ABSTRACT
Independent vector analysis (IVA) can be viewed as an extension of independent component analysis (ICA) to multiple datasets. It exploits the statistical dependency between different datasets through mutual information. In the context of motor imagery classification based on electroencephalogram (EEG) signals for the brain-computer interface (BCI), several methods have been proposed to extract features efficiently, mainly based on common spatial patterns, filter banks, and deep learning. However, most methods use only one dataset at a time, which may not be sufficient for dealing with a multi-source retrieving problem in certain scenarios. From this perspective, this paper proposes an original approach for feature extraction through multiple datasets based on IVA to improve the classification of EEG-based motor imagery movements. The IVA components were used as features to classify imagined movements using consolidated classifiers (support vector machines and K-nearest neighbors) and deep classifiers (EEGNet and EEGInception). The results show an interesting performance concerning the clustering of MI-based BCI patients, and the proposed method reached an average accuracy of 86.7%.
Subject(s)
Brain-Computer Interfaces , Electroencephalography , Movement , Support Vector Machine , Humans , Electroencephalography/methods , Movement/physiology , Imagination/physiology , Signal Processing, Computer-Assisted , AlgorithmsABSTRACT
Introduction: Up to 80% of post-stroke patients present upper-limb motor impairment (ULMI), causing functional limitations in daily activities and loss of independence. UMLI is seldom fully recovered after stroke when using conventional therapeutic approaches. Functional Electrical Stimulation Therapy (FEST) controlled by Brain-Computer Interface (BCI) is an alternative that may induce neuroplastic changes, even in chronic post-stroke patients. The purpose of this work was to evaluate the effects of a P300-based BCI-controlled FEST intervention, for ULMI recovery of chronic post-stroke patients. Methods: A non-randomized pilot study was conducted, including 14 patients divided into 2 groups: BCI-FEST, and Conventional Therapy. Assessments of Upper limb functionality with Action Research Arm Test (ARAT), performance impairment with Fugl-Meyer assessment (FMA), Functional Independence Measure (FIM) and spasticity through Modified Ashworth Scale (MAS) were performed at baseline and after carrying out 20 therapy sessions, and the obtained scores compared using Chi square and Mann-Whitney U statistical tests (ð¼ = 0.05). Results: After training, we found statistically significant differences between groups for FMA (p = 0.012), ARAT (p < 0.001), and FIM (p = 0.025) scales. Discussion: It has been shown that FEST controlled by a P300-based BCI, may be more effective than conventional therapy to improve ULMI after stroke, regardless of chronicity. Conclusion: The results of the proposed BCI-FEST intervention are promising, even for the most chronic post-stroke patients often relegated from novel interventions, whose expected recovery with conventional therapy is very low. It is necessary to carry out a randomized controlled trial in the future with a larger sample of patients.
ABSTRACT
Attention deficit hyperactivity disorder (ADHD) is a neurodevelopmental disorder characterized by inattention, hyperactivity, and impulsivity that affects a large number of young people in the world. The current treatments for children living with ADHD combine different approaches, such as pharmacological, behavioral, cognitive, and psychological treatment. However, the computer science research community has been working on developing non-pharmacological treatments based on novel technologies for dealing with ADHD. For instance, social robots are physically embodied agents with some autonomy and social interaction capabilities. Nowadays, these social robots are used in therapy sessions as a mediator between therapists and children living with ADHD. Another novel technology for dealing with ADHD is serious video games based on a brain-computer interface (BCI). These BCI video games can offer cognitive and neurofeedback training to children living with ADHD. This paper presents a systematic review of the current state of the art of these two technologies. As a result of this review, we identified the maturation level of systems based on these technologies and how they have been evaluated. Additionally, we have highlighted ethical and technological challenges that must be faced to improve these recently introduced technologies in healthcare.
