ABSTRACT
(1) Background: Branched-chain and aromatic amino acids (BCAAs/AAAs) have been considered as markers of type 2 diabetes (T2D); however, studies on associations between these metabolites and T2D and cardiometabolic traits in Hispanic populations are limited. The aim of this study was to examine the associations between baseline BCAAs (isoleucine, leucine, valine)/AAAs (phenylalanine, tyrosine) and prevalent and incident T2D, as well as baseline and longitudinal (2 year) changes in cardiometabolic traits (measures of glycemia, dyslipidemia, inflammation, and obesity) in two large cohorts of adults of Puerto Rican descent. (2) Methods: We included participants of the Boston Puerto Rican Health Study (BPRHS, n = 670) and San Juan Overweight Adult Longitudinal study (SOALS, n = 999) with available baseline metabolite and covariate data. T2D diagnosis was defined based on American Diabetes Association criteria. Multivariable logistic (for baseline T2D), Poisson (for incident T2D), and linear (for cardiometabolic traits) regression models were used; cohort-specific results were combined in the meta-analysis and adjusted for multiple comparisons. (3) Results: Higher baseline BCAAs were associated with higher odds of prevalent T2D (OR1SD BCAA score = 1.46, 95% CI: 1.34-1.59, p < 0.0001) and higher risk of incident T2D (IRR1SD BCAA score = 1.24, 95% CI: 1.13-1.37, p < 0.0001). In multivariable longitudinal analysis, higher leucine and valine concentrations were associated with 2-year increase in insulin (beta 1SD leucine = 0.37 mcU/mL, 95% CI: 0.11-0.63, p < 0.05; beta 1SD valine = 0.43 mcU/mL, 95% CI: 0.17-0.68, p < 0.01). Tyrosine was a significant predictor of incident T2D (IRR = 1.31, 95% CI: 1.09-1.58, p < 0.05), as well as 2 year increases in HOMA-IR (beta 1SD tyrosine = 0.13, 95% CI: 0.04-0.22, p < 0.05) and insulin concentrations (beta 1SD tyrosine = 0.37 mcU/mL, 95% CI: 0.12-0.61, p < 0.05). (4) Conclusions: Our results confirmed the associations between BCAAs and prevalent and incident T2D, as well as concurrent measures of glycemia, dyslipidemia, and obesity, previously reported in predominantly White and Asian populations. Baseline leucine, valine, and tyrosine were predictors of 2 year increases in insulin, whereas tyrosine was a significant predictor of deteriorating insulin resistance over time. Our study suggests that BCAAs and tyrosine could serve as early markers of future glycemic changes in Puerto Ricans.
Subject(s)
Amino Acids, Aromatic , Amino Acids, Branched-Chain , Cardiometabolic Risk Factors , Diabetes Mellitus, Type 2 , Hispanic or Latino , Humans , Diabetes Mellitus, Type 2/epidemiology , Diabetes Mellitus, Type 2/blood , Female , Male , Middle Aged , Amino Acids, Branched-Chain/blood , Amino Acids, Aromatic/blood , Adult , Hispanic or Latino/statistics & numerical data , Longitudinal Studies , Puerto Rico/epidemiology , Puerto Rico/ethnology , Aged , Prevalence , Boston/epidemiology , Incidence , Obesity/epidemiology , Obesity/ethnologyABSTRACT
Read-across (RAx) and grouping of chemicals into categories are well-known concepts in toxicology. Recently, ECHA proposed a grouping approach for branched-chain carboxylic acids (BCAs) including more than 60 branched-chain saturated carboxylic acids for hazard identification. Grouping was based only on structural considerations. Due to developmental effects of two members, ECHA postulated that "all short carbon chain acids are likely reproductive and developmental toxicants". This work analyzes available data for BCAs. The number of compounds in the group can be significantly reduced by eliminating metal and organic salts of BCAs, compounds of unknown or variable composition, and complex reaction products or biological materials (UVCB compounds). For the resulting reduced number of compounds, grouping is supported by similar physicochemical data and expected similar biotransformation. However, analysis of adverse effects for compounds in the group and mechanistic information show that BCAs, as a class, do not cause developmental effects in rats. Rather, developmental toxicity is limited to selected BCAs with specific structures that share a common mode of action (histone deacetylase inhibition). Thus, the proposed grouping is unreasonably wide and the more detailed analyses show that structural similarity alone is not sufficient for grouping branched-chain carboxylic acids for developmental toxicity.
