Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 28
Filter
1.
Hum Brain Mapp ; 45(5): e26668, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38520378

ABSTRACT

Parkinson's disease (PD) often shows disrupted brain connectivity and autonomic dysfunctions, progressing alongside with motor and cognitive decline. Recently, PD has been linked to a reduced sensitivity to cardiac inputs, that is, cardiac interoception. Altogether, those signs suggest that PD causes an altered brain-heart connection whose mechanisms remain unclear. Our study aimed to explore the large-scale network disruptions and the neurophysiology of disrupted interoceptive mechanisms in PD. We focused on examining the alterations in brain-heart coupling in PD and their potential connection to motor symptoms. We developed a proof-of-concept method to quantify relationships between the co-fluctuations of brain connectivity and cardiac sympathetic and parasympathetic activities. We quantified the brain-heart couplings from electroencephalogram and electrocardiogram recordings from PD patients on and off dopaminergic medication, as well as in healthy individuals at rest. Our results show that the couplings of fluctuating alpha and gamma connectivity with cardiac sympathetic dynamics are reduced in PD patients, as compared to healthy individuals. Furthermore, we show that PD patients under dopamine medication recover part of the brain-heart coupling, in proportion with the reduced motor symptoms. Our proposal offers a promising approach to unveil the physiopathology of PD and promoting the development of new evaluation methods for the early stages of the disease.


Subject(s)
Parkinson Disease , Humans , Parkinson Disease/diagnostic imaging , Parkinson Disease/drug therapy , Parkinson Disease/pathology , Brain Mapping , Heart Rate , Magnetic Resonance Imaging , Brain , Dopamine Agents
2.
J Clin Monit Comput ; 38(2): 407-414, 2024 Apr.
Article in English | MEDLINE | ID: mdl-37736801

ABSTRACT

The presence of abnormal electrocardiograms in individuals without known organic heart disease is one of the most common manifestations of cardiac dysfunction occurring during acute non traumatic brain injury. The primary goal of the present review is to provide an overview of the available data and literature regarding the presence of new-onset electrocardiographic (ECG) alterations in acute non traumatic brain injury. The secondary aim is to identify the incidence of ECG alterations and consider the prognostic significance of new-onset ECG changes in this setting. To do so, English language articles from January 2000 to January 2022 were included from PubMed using the following keywords: "electrocardiogram and subarachnoid hemorrhage", "electrocardiogram and intracranial hemorrhage", "Q-T interval and subarachnoid hemorrhage ", "Q-T interval and intracranial bleeding ", "Q-T interval and intracranial hemorrhage", and "brain and heart- interaction in stroke". Of 3162 papers, 27 original trials looking at electrocardiogram alterations in acute brain injury were included following the PRISMA guideline. ECG abnormalities associated with acute brain injury could potentially predict poor patient outcomes. They could even herald the future development of neurogenic pulmonary edema (NPE), delayed cerebral ischemia (DCI), and even in-hospital death. In particular, patients with SAH are at increased risk of having severe ventricular dysrhythmias. These may contribute to a high mortality rate and to poor functional outcome at 3 months. The current data on ECG QT dispersion and mortality appear less clearly associated. While some patients demonstrated poor outcomes, others showed no relationship with poor outcomes or increased in-hospital mortality. Observing ECG alterations carefully after cerebral damage is important in the critical care of these patients as it can expose preexisting myocardial disease and change prognosis.


Subject(s)
Brain Injuries , Brain Ischemia , Heart Diseases , Subarachnoid Hemorrhage , Humans , Brain Injuries/complications , Hospital Mortality , Electrocardiography , Intracranial Hemorrhages/complications , Arrhythmias, Cardiac
3.
J Neuroeng Rehabil ; 20(1): 96, 2023 07 26.
Article in English | MEDLINE | ID: mdl-37491259