ABSTRACT
Introduction: Learning to self-regulate brain activity by neurofeedback has been shown to lead to changes in the brain and behavior, with beneficial clinical and non-clinical outcomes. Neurofeedback uses a brain-computer interface to guide participants to change some feature of their brain activity. However, the neural mechanism of self-regulation learning remains unclear, with only 50% of the participants succeeding in achieving it. To bridge this knowledge gap, our study delves into the neural mechanisms of self-regulation learning via neurofeedback and investigates the brain processes associated with successful brain self-regulation. Methods: We study the neural underpinnings of self-regulation learning by employing dynamical causal modeling (DCM) in conjunction with real-time functional MRI data. The study involved a cohort of 18 participants undergoing neurofeedback training targeting the supplementary motor area. A critical focus was the comparison between top-down hierarchical connectivity models proposed by Active Inference and alternative bottom-up connectivity models like reinforcement learning. Results: Our analysis revealed a crucial distinction in brain connectivity patterns between successful and non-successful learners. Particularly, successful learners evinced a significantly stronger top-down effective connectivity towards the target area implicated in self-regulation. This heightened top-down network engagement closely resembles the patterns observed in goal-oriented and cognitive control studies, shedding light on the intricate cognitive processes intertwined with self-regulation learning. Discussion: The findings from our investigation underscore the significance of cognitive mechanisms in the process of self-regulation learning through neurofeedback. The observed stronger top-down effective connectivity in successful learners indicates the involvement of hierarchical cognitive control, which aligns with the tenets of Active Inference. This study contributes to a deeper understanding of the neural dynamics behind successful self-regulation learning and provides insights into the potential cognitive architecture underpinning this process.
ABSTRACT
Introduction: Brain-Computer Interfaces (BCI) based on Steady-State Visually Evoked Potentials (SSVEP) have great potential for use in communication applications because of their relatively simple assembly and in some cases the possibility of bypassing the time-consuming training stage. However, among multiple factors, the efficient performance of this technology is highly dependent on the stimulation paradigm applied in combination with the SSVEP detection algorithm employed. This paper proposes the performance assessment of the classification of target events with respect to non-target events by applying four types of visual paradigms, rectangular modulated On-Off (OOR), sinusoidal modulated On-Off (OOS), rectangular modulated Checkerboard (CBR), and sinusoidal modulated Checkerboard (CBS), with three types of SSVEP detection methods, Canonical Correlation Analysis (CCA), Filter-Bank CCA (FBCCA), and Minimum Energy Combination (MEC). Methods: We set up an experimental protocol in which the four types of visual stimuli were presented randomly to twenty-seven participants and after acquiring their electroencephalographic responses to five stimulation frequencies (8.57, 10.909, 15, 20, and 24 Hz), the three detection methods were applied to the collected data. Results: The results are conclusive, obtaining the best performance with the combination of either OOR or OOS visual stimulus and the FBCCA as a detection method, however, this finding contrasts with the opinion of almost half of the participants in terms of visual comfort, where the 51.9% of the subjects felt more comfortable and focused with CBR or CBS stimulation. Discussion: Finally, the EEG recordings correspond to the SSVEP response of 27 subjects to four visual paradigms when selecting five items on a screen, which is useful in BCI navigation applications. The dataset is available to anyone interested in studying and evaluating signal processing and machine-learning algorithms for SSVEP-BCI systems.
ABSTRACT
Nowadays, Brain-Computer Interfaces (BCIs) still captivate large interest because of multiple advantages offered in numerous domains, explicitly assisting people with motor disabilities in communicating with the surrounding environment. However, challenges of portability, instantaneous processing time, and accurate data processing remain for numerous BCI system setups. This work implements an embedded multi-tasks classifier based on motor imagery using the EEGNet network integrated into the NVIDIA Jetson TX2 card. Therefore, two strategies are developed to select the most discriminant channels. The former uses the accuracy based-classifier criterion, while the latter evaluates electrode mutual information to form discriminant channel subsets. Next, the EEGNet network is implemented to classify discriminant channel signals. Additionally, a cyclic learning algorithm is implemented at the software level to accelerate the model learning convergence and fully profit from the NJT2 hardware resources. Finally, motor imagery Electroencephalogram (EEG) signals provided by HaLT's public benchmark were used, in addition to the k-fold cross-validation method. Average accuracies of 83.7% and 81.3% were achieved by classifying EEG signals per subject and motor imagery task, respectively. Each task was processed with an average latency of 48.7 ms. This framework offers an alternative for online EEG-BCI systems' requirements, dealing with short processing times and reliable classification accuracy.