Subject(s)
Carboxylic Acids , Carboxylic Acids/toxicity , Carboxylic Acids/chemistry , Animals , Rats , Toxicity Tests/methods , HumansABSTRACT
(1) Background: Dysregulated serum amino acids (AA) are known to be associated with obesity and risk of Type 2 Diabetes (T2D) in adults, and recent studies support the same notion in the pubertal age. It is, however, unknown whether childhood overweight may already display alterations of circulating AA. (2) Methods: We used liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS)-targeted metabolomics to determine plasma concentrations of AA and AA-related molecules in 36 children aged 7-12 years with normal weight or overweight. Clinical and anthropometric parameters were measured. (3) Results: Overweight in children is associated with an altered AA profile, with increased branched-chain amino acids (BCAA) and decreased glycine levels, with no clinically manifested metabolic conditions. Moreover, z-BMI was positively and negatively correlated with BCAA and glycine levels, respectively, even after adjustment for age and gender. We also found a correlation between the AA profile and clinical parameters such as lipids profile and glycemia. (4) Conclusions: A pattern of low glycine, and increased BCAA is correlated to z-BMI, total cholesterol, and triglycerides in overweight but otherwise healthy children. Our data suggest that, in childhood overweight, AA disturbances may precede other clinical parameters, thus providing an early indicator for the later development of metabolic disease.
Subject(s)
Amino Acids, Branched-Chain , Amino Acids , Glycine , Overweight , Pediatric Obesity , Humans , Child , Female , Male , Glycine/blood , Amino Acids, Branched-Chain/blood , Amino Acids/blood , Overweight/blood , Pediatric Obesity/blood , Body Mass Index , Tandem Mass Spectrometry , Chromatography, Liquid , Metabolomics/methods , Triglycerides/bloodABSTRACT
BACKGROUND & AIMS: Epidemiologic studies show high circulating Branched-chain amino acids (BCAA) are associated with excess body weight, impaired fasting glucose, insulin resistance, high blood pressure, and dyslipidemia. There is scarce data on the association between renal function and circulating levels of BCAA. Therefore, we aim to study this association in a sample of the Brazilian Longitudinal Study of Adults (ELSA-Brasil) METHODS: We analyzed participants who had at the baseline BCAA: valine, isoleucine, and leucine measured through nuclear magnetic resonance. The outcomes evaluated were estimated glomerular function (eGFR - CKD-EPI without race) and 12h-albumin-creatinine ratio (ACR). In addition, we built unadjusted and adjusted multivariable linear regression models to investigate the association between the BCAA (total and individual) and eGFR and ACR. RESULTS: We studied 4912 participants (age 51.7(±9.0) years, 53.4% women, 59.5% White (59.5%), 32.7% hypertension, and 18.2% diabetes). The mean BCAA level was 429.15 ± 87.15. The mean eGFR was 84.95 ± 15 ml/min/1.73 m2, and the median ACR was 6.5 (1.8-4920) mg/g. Descriptive analyses comparing eGFR stratified <60 ml/min/1.73 m2 and ACR≥30 mg/g demonstrate that BCAA levels are higher in patients with eGFR<60 and ACR ≥30. Regarding eGFR, an inverse association was detected with BCAA levels when adjusted for demographic variables, and it is not maintained after adjustments for other confounders. Also, a positive association was found for ACR≥30 mg/g, and BCAA levels, and this association is not confirmed after adjustments. CONCLUSIONS: BCAA levels were inversely associated with eGFR and positively associated with ACR. Further studies are necessary to allow the comprehension of those associations.