ABSTRACT

Detecting signs of residual neural activity in patients with altered states of consciousness is a crucial issue for the customization of neurorehabilitation treatments and clinical decision-making. With this large observational prospective study, we propose an innovative approach to detect residual signs of consciousness via the assessment of the amount of autonomic information coded within the brain. The latter was estimated by computing the mutual information (MI) between preprocessed EEG and ECG signals, to be then compared across consciousness groups, together with the absolute power and an international qualitative labeling. One-hundred seventy-four patients (73 females, 42%) were included in the study (median age of 65 years [IQR = 20], MCS +: 29, MCS -: 23, UWS: 29). Electroencephalography (EEG) information content was found to be mostly related to the coding of electrocardiography (ECG) activity, i.e., with higher MI (p < 0.05), in Unresponsive Wakefulness Syndrome and Minimally Consciousness State minus (MCS -). EEG-ECG MI, besides clearly discriminating patients in an MCS - and +, significantly differed between lesioned areas (sides) in a subgroup of unilateral hemorrhagic patients. Crucially, such an accessible and non-invasive measure of residual consciousness signs was robust across electrodes and patient groups. Consequently, exiting from a strictly neuro-centric consciousness detection approach may be the key to provide complementary insights for the objective assessment of patients' consciousness levels and for the patient-specific planning of rehabilitative interventions.


Subject(s)
Brain , Consciousness , Female , Humans , Young Adult , Adult , Prospective Studies , Persistent Vegetative State/diagnosis , Wakefulness , Electroencephalography
4.
J Neural Transm (Vienna) ; 130(5): 707-722, 2023 05.
Article in English | MEDLINE | ID: mdl-36959471

ABSTRACT

Depressive patients suffer from a complex of symptoms of varying intensity compromising their mood, emotions, self-concept, neurocognition, and somatic function. Due to a mosaic of aetiologies involved in developing depression, such as somatic, neurobiological, (epi-)genetic factors, or adverse life events, patients often experience recurrent depressive episodes. About 20-30% of these patients develop difficult-to-treat depression. Here, we describe the design of the GEParD (Genetics and Epigenetics of Pharmaco- and Psychotherapy in acute and recurrent Depression) cohort and the DaCFail (Depression-associated Cardiac Failure) case-control protocol. Both protocols intended to investigate the incremental utility of multimodal biomarkers including cardiovascular and (epi-)genetic markers, functional brain and heart imaging when evaluating the response to antidepressive therapy using comprehensive psychometry. From 2012 to 2020, 346 depressed patients (mean age 45 years) were recruited to the prospective, observational GEParD cohort protocol. Between 2016 and 2020, the DaCFail case-control protocol was initiated integrating four study subgroups to focus on heart-brain interactions and stress systems in patients > 50 years with depression and heart failure, respectively. For DaCFail, 120 depressed patients (mean age 60 years, group 1 + 2), of which 115 also completed GEParD, and 95 non-depressed controls (mean age 66 years) were recruited. The latter comprised 47 patients with heart failure (group 3) and 48 healthy subjects (group 4) of a population-based control group derived from the Characteristics and Course of Heart Failure Stages A-B and Determinants of Progression (STAAB) cohort study. Our hypothesis-driven, exploratory study design may serve as an exemplary roadmap for a standardized, reproducible investigation of personalized antidepressant therapy in an inpatient setting with focus on heart comorbidities in future multicentre studies.


Subject(s)
Depressive Disorder, Major , Heart Failure , Humans , Middle Aged , Aged , Depression/therapy , Cohort Studies , Prospective Studies , Depressive Disorder, Major/therapy , Chronic Disease , Heart Failure/therapy
5.
MethodsX ; 10: 102116, 2023.
Article in English | MEDLINE | ID: mdl-36970022

ABSTRACT

Recent studies suggest that the interaction between the brain and heart plays a key role in cognitive processes, and measuring these interactions is crucial for understanding the interaction between the central and autonomic nervous systems. However, studying this bidirectional interplay presents methodological challenges, and there is still much room for exploration. This paper presents a new computational method called the Poincaré Sympathetic-Vagal Synthetic Data Generation Model (PSV-SDG) for estimating brain-heart interactions. The PSV-SDG combines EEG and cardiac sympathetic-vagal dynamics to provide time-varying and bidirectional estimators of mutual interplay. The method is grounded in the Poincaré plot, a heart rate variability method to estimate sympathetic-vagal activity that can account for potential non-linearities. This algorithm offers a new approach and computational tool for functional assessment of the interplay between EEG and cardiac sympathetic-vagal activity. The method is implemented in MATLAB under an open-source license. • A new brain-heart interaction modeling approach is proposed. • The modeling is based on coupled synthetic data generators of EEG and heart rate series. • Sympathetic and vagal activities are gathered from Poincaré plot geometry.