Subject(s)
Brain-Computer Interfaces , Humans , Electroencephalography/methods , Algorithms , Imagery, Psychotherapy , SoftwareABSTRACT
The development of Brain-Computer Interfaces based on Motor Imagery (MI) tasks is a relevant research topic worldwide. The design of accurate and reliable BCI systems remains a challenge, mainly in terms of increasing performance and usability. Classifiers based on Bayesian Neural Networks are proposed in this work by using the variational inference, aiming to analyze the uncertainty during the MI prediction. An adaptive threshold scheme is proposed here for MI classification with a reject option, and its performance on both datasets 2a and 2b from BCI Competition IV is compared with other approaches based on thresholds. The results using subject-specific and non-subject-specific training strategies are encouraging. From the uncertainty analysis, considerations for reducing computational cost are proposed for future work.
Subject(s)
Brain-Computer Interfaces , Electroencephalography , Electroencephalography/methods , Bayes Theorem , Imagination , Neural Networks, Computer , Imagery, Psychotherapy , AlgorithmsABSTRACT
Objective.This work proposes a method for two calibration schemes based on sensory feedback to extract reliable motor imagery (MI) features, and provide classification outputs more correlated to the user's intention.Method.After filtering the raw electroencephalogram (EEG), a two-step method for spatial feature extraction by using the Riemannian covariance matrices (RCM) method and common spatial patterns is proposed here. It uses EEG data from trials providing feedback, in an intermediate step composed of bothkth nearest neighbors and probability analyses, to find periods of time in which the user probably performed well the MI task without feedback. These periods are then used to extract features with better separability, and train a classifier for MI recognition. For evaluation, an in-house dataset with eight healthy volunteers and two post-stroke patients that performed lower-limb MI, and consequently received passive movements as feedback was used. Other popular public EEG datasets (such as BCI Competition IV dataset IIb, among others) from healthy subjects that executed upper-and lower-limbs MI tasks under continuous visual sensory feedback were further used.Results.The proposed system based on the Riemannian geometry method in two-steps (RCM-RCM) outperformed significantly baseline methods, reaching average accuracy up to 82.29%. These findings show that EEG data on periods providing passive movement can be used to contribute greatly during MI feature extraction.Significance.Unconscious brain responses elicited over the sensorimotor areas may be avoided or greatly reduced by applying our approach in MI-based brain-computer interfaces (BCIs). Therefore, BCI's outputs more correlated to the user's intention can be obtained.
Subject(s)
Brain-Computer Interfaces , Humans , Calibration , Feedback, Sensory , Imagery, Psychotherapy , Electroencephalography/methods , Imagination/physiology , AlgorithmsABSTRACT
Motor imagery brain-computer interface (MI-BCI) is one of the most used paradigms in EEG-based brain-computer interface (BCI). The current state-of-the-art in BCI involves tuning classifiers to subject-specific training data, acquired over several sessions, in order to perform calibration prior to actual use of the so-called subject-specific BCI system (SS-BCI). Herein, the goal is to provide a ready-to-use system requiring minimal effort for setup. Thus, our challenge was to design a subject-independent BCI (SI-BCI) to be used by any new user without the constraint of individual calibration. Outcomes from other studies with the same purpose were used to undertake comparisons and validate our findings. For the EEG signal processing, we used a combination of the delta (0.5-4 Hz), alpha (8-13 Hz), and beta+gamma (13-40 Hz) bands at a stage prior to feature extraction. Next, we extracted features from the 27-channel EEG using common spatial pattern (CSP) and performed binary classification (MI of right- and left-hand) with linear discriminant analysis (LDA) and support vector machine (SVM) classifiers. These analyses were done for both the SS-BCI and SI-BCI models. We employed "leave-one-subject-out" (LOSO) arrangement and 10-fold cross-validation to evaluate our SI-BCI and SS-BCI systems, respectively. Compared with other two studies, our work was the only one that showed higher accuracy for the LDA classifier in SI-BCI as compared to SS-BCI. On the other hand, LDA accuracy was lower than accuracy achieved with SVM in both conditions (SI-BCI and SS-BCI). Our SS-BCI accuracy reached 76.85% using LDA and 94.20% using SVM and for SI-BCI we got 80.30% with LDA and 83.23% with SVM. We conclude that SI-BCI may be a feasible and relevant option, which can be used in scenarios where subjects are not able to submit themselves to long training sessions or to fast evaluation of the so called "BCI illiteracy." Comparatively, our strategy proved to be more efficient, giving us the best result for SI-BCI when faced against the classification performances of other three studies, even considering the caveat that different datasets were used in the comparison of the four studies.