Subject(s)
Amino Acids, Branched-Chain , Glomerular Filtration Rate , Humans , Female , Male , Middle Aged , Brazil/epidemiology , Amino Acids, Branched-Chain/blood , Longitudinal Studies , Kidney/physiopathology , Adult , Creatinine/blood , Albuminuria/blood , AgedABSTRACT
Hydrolysed proteins have been shown to be potential ingredients in cat diets due to their high digestibility, presence of bioactive peptides, and relatively low antigenicity. The effects of the substitution of conventional low ash poultry byproduct meal (PBM) with hydrolysed poultry byproduct meal (HPM) as a protein source were evaluated in extruded cat diets. Five diets with similar nutrient contents were formulated: a control (CO) diet based on PBM and 4 diets with different inclusions of HPM (5%, 10%, 20%, and 30%, on an as-fed basis) replacing PBM as the protein source. The total tract apparent digestibility (CTTAD) of nutrients, faecal characteristics and microbial fermentation products, urine production and pH, nitrogen balance and urea renal excretion were evaluated using 30 healthy cats (15 males and 15 females; 4.18 ± 0.86 kg; 4.17 ± 1.38 years old), with 6 cats per diet in a complete randomised block design. When significant differences were found with the F test, the effects were evaluated by polynomial contrasts according to HPM inclusion (p < 0.05). The CTTADs of DM (89 ± 0.41%), CP (90 ± 0.36%), fat (93 ± 0.41%) and gross energy (90 ± 0.33%) were similar among treatments (p > 0.05). The faecal production, score, short-chain fatty acids and ammonia concentration were similar among treatments (p > 0.05). Isobutyric, isovaleric, valeric, and total branched-chain fatty acid contents increased quadratically (p < 0.05), with the highest level in the faeces of cats fed the diet with 20% HPM. Lactate concentration in faeces increased linearly with the inclusion of HPM (p < 0.05). Urine characteristics and urea renal excretion did not differ among treatments (p > 0.05). At 10% inclusion, HPM tended to increase the nitrogen retention of cats (p = 0.083), which may reflect the higher tryptophan, methionine, lysine, and available lysine contents of HPM in comparison to PBM. The inclusion of up to 30% HPM can be considered in cat formulations without affecting nutrient digestibility or faecal and urine characteristics. HPM tended to increase nitrogen retention and increased branched-chain fatty acids in faeces, aspects which deserves further studies.
Subject(s)
Animal Feed , Animal Nutritional Physiological Phenomena , Diet , Digestion , Animals , Cats/physiology , Animal Feed/analysis , Diet/veterinary , Male , Female , Digestion/physiology , Digestion/drug effects , Random Allocation , Feces/chemistry , Poultry Products/analysis , Protein Hydrolysates/chemistry , Protein Hydrolysates/administration & dosageABSTRACT
Branched-chain amino acids (BCAA) are essential for maintaining intestinal mucosal integrity. However, only a few studies have explored the role of BCAA in the modulation of intestinal inflammation. In this study, we investigated in vitro effects of BCAA on the inflammatory response induced by lipopolysaccharide (LPS) (1 µg/mL) in Caco-2 cells. Caco-2 cells were assigned to six groups: control without BCAA (CTL0), normal BCAA (CTL; 0.8 mM leucine, 0.8 mM isoleucine, and 0.8 mM valine); leucine (LEU; 2 mM leucine), isoleucine (ISO; 2 mM isoleucine), valine (VAL; 2 mM valine), and high BCAA (LIV; 2 mM leucine, 2 mM isoleucine, and 2 mM valine). BCAA was added to the culture medium 24 h before LPS stimulation. Our results indicated that BCAA supplementation did not impair cell viability. The amino acids leucine and isoleucine attenuated the synthesis of IL-8 and JNK and NF-kB phosphorylation induced by LPS. Furthermore, neither BCAA supplementation nor LPS treatment modulated the activity of glutathione peroxidase or the intracellular reduced glutathione/oxidized glutathione ratio. Therefore, leucine and isoleucine exert anti-inflammatory effects in Caco-2 cells exposed to LPS by modulating JNK and NF-kB phosphorylation and IL-8 production. Further in vivo studies are required to validate these findings and gather valuable information for potential therapeutic or dietary interventions.