6.
Inflamm Res ; 72(5): 901-913, 2023 May.
Article in English | MEDLINE | ID: mdl-36933018

ABSTRACT

BACKGROUND AND OBJECTIVE: Emotional stress substantially increases the risk of ischemic cardiovascular diseases. Previous study indicates that sympathetic outflow is increased under emotional stress. We aim to investigate the role of increased sympathetic outflow induced by emotional stress in myocardial ischemia-reperfusion (I/R) injury, and explore the underlying mechanisms. METHODS AND RESULTS: We used Designer Receptors Exclusively Activated by Designer Drugs technique to activate the ventromedial hypothalamus (VMH), a critical emotion-related nucleus. The results revealed that emotional stress stimulated by VMH activation increased sympathetic outflow, enhanced blood pressure, aggravated myocardial I/R injury, and exacerbated infarct size. The RNA-seq and molecular detection demonstrated that toll-like receptor 7 (TLR7), myeloid differentiation factor 88 (MyD88), interferon regulatory factor 5 (IRF5), and downstream inflammatory markers in cardiomyocytes were significantly upregulated. Emotional stress-induced sympathetic outflow further exacerbated the disorder of the TLR7/MyD88/IRF5 inflammatory signaling pathway. While inhibition of the signaling pathway partially alleviated myocardial I/R injury aggravated by emotional stress-induced sympathetic outflow. CONCLUSION: Increased sympathetic outflow induced by emotional stress activates TLR7/MyD88/IRF5 signaling pathway, ultimately aggravating I/R injury.


Subject(s)
Myocardial Reperfusion Injury , Psychological Distress , Reperfusion Injury , Humans , Myeloid Differentiation Factor 88/metabolism , Toll-Like Receptor 7 , Toll-Like Receptor 4/metabolism , Signal Transduction , Interferon Regulatory Factors/metabolism , Reperfusion Injury/metabolism
7.
Cell Biosci ; 13(1): 14, 2023 Jan 20.
Article in English | MEDLINE | ID: mdl-36670468

ABSTRACT

Brain-heart interaction has raised up increasing attentions. Nuclear receptors (NRs) are abundantly expressed in the brain, and emerging evidence indicates that a number of these brain NRs regulate multiple aspects of cardiovascular diseases (CVDs), including hypertension, heart failure, atherosclerosis, etc. In this review, we will elaborate recent findings that have established the physiological relevance of brain NRs in the context of cardiovascular function. In addition, we will discuss the currently available evidence regarding the distinct neuronal populations that respond to brain NRs in the cardiovascular control. These findings suggest connections between cardiac control and brain dynamics through NR signaling, which may lead to novel tools for the treatment of pathological changes in the CVDs.

8.
Neuroimage ; 266: 119817, 2023 02 01.
Article in English | MEDLINE | ID: mdl-36535320

ABSTRACT

Heartbeat-evoked responses (HERs) can interact with external stimuli and play a crucial role in shaping perception, self-related processes, and emotional processes. On the one hand, the external stimulus could modulate HERs. On the other hand, the HERs could affect cognitive processing of the external stimulus. Whether the same neural mechanism underlies these two processes, however, remains unclear. Here, we investigated this interactive mechanism by measuring HERs using magnetoencephalography (MEG) and two name perception tasks. Specifically, we tested (1) how hearing a subject's own name (SON) modulates HERs and (2) how the judgment of an SON is biased by prestimulus HERs. The results showed a dual interaction between HERs and SON. In particular, SON can modulate HERs for heartbeats occurring from 200 to 1200 ms after SON presentation. In addition, prestimulus HERs can bias the SON judgment when a stimulus is presented. Importantly, MEG activities from these two types of interactions differed in spatial and temporal patterns, suggesting that they may be associated with distinct neural pathways. These findings extend our understanding of brain-heart interactions.


