariate and multivariate Cox regression analyses were applied to identify risk factors associated with earlier development of BM in LC and BC, respectively. RESULTS: The median TPDBM was 5.3 months in LC and 44.4 months in BC. In multivariate analysis, clinical stage IV and M1 stage were independent risk factors for early development of LCBM. LC patients who received chemotherapy, targeted therapy, pulmonary radiotherapy, and pulmonary surgery had longer TPDBM. For BC patients, age ≥ 50 years, Ki67 ≥ 0.3, HER2 positive or triple-negative breast cancer subtype, advanced N stage, and no mastectomy were correlated with shorter TPDBM. CONCLUSIONS: This single-institutional study helps identify patients who have a high risk of developing BM early. For these patients, early detection and intervention could have clinical benefits.


Subject(s)
Brain Neoplasms , Breast Neoplasms , Lung Neoplasms , Humans , Female , Lung Neoplasms/therapy , Lung Neoplasms/pathology , Lung Neoplasms/diagnosis , Brain Neoplasms/secondary , Brain Neoplasms/therapy , Brain Neoplasms/diagnosis , Middle Aged , Breast Neoplasms/pathology , Breast Neoplasms/therapy , Retrospective Studies , Risk Factors , Aged , Male , Time Factors , Adult , Neoplasm Staging
3.
Pathol Res Pract ; 260: 155378, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38850880

ABSTRACT

Understanding the underlying mechanisms of breast cancer metastasis is of vital importance for developing treatment approaches. This review emphasizes contemporary breakthrough studies with special focus on breast cancer brain metastasis. Acquired mutational changes in metastatic lesions are often distinct from the primary tumor, suggesting altered mutagenesis pathways. The concept of micrometastases and heterogeneity within the tumors unravels novel therapeutic targets at genomic and molecular levels through epigenetic and proteomic profiling. Several pre-clinical studies have identified mechanisms involving the immune system, where tumor associated macrophages are key players. Expression of cell proteins like Syndecan1, fatty acid-binding protein 7 and tropomyosin kinase receptor B have been implicated in aiding the transmigration of breast cancer cells to the brain. Changes in the proteomic landscape of the blood-brain-barrier show altered permeability characteristics, supporting entry of cancer cells. Findings from laboratory studies pave the path for the emergence of new biomarkers, especially blood-based miRNA and circulating tumor cell markers for prognostic staging. The constantly evolving therapeutics call for clinical trials backing supportive evidence of efficacies of both novel and existing approaches. The challenge lying ahead is discovering innovative techniques to replace use of human samples and optimize small-scale patient recruitment in trials.

4.
Front Oncol ; 14: 1335401, 2024.
Article in English | MEDLINE | ID: mdl-38835368

ABSTRACT

Background: The differentiation of high-grade glioma and brain tumors of an extracranial origin is eminent for the decision on subsequent treatment regimens. While in high-grade glioma, a surgical resection of the tumor mass is a fundamental part of current standard regimens, in brain metastasis, the burden of the primary tumor must be considered. However, without a cancer history, the differentiation remains challenging in the imaging. Hence, biopsies are common that may help to identify the tumor origin. An additional tool to support the differentiation may be of great help. For this purpose, we aimed to identify a biomarker panel based on the expression analysis of a small sample of tissue to support the pathological analysis of surgery resection specimens. Given that an aberrant glutamate signaling was identified to drive glioblastoma progression, we focused on glutamate receptors and key players of glutamate homeostasis. Methods: Based on surgically resected samples from 55 brain tumors, the expression of ionotropic and metabotropic glutamate receptors and key players of glutamate homeostasis were analyzed by RT-PCR. Subsequently, a receiver operating characteristic (ROC) analysis was performed to identify genes whose expression levels may be associated with either glioblastoma or brain metastasis. Results: Out of a total of 29 glutamatergic genes analyzed, nine genes presented a significantly different expression level between high-grade gliomas and brain metastases. Of those, seven were identified as potential biomarker candidates including genes encoding for AMPA receptors GRIA1, GRIA2, kainate receptors GRIK1 and GRIK4, metabotropic receptor GRM3, transaminase BCAT1 and the glutamine synthetase (encoded by GLUL). Overall, the biomarker panel achieved an accuracy of 88% (95% CI: 87.1, 90.8) in predicting the tumor entity. Gene expression data, however, could not discriminate between patients with seizures from those without. Conclusion: We have identified a panel of seven genes whose expression may serve as a biomarker panel to discriminate glioblastomas and brain metastases at the molecular level. After further validation, our biomarker signatures could be of great use in the decision making on subsequent treatment regimens after diagnosis.