ABSTRACT
Maple Syrup Urine Disease (MSUD) is a metabolic disease characterized by the accumulation of branched-chain amino acids (BCAA) in different tissues due to a deficit in the branched-chain alpha-ketoacid dehydrogenase complex. The most common symptoms are poor feeding, psychomotor delay, and neurological damage. However, dietary therapy is not effective. Studies have demonstrated that memantine improves neurological damage in neurodegenerative diseases, such as Alzheimer's and Parkinson's diseases. Therefore, we hypothesize that memantine, an NMDA receptor antagonist can ameliorate the effects elicited by BCAA in an MSUD animal model. For this, we organized the rats into four groups: control group (1), MSUD group (2), memantine group (3), and MSUD + memantine group (4). Animals were exposed to the MSUD model by the administration of BCAA (15.8 µL/g) (groups 2 and 4) or saline solution (0.9%) (groups 1 and 3) and treated with water or memantine (5 mg/kg) (groups 3 and 4). Our results showed that BCAA administration induced memory alterations, and changes in the levels of acetylcholine in the cerebral cortex. Furthermore, induction of oxidative damage and alterations in antioxidant enzyme activities along with an increase in pro-inflammatory cytokines were verified in the cerebral cortex. Thus, memantine treatment prevented the alterations in memory, acetylcholinesterase activity, 2',7'-Dichlorofluorescein oxidation, thiobarbituric acid reactive substances levels, sulfhydryl content, and inflammation. These findings suggest that memantine can improve the pathomechanisms observed in the MSUD model, and may improve oxidative stress, inflammation, and behavior alterations.
Subject(s)
Maple Syrup Urine Disease , Rats , Animals , Maple Syrup Urine Disease/drug therapy , Maple Syrup Urine Disease/metabolism , Memantine/pharmacology , Memantine/therapeutic use , Acetylcholinesterase , Disease Models, Animal , Amino Acids, Branched-Chain , Antioxidants/pharmacology , InflammationABSTRACT
High-protein low-carbohydrate diets have been widely used for adult maintenance dogs, as well as in specific weight loss diets and maintenance programs. However, increasing dietary protein may increase undigested protein in the hindgut, modifying intestinal fermentation and fecal metabolite concentrations. The aim of this study was to evaluate the effects of protein source and concentration on apparent total tract digestibility (ATTD) of nutrients, metabolizable energy (ME), fecal and urinary characteristics, and fecal metabolites of dogs. Twelve healthy adult dogs were distributed into six treatments (nâ =â 6 per diet) in a balanced incomplete Latin square design consisting of three periods of 30 days each. Six diets, varying in protein source [poultry byproduct meal (PBPM) and hydrolyzed chicken liver powder (HCLP)] and concentration [24, 32, and 40% crude protein (CP) on dry matter (DM) basis] were tested: PBPM24 (PBPM based diet with 24% CP); PBPM32 (PBPM with 32% CP); PBPM40 (PBPM with 40% CP); HCLP24 (HCLP based diet with 24% CP); HCLP32 (HCLP with 32% CP); HCLP40 (HCLP with 40% CP). The ATTD of CP was greater in dogs-fed HCLP and higher protein concentrations diets (Pâ <â 0.05). However, dogs-fed HCLP diets had lower ATTD of fat and carbohydrates, and ME (Pâ <â 0.05). Similarly, high-protein diets reduced the ATTD of DM, OM, fat, carbohydrates, and energy (Pâ <â 0.05). High-protein diets increased the daily fecal output and moisture (Pâ =â 0.004 and Pâ <â 0.05, respectively), as well as the fecal score (Pâ <â 0.0001), verified as soft, moist stools, but still within the ideal range. Fecal valerate concentration was greater in dogs-fed PBPM at 32% CP (Pâ =â 0.007). Fecal isobutyrate tended to increase in dogs-fed PBPM and high-protein diets (Pâ <â 0.10). Also, dogs-fed PBPM and high-protein diets had greater fecal concentrations of isovalerate, branched-chain fatty acids (BCFA), and ammonia (Pâ <â 0.05). Finally, the fecal lactate concentration increased in dogs-fed HCLP and high-protein diets (Pâ <â 0.05). The HCLP increased the ATTD of CP, being a highly digestible protein. Although the inclusion of HCLP slightly increased fecal score and moisture, it decreased the amount of fecal metabolites of protein fermentation ammonia and BCFA, both of which are associated with proteolytic fermentation in the colon.