Subject(s)
Brain , Magnetoencephalography , Humans , Heart Rate/physiology , Brain/physiology , Emotions , Judgment
9.
J Sleep Res ; 31(6): e13679, 2022 12.
Article in English | MEDLINE | ID: mdl-35785454

ABSTRACT

Sleep disorders have been observed among patients with heart failure. The aim of this study was to investigate whether acute sleep deprivation (SD) aggravates left heart function. Male C57B/L6 mice were assigned to four experimental groups. Ligation of the left anterior descending branch (LAD) caused myocardial infarction (MI) in mice in the LAD group and the LAD+SD group, while mice in the sham and sham+SD groups underwent the same surgery without ligation. Echocardiography was performed before and 8 weeks after ligation of the LAD to evaluate the left ventricular internal diameter at diastole (LVIDd), left ventricular internal diameter at systole (LVIDs), ejection fraction (EF), and fractional shortening (FS). Seven days of sleep deprivation induced using the modified single platform method resulted in a lower EF and FS and a higher LVIDd and LVIDs, as well as increased expression of the IL-1ß, IL-18, and IL-10 mRNAs in the left ventricular tissue of MI mice. ELISA also indicated higher levels of IL-1ß and IL-10 in the LAD+SD group. It was concluded that acute sleep deprivation induced cardiovascular alterations in cardiac structure and function in HF mice, accompanied by increased levels of inflammatory cytokines.


Subject(s)
Heart Failure , Myocardial Infarction , Animals , Male , Mice , Heart Failure/complications , Inflammation/complications , Interleukin-10 , Myocardial Infarction/complications , Sleep Deprivation/complications
10.
Front Hum Neurosci ; 16: 819834, 2022.
Article in English | MEDLINE | ID: mdl-35572002

ABSTRACT

The flow state - an experience of complete absorption in an activity - is linked with less self-referential processing and increased arousal. We used the heart-evoked potential (HEP), an index representing brain-heart interaction, as well as indices of peripheral physiology to assess the state of flow in individuals playing a video game. 22 gamers and 21 non-gamers played the video game Thumper for 25 min while their brain and cardiorespiratory signals were simultaneously recorded. The more participants were absorbed in the game, the less they thought about time and the faster time passed subjectively. On the cortical level, the fronto-central HEP amplitude was significantly lower while playing the game compared to resting states before and after the game, reflecting less self-referential processing while playing. This HEP effect corresponded with lower activity during gameplay in brain regions contributing to interoceptive processing. The HEP amplitude predicted the level of absorption in the game. While the HEP amplitude was overall lower during the gaming session than during the resting states, within the gaming session the amplitude of HEP was positively associated with absorption. Since higher absorption was related to higher performance in the game, the higher HEP in more absorbed individuals reflects more efficient brain-heart interaction, which is necessary for efficient game play. On the physiological level, a higher level of flow was associated with increased overall sympathetic activity and less inhibited parasympathetic activity toward the end of the game. These results are building blocks for future neurophysiological assessments of flow.

11.
Front Mol Neurosci ; 15: 842674, 2022.
Article in English | MEDLINE | ID: mdl-35557556

ABSTRACT

Background: Acupuncture is an effective adjunctive therapy for chronic stable angina pectoris (CSAP), while the underlying mechanism is unclear. This study aimed to investigate the central pathophysiology of CSAP and explore the mechanism of different acupoint prescriptions for CSAP from the perspective of brain-heart interaction. Methods: Thirty-seven CSAP patients and sixty-five healthy subjects (HS) were enrolled, and thirty CSAP patients were divided into two acupoint prescriptions groups (Group A: acupoints on the meridian directly related to the Heart; Group B: acupoints on the meridian indirectly related to the Heart). The Magnetic Resonance Imaging data and clinical data were collected at baseline and after treatment. The comparisons of brain spontaneous activity patterns were performed between CSAP patients and HS, as well as between baseline and after treatment in CSAP patients. Then, the changes in resting-state functional connectivity before and after treatment were compared between the two acupoint prescriptions. Results: Chronic stable angina pectoris patients manifested higher spontaneous activity on the bilateral calcarine, left middle occipital gyrus, right superior temporal gyrus, and right postcentral gyrus. After acupuncture treatment, the spontaneous activity of the left calcarine, left cuneus, and right orbitofrontal gyrus was decreased. The left calcarine was identified as region-of-interest for functional connectivity analysis. Compared with group B, CSAP patients in group A had significantly increased functional connectivity between left calcarine and the left inferior temporal gyrus/cerebellum crus 1, left hippocampus, left thalamus, and left middle cingulate cortex after treatment. Thresholds for all comparisons were p < 0.05, Gaussian Random Field corrected. Conclusion: Regulating the aberrant spontaneous activity of the calcarine might be an underlying mechanism of acupuncture for CSAP. The multi-threaded modulation of functional connectivity between calcarine and multiple pain-related brain regions might be a potential mechanism for better efficacy of acupuncture at points on the meridian directly related to the Heart.