5.
World J Clin Oncol ; 15(5): 594-598, 2024 May 24.
Article in English | MEDLINE | ID: mdl-38835846

ABSTRACT

In this editorial, we comment on the article by Chen et al. We specifically focus on the risk factors, prognostic factors, and management of brain metastasis (BM) in breast cancer (BC). BC is the second most common cancer to have BM after lung cancer. Independent risk factors for BM in BC are: HER-2 positive BC, triple-negative BC, and germline BRCA mutation. Other factors associated with BM are lung metastasis, age less than 40 years, and African and American ancestry. Even though risk factors associated with BM in BC are elucidated, there is a lack of data on predictive models for BM in BC. Few studies have been made to formulate predictive models or nomograms to address this issue, where age, grade of tumor, HER-2 receptor status, and number of metastatic sites (1 vs > 1) were predictive of BM in metastatic BC. However, none have been used in clinical practice. National Comprehensive Cancer Network recommends screening of BM in advanced BC only when the patient is symptomatic or suspicious of central nervous system symptoms; routine screening for BM in BC is not recommended in the guidelines. BM decreases the quality of life and will have a significant psychological impact. Further studies are required for designing validated nomograms or predictive models for BM in BC; these models can be used in the future to develop treatment approaches to prevent BM, which improves the quality of life and overall survival.

6.
Front Oncol ; 14: 1400792, 2024.
Article in English | MEDLINE | ID: mdl-38841157

ABSTRACT

Purpose: Brain metastasis (BM) from non-small cell lung cancer (NSCLC) is a serious complication severely affecting patients' prognoses. We aimed to compare the clinicopathological features and prognosis of synchronous and metachronous BM from NSCLC. Methods: Clinical data of 461 patients with brain metastases from NSCLC who visited the Cancer Hospital of China Medical University from 2005 to 2017 were retrospectively collected. We analyzed the pathophysiological characteristics of synchronous and metachronous BM from NSCLC and survival rates of the patients. Propensity score matching analysis was used to reduce bias between groups. In addition, we used the Kaplan-Meier method for survival analysis, log-rank test to compare survival rates, and Cox proportional hazards regression model for multivariate prognosis analysis. Results: Among 461 patients with BM, the number of people who met the inclusion criteria was 400 cases, and after 1:2 propensity score matching,130 had synchronous BM and 260 had metachronous BM. The survival time was longer for metachronous BM in driver mutation-negative patients with squamous cell carcinoma than synchronous BM. Conversely, metachronous and synchronous BM with gene mutations and adenocarcinoma showed no differences in survival time. Multivariate analysis showed that metachronous BM was an independent prognostic factor for overall survival. Furthermore, the pathological type squamous cell carcinoma and Karnofsky Performance Status score <80 were independent risk factors affecting overall survival. Conclusion: BM status is an independent factor influencing patient outcome. Moreover, synchronous and metachronous BM from NSCLC differ in gene mutation profile, pathological type, and disease progression and hence require different treatments.