Feeding companion animals with high-protein diets has been a demand of the market and pet owners. However, the protein quality and quantity consumed can interfere with the amount of undigested protein that reaches the hindgut and be fermented. Intestinal fermentation can be desired when well controlled. This study tested two protein sources (hydrolyzed chicken liver and poultry byproduct meal) combined at three dietary protein concentrations (24, 32, and 40% crude protein on dry matter basis) and their effects on the apparent total tract digestibility (ATTD), fecal and urinary characteristics, and fecal metabolites of healthy adult dogs. In summary, diets containing higher inclusion of hydrolyzed chicken liver had improved protein ATTD. However, the same diets impaired the ATTD of fat and carbohydrates and decreased metabolizable energy. High-protein diets retained more water in the feces and increased the fecal output. Fecal consistency was affected, scored as soft and moist stools, but remained within an acceptable score. Dogs-fed poultry byproduct meal diets had greater concentrations of fecal protein fermentation metabolites, such as ammonia and branched-chain fatty acids, possibly related to a greater amount of undigested protein that reached the hindgut and was fermented.
Subject(s)
Chickens , Digestion , Dogs , Animals , Ammonia/pharmacology , Animal Feed/analysis , Feces , Diet/veterinary , Poultry , Carbohydrates , Liver , Animal Nutritional Physiological PhenomenaABSTRACT
Maple syrup urine disease (MSUD) is caused by a deficiency in the activity of the branched-chain α-ketoacid dehydrogenase (BCKD) complex, promoting the accumulation of the branched-chain amino acids (BCAA) leucine, isoleucine, and valine, as well as their respective α-keto acids. MSUD is an autosomal recessive hereditary metabolic disorder characterized by ketoacidosis, ataxia, coma, and mental and psychomotor retardation. The mechanisms involved in the brain damage caused by MSUD are not fully understood. Early diagnosis and treatment, as well as proper control of metabolic decompensation crises, are crucial for patients' survival and for a better prognosis. The recommended treatment consists of a high-calorie diet with restricted protein intake and specific formulas containing essential amino acids, except those accumulated in MSUD. This treatment will be maintained throughout life, being adjusted according to the patients' nutritional needs and BCAA concentration. Because dietary treatment may not be sufficient to prevent neurological damage in MSUD patients, other therapeutic strategies have been studied, including liver transplantation. With transplantation, it is possible to obtain an increase of about 10% of the normal BCKD in the body, an amount sufficient to maintain amino acid homeostasis and reduce metabolic decompensation crises. However, the experience related to this practice is very limited when considering the shortage of liver for transplantation and the risks related to the surgical procedure and immunosuppression. Thus, the purpose of this review is to survey the benefits, risks, and challenges of liver transplantation in the treatment of MSUD.