12.
Brain Pathol ; 32(1): e13014, 2022 01.
Article in English | MEDLINE | ID: mdl-34390072

ABSTRACT

Previous studies have revealed risk for cognitive impairment in cardiovascular diseases. We investigated the relationship between degenerative changes of the brain and heart, with reference to Alzheimer's disease (AD) pathologies, cardiac transthyretin amyloid (ATTR) deposition, and cardiac fibrosis. A total of 240 consecutive autopsy cases of a Japanese population-based study were examined. ß amyloid (Aß) of senile plaques, phosphorylated tau protein of neurofibrillary tangles, and ATTR in the hearts were immunohistochemically detected and graded according to the NIH-AA guideline for AD pathology and as Tanskanen reported, respectively. Cerebral amyloid angiopathy (CAA) was graded according to the Vonsattel scale. Cardiac fibrosis was detected by picrosirius red staining, followed by image analysis. Cardiac ATTR deposition occurred after age 75 years and increased in an age-dependent manner. ATTR deposition was more common, and of higher grades, in the dementia cases. We subdivided the cases into two age groups: ≤90 years old (n = 173) and >90 years old (n = 67), which was the mean and median age at death of the AD cases. When adjusted for age and sex, TTR deposition grades correlated with Aß phase score (A2-3), the Consortium to Establish a Registry for AD score (sparse to frequent), and high Braak stage (V-VI) only in those aged ≤90 years at death. No significant correlation was observed between the cardiac ATTR deposition and CAA stages, or between cardiac fibrosis and AD pathologies. Collectively, AD brain pathology correlated with cardiac TTR deposition among the older adults ≤90 years.


Subject(s)
Alzheimer Disease , Cerebral Amyloid Angiopathy , Aged , Aged, 80 and over , Alzheimer Disease/pathology , Amyloid beta-Peptides/metabolism , Brain/pathology , Cerebral Amyloid Angiopathy/pathology , Humans , Neurofibrillary Tangles/metabolism , Plaque, Amyloid/pathology , Prealbumin/metabolism
13.
J Clin Med ; 10(22)2021 Nov 18.
Article in English | MEDLINE | ID: mdl-34830656

ABSTRACT

INTRODUCTION: Disorders in electroencephalography (EEG) are commonly noted in patients with traumatic brain injury (TBI) and may be associated with electrocardiographic disturbances. Electrographic seizures (ESz) are the most common features in these patients. This study aimed to explore the relationship between ESz and possible changes in QTc interval and spatial QRS-T angle both during ESz and after ESz resolution. METHODS: Adult patients with TBI were studied. Surface 12-lead ECGs were recorded using a Cardiax device during ESz events and 15 min after their effective suppression using barbiturate infusion. The ESz events were diagnosed using Masimo Root or bispectral index (BIS) devices. RESULTS: Of the 348 patients considered for possible inclusion, ESz were noted in 72, with ECG being recorded in 21. Prolonged QTc was noted during ESz but significantly ameliorated after ESz suppression (540.19 ± 60.68 ms vs. 478.67 ± 38.52 ms, p < 0.001). The spatial QRS-T angle was comparable during ESz and after treatment. Regional cerebral oximetry increased following ESz suppression (from 58.4% ± 6.2 to 60.5% ± 4.2 (p < 0.01) and from 58.2% ± 7.2 to 60.8% ± 4.8 (p < 0.05) in the left and right hemispheres, respectively). CONCLUSION: QTc interval prolongation occurs during ESz events in TBI patients but both it and regional cerebral oximetry are improved after suppression of seizures.

14.
Am J Physiol Regul Integr Comp Physiol ; 321(6): R951-R959, 2021 12 01.
Article in English | MEDLINE | ID: mdl-34704848