7.
J Neurooncol ; 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38829577

ABSTRACT

BACKGROUND: Advancements in metastatic breast cancer (BC) treatment have enhanced overall survival (OS), leading to increased rates of brain metastases (BM). This study analyzes the association between microsurgical tumor reduction and OS in patients with BCBM, considering tumor molecular subtypes and perioperative treatment approaches. METHODS: Retrospective analysis of surgically treated patients with BCBM from two tertiary brain tumor Swiss centers. The association of extent of resection (EOR), gross-total resection (GTR) achievement, and postoperative residual tumor volume (RV) with OS and intracranial progression-free survival (IC-PFS) was evaluated using Cox proportional hazard model. RESULTS: 101 patients were included in the final analysis, most patients (38%) exhibited HER2-/HR + BC molecular subtype, followed by HER2 + /HR + (25%), HER2-/HR- (21%), and HER2 + /HR- subtypes (13%). The majority received postoperative systemic treatment (75%) and radiotherapy (84%). Median OS and intracranial PFS were 22 and 8 months, respectively. The mean pre-surgery intracranial tumor volume was 26 cm3, reduced to 3 cm3 post-surgery. EOR, GTR achievement and RV were not significantly associated with OS or IC-PFS, but higher EOR and lower RV correlated with extended OS in patients without extracranial metastases. HER2-positive tumor status was associated with longer OS, extracranial metastases at BM diagnosis and symptomatic lesions with shorter OS and IC-PFS. CONCLUSIONS: Our study found that BC molecular subtypes, extracranial disease status, and BM-related symptoms were associated with OS in surgically treated patients with BCBM. Additionally, while extensive resection to minimize residual tumor volume did not significantly affect OS across the entire cohort, it appeared beneficial for patients without extracranial metastases.

8.
J Neurooncol ; 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38837019

ABSTRACT

INTRODUCTION: This study compares four management paradigms for large brain metastasis (LMB): fractionated SRS (FSRS), staged SRS (SSRS), resection and postoperative-FSRS (postop-FSRS) or preoperative-SRS (preop-SRS). METHODS: Patients with LBM (≥ 2 cm) between July 2017 and January 2022 at a single tertiary institution were evaluated. Primary endpoints were local failure (LF), radiation necrosis (RN), leptomeningeal disease (LMD), a composite of these variables, and distant intracranial failure (DIF). Gray's test compared cumulative incidence, treating death as a competing risk with a random survival forests (RSF) machine-learning model also used to evaluate the data. RESULTS: 183 patients were treated to 234 LBMs: 31.6% for postop-FSRS, 28.2% for SSRS, 20.1% for FSRS, and 20.1% for preop-SRS. The overall 1-year composite endpoint rates were comparable (21 vs 20%) between nonoperative and operative strategies, but 1-year RN rate was 8 vs 4% (p = 0.012), 1-year overall survival (OS) was 48 vs. 69% (p = 0.001), and 1-year LMD rate was 5 vs 10% (p = 0.052). There were differences in the 1-year RN rates (7% FSRS, 3% postop-FSRS, 5% preop-SRS, 10% SSRS, p = 0.037). With RSF analysis, the out-of-bag error rate for the composite endpoint was 47%, with identified top-risk factors including widespread extracranial disease, > 5 total lesions, and breast cancer histology. CONCLUSION: This is the first study to conduct a head-to-head retrospective comparison of four SRS methods, addressing the lack of randomized data in LBM literature amongst treatment paradigms. Despite patient characteristic trends, no significant differences were found in LF, composite endpoint, and DIF rates between non-operative and operative approaches.

9.
Pathol Res Pract ; 260: 155375, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38878665

ABSTRACT

BACKGROUND: Brain metastasis (BM) is a prevalent prognostic event in the development of lung adenocarcinoma (LUAD) with a poor prognosis. Alterations in gene or protein expression during various phases of BM remain unclear. METHODS: We performed gene expression and pathway analyses using a metastasis-related gene panel on 12 lung tissues from patients with confirmed BM, 12 lung tissues from patients without BM, and 12 matched brain tissues from patients with confirmed BM during follow-up after LUAD surgery. The results of the gene expression analysis were validated by immunohistochemistry. RESULTS: Cell interaction-related pathways (such as focal adhesion, extracellular matrix-receptor interaction, and proteoglycans in cancer) showed the greatest differences among the three groups. Expression of the cell interaction-related pathway was highest in the lung sample of BM group and lowest in the matched brain tissue. Using a machine learning model, a signature of 20 genes from cell interaction-related pathways accurately predicted BM (area under the curve score of 0.792 and an accuracy rate of 0.875). Immunohistochemical analysis showed higher expression of proteins associated with cell interaction-related genes and a mesenchymal phenotype in the lung sample of BM group than in those without BM or matched brain tissue. CONCLUSIONS: LUAD acquires the characteristics of the cell interaction-related pathway that leads to the development of BM, with a significant decrease in expression following brain colonization.