Subject(s)
Liver Transplantation , Maple Syrup Urine Disease , Humans , Maple Syrup Urine Disease/metabolism , Amino Acids, Branched-Chain , Leucine , DietABSTRACT
Maple syrup urine disease (MSUD) is an inherited metabolic disorder caused by a deficiency in branched-chain alpha-ketoacid dehydrogenase complex (BCKAC). The treatment is a standard therapy based on a protein-restricted diet with low branched-chain amino acids (BCAA) content to reduce plasma levels and, consequently, the effects of accumulating their metabolites, mainly in the central nervous system. Although the benefits of dietary therapy for MSUD are undeniable, natural protein restriction may increase the risk of nutritional deficiencies, resulting in a low total antioxidant status that can predispose and contribute to oxidative stress. As MSUD is related to redox and energy imbalance, melatonin can be an important adjuvant treatment. Melatonin directly scavenges the hydroxy radical, peroxyl radical, nitrite anion, and singlet oxygen and indirectly induces antioxidant enzyme production. Therefore, this study assesses the role of melatonin treatment on oxidative stress in brain tissue and behavior parameters of zebrafish (Danio rerio) exposed to two concentrations of leucine-induced MSUD: leucine 2 mM and 5mM; and treated with 100 nM of melatonin. Oxidative stress was assessed through oxidative damage (TBARS, DCF, and sulfhydryl content) and antioxidant enzyme activity (SOD and CAT). Melatonin treatment improved redox imbalance with reduced TBARS levels, increased SOD activity, and normalized CAT activity to baseline. Behavior was analyzed with novel object recognition test. Animals exposed to leucine improved object recognition due to melatonin treatment. With the above, we can suggest that melatonin supplementation can protect neurologic oxidative stress, protecting leucine-induced behavior alterations such as memory impairment.
Subject(s)
Maple Syrup Urine Disease , Melatonin , Animals , Leucine/adverse effects , Leucine/metabolism , Maple Syrup Urine Disease/metabolism , Zebrafish/metabolism , Antioxidants/pharmacology , Antioxidants/therapeutic use , Melatonin/pharmacology , Melatonin/therapeutic use , Thiobarbituric Acid Reactive Substances/metabolism , Oxidative Stress , Amino Acids, Branched-Chain/metabolism , Superoxide Dismutase/metabolismABSTRACT
Leucine, isoleucine, and valine, collectively termed Branched Chain Amino Acids (BCAA), are hydrophobic amino acids (AAs) and are essential for most eukaryotes since in these organisms they cannot be biosynthesized and must be supplied by the diet. These AAs are structurally relevant for muscle cells and, of course, important for the protein synthesis process. The metabolism of BCAA and its participation in different biological processes in mammals have been relatively well described. However, for other organisms as pathogenic parasites, the literature is really scarce. Here we review the BCAA catabolism, compile evidence on their relevance for pathogenic eukaryotes with special emphasis on kinetoplastids and highlight unique aspects of this underrated pathway.
Subject(s)
Amino Acids, Branched-Chain , Isoleucine , Animals , Amino Acids, Branched-Chain/metabolism , Leucine , Isoleucine/metabolism , Amino Acids , Eukaryota , Mammals/metabolismABSTRACT
Maple Syrup Urine Disease (MSUD) is an inborn error of metabolism (EIM) biochemically characterized by the tissue accumulation of branched-chain amino acids (BCAA) and their branched-chain alpha-keto acids. The mechanisms by which BCAA and their branched-chain alpha-keto acids lead to the neurological damage observed in MSUD are poorly understood. Mounting evidence has demonstrated that BCAA induce the overproduction of reactive oxygen species, which may modulate several important signaling pathways necessary for cellular homeostasis maintenance, such as autophagy. Taking this into account, we evaluated the effects of BCAA on the autophagic pathway in brain structures of rats submitted to the administration of these amino acids (animal model of MSUD). Our findings showed that BCAA significantly increased the levels of Beclin-1, ATG7, and ATG5 in the cerebral cortex of rats. In addition, BCAA augmented ATG12 levels in the striatum and ATG5 and LC3 I-II in the hippocampus. Therefore, our work demonstrates that the administration of BCAA increases autophagy and autophagic cell death, possibly mediated by the elevated levels of reactive species generated by BCAA.