Subject(s)
Brain-Computer Interfaces , Electroencephalography , Humans , Support Vector Machine , Discriminant Analysis , Imagery, Psychotherapy , Imagination , AlgorithmsABSTRACT
Globally, 2.5% of upper limb amputations are transhumeral, and both mechanical and electronic prosthetics are being developed for individuals with this condition. Mechanics often require compensatory movements that can lead to awkward gestures. Electronic types are mainly controlled by superficial electromyography (sEMG). However, in proximal amputations, the residual limb is utilized less frequently in daily activities. Muscle shortening increases with time and results in weakened sEMG readings. Therefore, sEMG-controlled models exhibit a low success rate in executing gestures. The LIBRA NeuroLimb prosthesis is introduced to address this problem. It features three active and four passive degrees of freedom (DOF), offers up to 8 h of operation, and employs a hybrid control system that combines sEMG and electroencephalography (EEG) signal classification. The sEMG and EEG classification models achieve up to 99% and 76% accuracy, respectively, enabling precise real-time control. The prosthesis can perform a grip within as little as 0.3 s, exerting up to 21.26 N of pinch force. Training and validation sessions were conducted with two volunteers. Assessed with the "AM-ULA" test, scores of 222 and 144 demonstrated the prosthesis's potential to improve the user's ability to perform daily activities. Future work will prioritize enhancing the mechanical strength, increasing active DOF, and refining real-world usability.
Subject(s)
Artificial Limbs , Humans , Prosthesis Implantation , Amputation, Surgical , Electroencephalography , ElectromyographyABSTRACT
Abstract In this paper, we present an attention classification method using Machine-Learning Algorithms. The EEG signals were recorded from ten engineering students with an EPOC+BCI using the electrodes F3, F4, P7, and P8 while solving some mathematical operations. The recording time for these activities is around 20 minutes. Next, a similar time EEG register is obtained while doing non-academic activities, such as chattering with the staff, checking cell phones, or playing a video game. With these EEG registers, we obtained a set of features to train and evaluate attention using Machine Learning algorithms. This research shows how engineering students interact with math topics in solving mental operations and complex reasoning by increasing brain domain and knowledge for mathematical reasoningrelated processes, such as sustained and shifting attention and logical constructions for object interaction during operations resolution. The Random Forest algorithm (RF) obtained the highest accuracy with 0.7392, an F1 Score of 0.7430, and the highest Specificity/Accuracy with 0.7261.
Resumen Se presenta un método de clasificación de la atención utilizando algoritmos de aprendizaje automático. Con las señales EEG de diez estudiantes de ingeniería adquiridas utilizando los electrodos F3, F4, P7 y P8 de una BCI EPOC+ mientras resuelven productos escalares, multiplicaciones algebraicas simples, simplificaciones e integrales por aproximadamente 20 minutos. Posteriormente, se obtiene un registro EEG de tiempo similar mientras se realizan actividades no académicas, como charlar con el personal, consultar el móvil o jugar a un videojuego. Se obtienen algunas características/parámetros, se entrenan y evalúan varios algoritmos de aprendizaje automático para la clasificación de la atención. Los resultados de esta investigación pueden mejorar la forma en que los estudiantes de ingeniería interactúan con los temas matemáticos en la resolución de operaciones mentales y razonamientos complejos, aumentando el dominio y el conocimiento cerebral para los procesos relacionados con el razonamiento matemático, como la atención sostenida y cambiante y las construcciones lógicas para la interacción con objetos durante la resolución de operaciones. El clasificador Random Forest obtuvo la mayor precisión con 0.7392, una puntuación F1 de 0.7430 y la mayor especificidad/precisión con 0.7261.