10.
Radiol Case Rep ; 19(8): 3453-3455, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38872752

ABSTRACT

A 79-year-old woman with a history of resection of the ascending colon cancer presented with conscious disturbance, dysarthria, nausea, and dizziness. Computed tomography (CT) revealed striking high-density lesions in the left cerebellum and left frontal lobe with slight perifocal edema. These lesions were suspected the coexistence of spontaneous cerebellar hemorrhage and frontal lobe metastasis, or multiple brain metastases with massive hematoma. Because of the mass effect of the cerebellar lesion and impaired consciousness, she underwent emergency resection of the cerebellar lesion which was found to be composed of grayish abnormal soft solid tissue and did not include an obvious hematoma mass. The pathological findings were consistent with brain metastasis from colon cancer. This is an impressive rare case of intraoperative solid brain metastasis with a clearly homogenous hyper-dense CT appearance mimicking intracerebral hematoma.

11.
Article in English | MEDLINE | ID: mdl-38860682

ABSTRACT

The incidence of breast cancer remains high worldwide and is associated with a significant risk of metastasis to the brain that can be fatal; this is due, in part, to the inability of therapeutics to cross the blood-brain barrier (BBB). Extracellular vesicles (EVs) have been found to cross the BBB and further have been used to deliver drugs to tumors. EVs from different cell types appear to have different patterns of accumulation and retention as well as the efficiency of bioactive cargo delivery to recipient cells in the body. Engineering EVs as delivery tools to treat brain metastases, therefore, will require an understanding of the timing of EV accumulation and their localization relative to metastatic sites. Magnetic particle imaging (MPI) is a sensitive and quantitative imaging method that directly detects superparamagnetic iron. Here, we demonstrate MPI as a novel tool to characterize EV biodistribution in metastatic disease after labeling EVs with superparamagnetic iron oxide (SPIO) nanoparticles. Iron-labeled EVs (FeEVs) were collected from iron-labeled parental primary 4T1 tumor cells and brain-seeking 4T1BR5 cells, followed by injection into the mice with orthotopic tumors or brain metastases. MPI quantification revealed that FeEVs were retained for longer in orthotopic mammary carcinomas compared to SPIOs. MPI signal due to iron could only be detected in brains of mice bearing brain metastases after injection of FeEVs, but not SPIOs, or FeEVs when mice did not have brain metastases. These findings indicate the potential use of EVs as a therapeutic delivery tool in primary and metastatic tumors.

12.
J Neurooncol ; 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38865010

ABSTRACT

INTRODUCTION: The efficacy and safety of laser interstitial thermal therapy followed by consolidation radiosurgery (LITT-cSRS) was previously studied in brain metastasis that recurs locally after initial radiosurgery (BMRS). Here, we characterize the clinical outcome of LITT-cSRS in patients with newly diagnosed brain metastasis. METHODS: Between 2017 and 2023, ten consecutive cancer patients with newly diagnosed brain mass of unclear etiology who underwent stereotactic needle biopsy (SNB) and LITT in the same setting followed by consolidation SRS (cSRS) with > 6 months follow-up were identified retrospectively. Clinical and imaging outcomes were collected. RESULTS: The histology of the BM were: breast cancer (n = 3), melanoma (n = 3), non-cell cell lung cancer (n = 3), colon (n = 1). There were no wound or procedural complications. All patients were discharged home, with a median one-day hospital stay (range: 1-2 days). All patients were off corticosteroid therapy by the one-month follow-up. cSRS were carried out 12-27 days (median of 19 days) after SNB + LITT. There were no subsequent emergency room presentation, 30-day or 90-day re-admission. The Karnofsky Performance Score (KPS) remains stable or improved at the 3 months-follow-up. With a median follow-up of 416 days (13.8 mo; range: 199-1,096 days), there was one local recurrence at 384 days (12.8 mo) post-LITT-cSRS. With exception of this patient with local recurrence, all patients showed decreased FLAIR volume surrounding the LITT-cSRS treated BMRS by the six-month follow-up. CONCLUSIONS: To our awareness, this case series represent the first to describe LITT-cSRS in the setting of newly diagnosed BM. The results presented here provide pilot data to support the safety and efficacy of LITT-cSRS and lay the foundation for future studies.