ABSTRACT

Dreams may be recalled after awakening from sleep following a defined electroencephalographic pattern that involves local decreases in low-frequency activity in the posterior cortical regions. Although a dreaming experience implies bodily changes at many organ, system, and timescale levels, the entity and causal role of such peripheral changes in a conscious dream experience are unknown. We performed a comprehensive, causal, multivariate analysis of physiological signals acquired during rapid eye movement (REM) sleep at night, including high-density electroencephalography and peripheral dynamics including electrocardiography and blood pressure. In this preliminary study, we investigated multiple recalls and nonrecalls of dream experiences using data from nine healthy volunteers. The aim was not only to investigate the changes in central and autonomic dynamics associated with dream recalls and nonrecalls, but also to characterize the central-peripheral dynamical and (causal) directional interactions, and the temporal relations of the related arousals upon awakening. We uncovered a brain-body network that drives a conscious dreaming experience that acts with specific interaction and time delays. Such a network is sustained by the blood pressure dynamics and the increasing functional information transfer from the neural heartbeat regulation to the brain. We conclude that bodily changes play a crucial and causative role in a conscious dream experience during REM sleep.


Subject(s)
Autonomic Nervous System/physiology , Blood Pressure , Brain/physiology , Consciousness , Dreams , Heart Rate , Heart/innervation , Mental Recall , Sleep, REM , Adult , Blood Pressure Determination , Electrocardiography , Electroencephalography , Female , Humans , Male , Time Factors , Young Adult
15.
Philos Trans A Math Phys Eng Sci ; 379(2212): 20200256, 2021 Dec 13.
Article in English | MEDLINE | ID: mdl-34689621

ABSTRACT

While Granger causality (GC) has been often employed in network neuroscience, most GC applications are based on linear multivariate autoregressive (MVAR) models. However, real-life systems like biological networks exhibit notable nonlinear behaviour, hence undermining the validity of MVAR-based GC (MVAR-GC). Most nonlinear GC estimators only cater for additive nonlinearities or, alternatively, are based on recurrent neural networks or long short-term memory networks, which present considerable training difficulties and tailoring needs. We reformulate the GC framework in terms of echo-state networks-based models for arbitrarily complex networks, and characterize its ability to capture nonlinear causal relations in a network of noisy Duffing oscillators, showing a net advantage of echo state GC (ES-GC) in detecting nonlinear, causal links. We then explore the structure of ES-GC networks in the human brain employing functional MRI data from 1003 healthy subjects drawn from the human connectome project, demonstrating the existence of previously unknown directed within-brain interactions. In addition, we examine joint brain-heart signals in 15 subjects where we explore directed interaction between brain networks and central vagal cardiac control in order to investigate the so-called central autonomic network in a causal manner. This article is part of the theme issue 'Advanced computation in cardiovascular physiology: new challenges and opportunities'.


Subject(s)
Connectome , Neural Networks, Computer , Brain/diagnostic imaging , Humans , Magnetic Resonance Imaging , Nerve Net/diagnostic imaging
16.
Front Cardiovasc Med ; 8: 681572, 2021.
Article in English | MEDLINE | ID: mdl-34179145

ABSTRACT

Background: Cardiac function is associated with cognitive function. Previously, we found that stroke and traumatic brain injury evoke cardiac dysfunction in mice. In this study, we investigate whether bilateral common carotid artery stenosis (BCAS), a model that induces vascular dementia (VaD) in mice, induces cardiac dysfunction. Methods: Late-adult (6-8 months) C57BL/6J mice were subjected to sham surgery (n = 6) or BCAS (n = 8). BCAS was performed by applying microcoils (0.16 mm internal diameter) around both common carotid arteries. Cerebral blood flow and cognitive function tests were performed 21-28 days post-BCAS. Echocardiography was conducted in conscious mice 29 days after BCAS. Mice were sacrificed 30 days after BCAS. Heart tissues were isolated for immunohistochemical evaluation and real-time PCR assay. Results: Compared to sham mice, BCAS in mice significantly induced cerebral hypoperfusion and cognitive dysfunction, increased cardiac hypertrophy, as indicated by the increased heart weight and the ratio of heart weight/body weight, and induced cardiac dysfunction and left ventricular (LV) enlargement, indicated by a decreased LV ejection fraction (LVEF) and LV fractional shortening (LVFS), increased LV dimension (LVD), and increased LV mass. Cognitive deficits significantly correlated with cardiac deficits. BCAS mice also exhibited significantly increased cardiac fibrosis, increased oxidative stress, as indicated by 4-hydroxynonenal and NADPH oxidase-2, increased leukocyte and macrophage infiltration into the heart, and increased cardiac interleukin-6 and thrombin gene expression. Conclusions: BCAS in mice without primary cardiac disease provokes cardiac dysfunction, which, in part, may be mediated by increased inflammation and oxidative stress.