ABSTRACT
COVID-19 may increase the risk of acute ischemic stroke that can cause a loss of upper limb function, even in patients with low risk factors. However, only individual cases have been reported assessing different degrees of hospitalization outcomes. Therefore, outpatient recovery profiles during rehabilitation interventions are needed to better understand neuroplasticity mechanisms required for upper limb motor recovery. Here, we report the progression of physiological and clinical outcomes during upper limb rehabilitation of a 41-year-old patient, without any stroke risk factors, which presented a stroke on the same day as being diagnosed with COVID-19. The patient, who presented hemiparesis with incomplete motor recovery after conventional treatment, participated in a clinical trial consisting of an experimental brain-computer interface (BCI) therapy focused on upper limb rehabilitation during the chronic stage of stroke. Clinical and physiological features were measured throughout the intervention, including the Fugl-Meyer Assessment for the Upper Extremity (FMA-UE), Action Research Arm Test (ARAT), the Modified Ashworth Scale (MAS), corticospinal excitability using transcranial magnetic stimulation, cortical activity with electroencephalography, and upper limb strength. After the intervention, the patient gained 8 points and 24 points of FMA-UE and ARAT, respectively, along with a reduction of one point of MAS. In addition, grip and pinch strength doubled. Corticospinal excitability of the affected hemisphere increased while it decreased in the unaffected hemisphere. Moreover, cortical activity became more pronounced in the affected hemisphere during movement intention of the paralyzed hand. Recovery was higher compared to that reported in other BCI interventions in stroke and was due to a reengagement of the primary motor cortex of the affected hemisphere during hand motor control. This suggests that patients with stroke related to COVID-19 may benefit from a BCI intervention and highlights the possibility of a significant recovery in these patients, even in the chronic stage of stroke.
ABSTRACT
Motor imagery (MI)-based brain-computer interface (BCI) systems have shown promising advances for lower limb motor rehabilitation. The purpose of this study was to develop an MI-based BCI for the actions of standing and sitting. Thirty-two healthy subjects participated in the study using 17 active EEG electrodes. We used a combination of the filter bank common spatial pattern (FBCSP) method and the regularized linear discriminant analysis (RLDA) technique for decoding EEG rhythms offline and online during motor imagery for standing and sitting. The offline analysis indicated the classification of motor imagery and idle state provided a mean accuracy of 88.51 ± 1.43% and 85.29 ± 1.83% for the sit-to-stand and stand-to-sit transitions, respectively. The mean accuracies of the sit-to-stand and stand-to-sit online experiments were 94.69 ± 1.29% and 96.56 ± 0.83%, respectively. From these results, we believe that the MI-based BCI may be useful to future brain-controlled standing systems.
ABSTRACT
The Electroencephalography (EEG)-based motor imagery (MI) paradigm is one of the most studied technologies for Brain-Computer Interface (BCI) development. Still, the low Signal-to-Noise Ratio (SNR) poses a challenge when constructing EEG-based BCI systems. Moreover, the non-stationary and nonlinear signal issues, the low-spatial data resolution, and the inter- and intra-subject variability hamper the extraction of discriminant features. Indeed, subjects with poor motor skills have difficulties in practicing MI tasks against low SNR scenarios. Here, we propose a subject-dependent preprocessing approach that includes the well-known Surface Laplacian Filtering and Independent Component Analysis algorithms to remove signal artifacts based on the MI performance. In addition, power- and phase-based functional connectivity measures are studied to extract relevant and interpretable patterns and identify subjects of inefficency. As a result, our proposal, Subject-dependent Artifact Removal (SD-AR), improves the MI classification performance in subjects with poor motor skills. Consequently, electrooculography and volume-conduction EEG artifacts are mitigated within a functional connectivity feature-extraction strategy, which favors the classification performance of a straightforward linear classifier.
Subject(s)
Artifacts , Brain-Computer Interfaces , Algorithms , Electroencephalography , Humans , Imagery, Psychotherapy , Signal Processing, Computer-AssistedABSTRACT
Objective.To propose novel SSVEP classification methodologies using deep neural networks (DNNs) and improve performances in single-channel and user-independent brain-computer interfaces (BCIs) with small data lengths.Approach.We propose the utilization of filter banks (creating sub-band components of the EEG signal) in conjunction with DNNs. In this context, we created three different models: a recurrent neural network (FBRNN) analyzing the time domain, a 2D convolutional neural network (FBCNN-2D) processing complex spectrum features and a 3D convolutional neural network (FBCNN-3D) analyzing complex spectrograms, which we introduce in this study as possible input for SSVEP classification. We tested our neural networks on three open datasets and conceived them so as not to require calibration from the final user, simulating a user-independent BCI.Results.The DNNs with the filter banks surpassed the accuracy of similar networks without this preprocessing step by considerable margins, and they outperformed common SSVEP classification methods (SVM and FBCCA) by even higher margins.Conclusion and significance.Filter banks allow different types of deep neural networks to more efficiently analyze the harmonic components of SSVEP. Complex spectrograms carry more information than complex spectrum features and the magnitude spectrum, allowing the FBCNN-3D to surpass the other CNNs. The performances obtained in the challenging classification problems indicates a strong potential for the construction of portable, economical, fast and low-latency BCIs.