13.
J Neurooncol ; 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38865012

ABSTRACT

PURPOSE: We aimed to identify factors associated with the extent of brain metastases in patients with breast cancer to help distinguish brain oligometastases (1-4 brain metastases) from extensive metastases (5 or more brain metastases). METHODS: This retrospective observational study included 100 female patients diagnosed with brain metastases from breast cancer at a single institution between January 2011 and April 2022. Patient demographics and tumor characteristics were compared between the brain oligometastases group and the extensive metastases group. Multivariable logistic regression analysis was performed to determine the independent factors, including age at initial diagnosis, initial stage, breast cancer subtype, detection time of brain metastases, and de novo or recurrent status of the metastatic disease. In a subgroup analysis of patients with brain oligometastases, demographic and tumor characteristics were compared between patients with single and two-four brain metastases. RESULTS: Of the 100 patients, 56 had brain oligometastases, while 44 had extensive brain metastases. The multivariable logistic regression analysis revealed that only the de novo/recurrent status of metastatic breast cancer was significantly associated with the extent of brain metastasis (p = 0.023). In the subgroup analysis of 56 patients with brain oligometastases, those diagnosed at an earlier stage were more likely to have a single brain metastasis (p = 0.008). CONCLUSION: Patients with de novo metastatic breast cancer are more likely to develop extensive brain metastases than those with recurrent metastatic breast cancer. This insight could influence the development of tailored approaches for monitoring and treating brain metastases, supporting the potential advantages of routine brain screening for patients newly diagnosed with stage IV breast cancer.

14.
Breast ; 76: 103757, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38843710

ABSTRACT

INTRODUCTION: Breast cancer stands as the second most common solid tumors with a propensity for brain metastasis. Among metastatic breast cancer cases, the brain metastasis incidence ranges from 10 % to 30 %, with triple-negative breast cancer (TNBC) displaying a heightened risk and poorer prognosis. SRS has emerged as an effective local treatment modality for brain metastases; however, data on its outcomes specifically in pure triple-negative subtype remain scarce. METHOD: We retrospectively reviewed the electronic medical records of all brain metastasis (BM) TNBC patients treated with SRS. Patient, tumour characteristics and treatment details data were collected. This retrospective cohort study aimed to evaluate local control (LC), distant brain metastasis free survival (DBMFS), and overall survival (OS) outcomes in TNBC patients undergoing SRS for brain metastases while identifying potential prognostic factors. RESULT: Forty-three patients with TNBC and brain metastases treated with SRS between January 2017 and 2023 were included. The study found rates of LC (99 % at 1 year) and DBMFS (76 % at 1 year) after SRS, with brain metastasis count (p = 0,003) and systemic treatment modality (p = 0,001) being significant predictors of DBMFS. The median OS following SRS was 19.5 months, with neurological deficit (p = 0.003) and systemic treatment modality (p = 0.019) identified as significant predictors of OS. CONCLUSION: SRS demonstrates favourable outcomes in terms of local control and distant brain metastasis-free survival in TNBC. Neurological deficit and systemic treatment significantly influence overall survival, emphasizing the importance of personalized treatment approaches and (magnetic resonance imaging) MRI surveillance based on these factors.