17.
J Neurol ; 268(6): 2284-2292, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33372247

ABSTRACT

Cardiac troponin is a specific and sensitive biomarker to identify and quantify myocardial injury. Myocardial injury is frequently detected after acute ischemic stroke and strongly associated with unfavorable outcomes. Concomitant acute coronary syndrome is only one of several possible differential diagnoses that may cause elevation of cardiac troponin after stroke. As a result, there are uncertainties regarding the correct interpretation and optimal management of stroke patients with myocardial injury in clinical practice. Elevation of cardiac troponin may occur as part of a 'Stroke-Heart Syndrome'. The term 'Stroke-Heart Syndrome' subsumes a clinical spectrum of cardiac complications after stroke including cardiac injury, dysfunction, and arrhythmia which may relate to disturbances of autonomic function and the brain-heart axis. In this review, we provide an up-to-date overview about prognostic implications, mechanisms, and management of elevated cardiac troponin levels in patients with acute ischemic stroke.


Subject(s)
Acute Coronary Syndrome , Brain Ischemia , Stroke , Biomarkers , Brain Ischemia/complications , Humans , Stroke/complications , Troponin
19.
J Clin Med ; 9(2)2020 Feb 06.
Article in English | MEDLINE | ID: mdl-32041234

ABSTRACT

BACKGROUND: Autoimmune rheumatic diseases (ARDs) may affect both the heart and the brain. However, little is known about the interaction between these organs in ARD patients. We asked whether brain lesions are more frequent in ARD patients with cardiac symptoms compared with non-ARD patients with cardiovascular disease (CVD). METHODS: 57 ARD patients with mean age of 48 ± 13 years presenting with shortness of breath, chest pain, and/or palpitations, and 30 age-matched disease-controls with non-autoimmune CVD, were evaluated using combined brain-heart magnetic resonance imaging (MRI) in a 1.5T system. RESULTS: 52 (91%) ARD patients and 16 (53%) controls had white matter hyperintensities (p < 0.001) in at least one brain area (subcortical/deep/periventricular white matter, basal ganglia, pons, brainstem, or mesial temporal lobe). Only the frequency and number of subcortical and deep white matter lesions were significantly greater in ARD patients (p < 0.001 and 0.014, respectively). ARD vs. control status was the only independent predictor of having any brain lesion. Specifically for deep white matter lesions, each increase in ECV independently predicted a higher number of lesions [odds ratio (95% confidence interval): 1.16 (1.01-1.33), p = 0.031] in ordered logistic regression. Penalized logistic regression selected only ARD vs. control status as the most important feature for predicting whether brain lesions were present on brain MRI (odds ratio: 5.46, marginal false discovery rate = 0.011). CONCLUSIONS: Subclinical brain involvement was highly prevalent in this cohort of ARD patients and was mostly independent of the severity of cardiac involvement. However, further research is required to determine the clinical relevance of these findings.

20.
Eur Heart J Case Rep ; 4(6): 1-8, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33447724

ABSTRACT

BACKGROUND: Takotsubo syndrome (TTS) is characterized by often reversible but acute heart failure occurring after an emotional or physical trigger event. The 'brain failure' counterpart is posterior reversible encephalopathy syndrome (PRES) characterized by often reversible but acute neurological symptoms. This case report elaborates on a complex clinical scenario with co-existence of coronary artery disease, TTS and PRES and discusses the pathophysiology, differential diagnosis, and management. CASE SUMMARY: An 82-year-old woman presented with acute heart failure and generalized tonic-clonic seizures following an acute exacerbation of her chronic back pain. Brain magnetic resonance imaging demonstrated vasogenic oedema consistent with the diagnosis of PRES. Focal wall motion abnormalities on echocardiography without causal coronary stenoses on angiography were consistent with the diagnosis of TTS. After an interdisciplinary approach to differential diagnosis and treatment, the patient was discharged to geriatric rehabilitation without heart failure or neurological defects 4 weeks later. DISCUSSION: TTS and PRES share significant similarities in proposed pathogenesis, epidemiology, management, and clinical outcome. This case report highlights the need for early recognition of this rare association and multidisciplinary approach to diagnosis and treatment as both heart and brain disease may require early intervention up to rapid intensive care support.

SELECTION OF CITATIONS
SEARCH DETAIL