Subject(s)
Brain-Computer Interfaces , Algorithms , Electroencephalography/methods , Evoked Potentials, Visual , Neural Networks, ComputerABSTRACT
Background: We investigated the effects of brain-computer interface (BCI) combined with mental practice (MP) and occupational therapy (OT) on performance in activities of daily living (ADL) in stroke survivors. Methods: Participants were randomized into two groups: experimental (n = 23, BCI controlling a hand exoskeleton combined with MP and OT) and control (n = 21, OT). Subjects were assessed with the functional independence measure (FIM), motor activity log (MAL), amount of use (MAL-AOM), and quality of movement (MAL-QOM). The box and blocks test (BBT) and the Jebsen hand functional test (JHFT) were used for the primary outcome of performance in ADL, while the Fugl-Meyer Assessment was used for the secondary outcome. Exoskeleton activation and the degree of motor imagery (measured as event-related desynchronization) were assessed in the experimental group. For the BCI, the EEG electrodes were placed on the regions of FC3, C3, CP3, FC4, C4, and CP4, according to the international 10-20 EEG system. The exoskeleton was placed on the affected hand. MP was based on functional tasks. OT consisted of ADL training, muscle mobilization, reaching tasks, manipulation and prehension, mirror therapy, and high-frequency therapeutic vibration. The protocol lasted 1 h, five times a week, for 2 weeks. Results: There was a difference between baseline and post-intervention analysis for the experimental group in all evaluations: FIM (p = 0.001, d = 0.56), MAL-AOM (p = 0.001, d = 0.83), MAL-QOM (p = 0.006, d = 0.84), BBT (p = 0.004, d = 0.40), and JHFT (p = 0.001, d = 0.45). Within the experimental group, post-intervention improvements were detected in the degree of motor imagery (p < 0.001) and the amount of exoskeleton activations (p < 0.001). For the control group, differences were detected for MAL-AOM (p = 0.001, d = 0.72), MAL-QOM (p = 0.013, d = 0.50), and BBT (p = 0.005, d = 0.23). Notably, the effect sizes were larger for the experimental group. No differences were detected between groups at post-intervention. Conclusion: BCI combined with MP and OT is a promising tool for promoting sensorimotor recovery of the upper limb and functional independence in subacute post-stroke survivors.
ABSTRACT
Objective.Brain-computer Interfaces (BCI) with functional electrical stimulation (FES) as a feedback device might promote neuroplasticity and hence improve motor function. Novel findings suggested that neuroplasticity could be possible in people with multiple sclerosis (pwMS). This preliminary study explores the effects of using a BCI-FES in therapeutic intervention, as an emerging methodology for gait rehabilitation in pwMS.Approach.People with relapsing-remitting, primary progressive or secondary progressive MS were evaluated with the inclusion criteria to enroll the nine participants required by the statistically computed sample size. Each patient trained with a BCI-FES during 24 sessions distributed in eight weeks. The effects were evaluated on gait speed (Timed 25 Foot Walk), walking ability (12-item Multiple Sclerosis Walking Scale), quality of life measures, the true positive rate as the BCI-FES performance metric and the event-related desynchronization (ERD) onset latency of the sensorimotor rhythms.Main results.Seven patients completed the therapeutic intervention. A statistically and clinically significant post-treatment improvement was observed in gait speed, as a result of a reduction in the time to walk 25 feet (-1.99 s,p= 0.018), and walking ability (-31.25 score points,p= 0.028). The true positive rate showed a statistically significant improvement (+15.87 score points,p= 0.018). An earlier ERD onset latency (-180 ms) after treatment was found.Significance.This is the first study that explored gait rehabilitation using BCI-FES in pwMS. The results showed improvement in gait which might have been promoted by changes in functional brain connections involved in sensorimotor rhythm modulation. Although more studies with a larger sample size and control group are required to validate the efficacy of this approach, these results suggest that BCI-FES technology could have a positive effect on MS gait rehabilitation.