15.
Phys Imaging Radiat Oncol ; 30: 100591, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38832123

ABSTRACT

Background and purpose: Stereotactic radiation therapy (SRT) is commonly used to treat brain metastases (BMs). This retrospective study compared two SRT techniques, dynamic conformal arc therapy (DCAT) and volumetric modulated arc therapy (VMAT), for single BM treatments. Material and methods: Data of patients treated between January 2010 and June 2020 were considered. Patients with multiple BMs, resected BMs, reirradiation, whole-brain radiation therapy and brainstem metastases were excluded. We focused our analysis on 97 patients who received 23.1 Gy in three fractions. Acute toxicities and follow-up outcomes were recorded. Dosimetric data were analyzed in two subgroups (PTV ≤ 10 cc and PTV > 10 cc). Results: DCAT and VMAT were used in 70 (72.2 %) and 27 (27.8 %) patients, respectively. Acute toxicities were not significantly different between groups (p = 0.259), and no difference was detected in the incidence rate of radionecrosis, local recurrence and cerebral recurrence (p > 0.999, p > 0.999 and p = 0.682, respectively). PTV coverage was better with DCAT for small volumes (PTV ≤ 10 cc). Mean conformity index (CI) was significantly higher with VMAT and mean gradient index (GI) was significantly lower with DCAT whatever volume subgroups (p < 0.001). DCAT had more heterogeneous plans and VMAT required more monitor units. DCAT resulted in reduced low and intermediate doses, whereas VMAT led to decreased high doses. Conclusion: DCAT and VMAT are two effective and safe SRT techniques for BMs treatment. In the era of re-irradiation, it is important to reduce the doses delivered to healthy tissues. Further prospective studies are needed to validate these findings.

16.
Crit Rev Oncol Hematol ; 198: 104377, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38710296

ABSTRACT

Brain metastases (BrM) are common malignant lesions in the central nervous system, and pose a significant threat in advanced-stage malignancies due to delayed diagnosis and limited therapeutic options. Their distinct genomic profiles underscore the need for molecular profiling to tailor effective treatments. Recent advances in cancer biology have uncovered molecular drivers underlying tumor initiation, progression, and metastasis. This, coupled with the advances in molecular imaging technology and radiotracer synthesis, has paved the way for the development of innovative radiopharmaceuticals with enhanced specificity and affinity for BrM specific targets. Despite the challenges posed by the blood-brain barrier to effective drug delivery, several radiolabeled compounds have shown promise in detecting and targeting BrM. This manuscript provides an overview of the recent advances in molecular biomarkers used in nuclear imaging and targeted radionuclide therapy in both clinical and preclinical settings. Additionally, it explores potential theranostic applications addressing the unique challenges posed by BrM.


Subject(s)
Brain Neoplasms , Humans , Brain Neoplasms/secondary , Brain Neoplasms/therapy , Brain Neoplasms/diagnosis , Theranostic Nanomedicine/methods , Radiopharmaceuticals/therapeutic use , Biomarkers, Tumor/metabolism , Animals , Molecular Targeted Therapy/methods , Molecular Imaging/methods , Precision Medicine/methods
17.
J Clin Neurosci ; 125: 146-151, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38815300

ABSTRACT

AIMS AND OBJECTIVES: Because of its rarity, limited data concerning brain metastasis (BM) from bladder cancer (BCa) are available, so this phenomenon remains unclear. We aimed to contribute to understanding this unique patient population's clinical behavior and outcomes. METHODS/MATERIALS: This retrospective cohort study included 27 BCa patients with BM treated at our Cancer Institute between April 2009 and December 2022. The time from initial diagnosis to BM and overall survival from BM diagnosis were calculated (Kaplan-Meier method). Cox regression was used to test key clinicopathologic associations. RESULTS: A total of 27 patients were included in the study (male/female = 23/4). The median patient age at BM diagnosis was 62.0 (47-79) years. The median interval from initial diagnosis to BM was 11.0 ± 2.59 (95 % CI, 5.91-16.08) months. Twenty (74.0 %) patients were diagnosed with BM by postsymptomatic imaging. The most common symptoms were headache-dizziness (n = 9, 33.3 %), seizure (n = 3, 11.1 %), hemiparesis (n = 2, 7.4 %), and vision defects (n = 2, 7.4 %). The most common sites of extracranial metastasis were the lung (n = 10, 52.6 %), bone (n = 7, 36.8 %), and lymph nodes (n = 6, 31.5 %). More than half of the patients (55.5 %) had multiple BMs. Eight (29.6 %) patients underwent surgery for BM. All of the patients received radiotherapy (RT) for BM (whole-brain radiotherapy (WBRT)/stereotactic radiotherapy (SRT) = 24/3), and eight patients received RT for the second time. Six patients were treated with systemic chemotherapy (CT) after BM. The median survival from BM was 3.0 ± 1.2 (95 % Cl, 0.4-5.5) months in the entire cohort. A low number of BMs (HR 0.270, 95 % CI 0.083-0.885; p = 0.031), surgery for BM (HR 0.174, 95 % CI 0.043-0.712; p = 0.015), CT after BM (HR 0.207, 95 % CI 0.057-0.755; p = 0.017), and better ECOG performance score (HR 0.248, 95 % CI 0.074-0.836; p = 0.025) were associated with better OS. CONCLUSIONS: Factors associated with improved survival in BCa patients with BM include a few brain lesions, intracranial resection, CT after BM, and better ECOG performance scores. Larger-scale prospective studies are needed to define the optimal management strategy further.


Subject(s)
Brain Neoplasms , Urinary Bladder Neoplasms , Humans , Male , Middle Aged , Brain Neoplasms/secondary , Brain Neoplasms/mortality , Brain Neoplasms/therapy , Female , Urinary Bladder Neoplasms/pathology , Urinary Bladder Neoplasms/mortality , Urinary Bladder Neoplasms/therapy , Aged , Retrospective Studies , Prognosis
18.
Proc Natl Acad Sci U S A ; 121(20): e2322688121, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38709925

ABSTRACT

Brain metastatic breast cancer is particularly lethal largely due to therapeutic resistance. Almost half of the patients with metastatic HER2-positive breast cancer develop brain metastases, representing a major clinical challenge. We previously described that cancer-associated fibroblasts are an important source of resistance in primary tumors. Here, we report that breast cancer brain metastasis stromal cell interactions in 3D cocultures induce therapeutic resistance to HER2-targeting agents, particularly to the small molecule inhibitor of HER2/EGFR neratinib. We investigated the underlying mechanisms using a synthetic Notch reporter system enabling the sorting of cancer cells that directly interact with stromal cells. We identified mucins and bulky glycoprotein synthesis as top-up-regulated genes and pathways by comparing the gene expression and chromatin profiles of stroma-contact and no-contact cancer cells before and after neratinib treatment. Glycoprotein gene signatures were also enriched in human brain metastases compared to primary tumors. We confirmed increased glycocalyx surrounding cocultures by immunofluorescence and showed that mucinase treatment increased sensitivity to neratinib by enabling a more efficient inhibition of EGFR/HER2 signaling in cancer cells. Overexpression of truncated MUC1 lacking the intracellular domain as a model of increased glycocalyx-induced resistance to neratinib both in cell culture and in experimental brain metastases in immunodeficient mice. Our results highlight the importance of glycoproteins as a resistance mechanism to HER2-targeting therapies in breast cancer brain metastases.


Subject(s)
Brain Neoplasms , Breast Neoplasms , Drug Resistance, Neoplasm , Glycocalyx , Quinolines , Receptor, ErbB-2 , Stromal Cells , Humans , Breast Neoplasms/pathology , Breast Neoplasms/metabolism , Breast Neoplasms/drug therapy , Breast Neoplasms/genetics , Female , Brain Neoplasms/secondary , Brain Neoplasms/metabolism , Brain Neoplasms/drug therapy , Brain Neoplasms/pathology , Brain Neoplasms/genetics , Receptor, ErbB-2/metabolism , Receptor, ErbB-2/genetics , Glycocalyx/metabolism , Animals , Cell Line, Tumor , Stromal Cells/metabolism , Stromal Cells/pathology , Quinolines/pharmacology , Mice , Cell Communication , Coculture Techniques , Mucin-1/metabolism , Mucin-1/genetics , Signal Transduction , ErbB Receptors/metabolism , ErbB Receptors/antagonists & inhibitors
19.
J Cancer Res Clin Oncol ; 150(5): 271, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38780840

ABSTRACT

OBJECTIVE: Previous research has shown that both temozolomide (TMZ) and PD-1/L1 inhibitors (PD-1/L1) alone exhibit certain potential in the treatment of non-small cell lung cancer (NSCLC) with brain metastases (BM), in this study, we will explore combining the two in order to seek new effective treatment options for NSCLC with BM. MATERIAL AND METHODS: During 2021.1 to 2023.12, we collected the date of these pretreated-NSCLC with BM who accept the treatment of TMZ and PD-1/L1, the objective response ratio (ORR), progression-free survival (PFS) and overall survival (OS) were set as the primary endpoint, meanwhile, the toxicity of such regimen was also recorded. RESULTS: About 42 patients are enrolled, our primary analysis demonstrated that the ORR of such regimen toward NSCLC with BM was 26.19%, with Approximate intracranial and extracranial lesion ORR was 6% and 20% respectively, the DCR was about 64.29%, the mean PFS and OS was about 4 m and 8.5 m. Further analysis indicated that the efficiency correlated with the diagnosis-Specific Graded Prognostic Assessment (ds-GPA) score. Moreover, the toxicity can also be tolerated, indicating the application potential of such regimen against NSCLC with BM. CONCLUSIONS: Our results exhibited that with tolerated toxicity, the combination of TMZ and PD-1/L1 shows promising efficiency against NSCLC with BM, this would be of great significance for the treatment of NSCLC with brain metastasis. However, due to the limitation of sample and retrospective property, the real value of such regimen needed to be further confirmed in the future.


Subject(s)
Brain Neoplasms , Carcinoma, Non-Small-Cell Lung , Immune Checkpoint Inhibitors , Lung Neoplasms , Temozolomide , Humans , Temozolomide/therapeutic use , Temozolomide/administration & dosage , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/pathology , Brain Neoplasms/secondary , Brain Neoplasms/drug therapy , Lung Neoplasms/drug therapy , Lung Neoplasms/pathology , Retrospective Studies , Male , Middle Aged , Female , Aged , Immune Checkpoint Inhibitors/therapeutic use , Immune Checkpoint Inhibitors/adverse effects , Immune Checkpoint Inhibitors/administration & dosage , Adult , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Antineoplastic Combined Chemotherapy Protocols/adverse effects , Programmed Cell Death 1 Receptor/antagonists & inhibitors , B7-H1 Antigen/antagonists & inhibitors
20.
Cancer Cell Int ; 24(1): 175, 2024 May 19.
Article in English | MEDLINE | ID: mdl-38764053

ABSTRACT

BACKGROUND: The incidence and mortality of lung cancer is the highest in China and the world. Brain is the most common distant metastasis site of lung cancer. Its transfer mechanism and predictive biomarkers are still unclear. EZH2 participates in the catalysis of transcriptional inhibition complex, mediates chromatin compactness, leads to the silencing of its downstream target genes, participates in the silencing of multiple tumor suppressor genes, and is related to cell proliferation, apoptosis and cycle regulation. In physiology, EZH2 has high activity in stem cells or progenitor cells, inhibits genes related to cell cycle arrest and promotes self-renewal. To detect the expression and mutation of EZH2 gene in patients with brain metastasis of lung cancer, and provide further theoretical basis for exploring the pathogenesis of brain metastasis of lung cancer and finding reliable biomarkers to predict brain metastasis of lung cancer. METHODS: This study investigated susceptible genes for brain metastasis of lung cancer. The second-generation sequencing technology was applied to screen the differential genes of paired samples (brain metastasis tissues, lung cancer tissues and adjacent tissues) of lung cancer patients with brain metastasi. RESULTS: It revealed that there was a significant difference in the G553C genotype of EZH2 between lung cancer brain metastasis tissues and lung cancer tissues (p = 0.045). The risk of lung cancer brain metastasis in G allele carriers was 2.124 times higher than that in C allele carriers. Immunohistochemistry showed that compared with lung cancer patients and lung cancer patients with brain metastasis, the expression level of EZH2 in lung cancer tissues of lung cancer patients was significantly higher than that in adjacent lung tissues (p < 0.0001), and higher than that in brain metastasis tissues (p = 0.0309). RNA in situ immunohybridization showed that EZH2 mRNA expression was gradually high in lung cancer adjacent tissues, lung cancer tissues and lung cancer brain metastasis tissues. CONCLUSIONS: EZH2 G553C polymorphism contributes to the prediction of brain metastasis of lung cancer, in which G allele carriers are more prone to brain metastasis.

SELECTION OF CITATIONS
SEARCH DETAIL
...