Subject(s)
Maple Syrup Urine Disease , Rats , Animals , Maple Syrup Urine Disease/metabolism , Amino Acids, Branched-Chain/metabolism , Rats, Wistar , Disease Models, Animal , Brain/metabolism , Keto Acids , AutophagyABSTRACT
Alcohol-associated liver disease is one of the main causes of chronic liver disease. It comprises a clinical-histologic spectrum of presentations, from steatosis, steatohepatitis, to different degrees of fibrosis, including cirrhosis and severe necroinflammatory disease, called alcohol-associated hepatitis. In this focused update, we aim to present specific therapeutic interventions and strategies for the management of alcohol-associated liver disease. Current evidence for management in all spectra of manifestations is derived from general chronic liver disease recommendations, but with a higher emphasis on abstinence and nutritional support. Abstinence should comprise the treatment of alcohol use disorder as well as withdrawal syndrome. Nutritional assessment should also consider the presence of sarcopenia and its clinical manifestation, frailty. The degree of compensation of the disease should be evaluated, and complications, actively sought. The most severe acute form of this disease is alcohol-associated hepatitis, which has high mortality and morbidity. Current treatment is based on corticosteroids that act by reducing immune activation and blocking cytotoxicity and inflammation pathways. Other aspects of treatment include preventing and treating hepatorenal syndrome as well as preventing infections although there is no clear evidence as to the benefit of probiotics and antibiotics in prophylaxis. Novel therapies for alcohol-associated hepatitis include metadoxine, interleukin-22 analogs, and interleukin-1-beta antagonists. Finally, granulocyte colony-stimulating factor, microbiota transplantation, and gut-liver axis modulation have shown promising results. We also discuss palliative care in advanced alcohol-associated liver disease.
ABSTRACT
Maple Syrup Urine Disease (MSUD) is a metabolic disorder characterized by high levels in blood and urine of branched-chain amino acids leucine, isoleucine, and valine and their alpha-ketoacids, by a partial or total blockade in the activity of branched-chain complex alpha-keto acids dehydrogenase. The main symptoms in MSUD occur in the central nervous system, including cognitive deficits, locomotor, poor feeding, seizures, psychomotor delay, and mental retardation, but the mechanisms of neurotoxicity and behavior alteration due to this disease are poorly understood, thus this study aimed at showing the effects of leucine exposure on glutamate levels and behavior in zebrafish. For this, we analyzed the behavior using the social preference test and novel object recognition test, moreover, we analyse the glutamate levels and uptake using scintillation and high-performance liquid chromatography methods. Our results demonstrated a decrease in glutamate levels and uptake, accompanied by memory and social impairment. In conclusion, these results suggest that alterations in glutamate levels can be associated with behavior impairment, however, more studies are necessary to understand the mechanisms for brain damage in MSUD.
Subject(s)
Maple Syrup Urine Disease , Zebrafish , Animals , Leucine , Glutamic Acid , Maple Syrup Urine Disease/metabolism , Amino Acids, Branched-Chain/pharmacologyABSTRACT
Maple syrup urine disease (MSUD) is an intoxication-type inherited metabolic disorder in which hyperleucinemia leads to brain swelling and death without treatment. MSUD is caused by branched-chain alpha-ketoacid dehydrogenase deficiency due to biallelic loss of the protein products from the genes BCKDHA, BCKDHB, or DBT, while a distinct but related condition is caused by loss of DLD. In this case series, eleven individuals with MSUD caused by two pathogenic variants in DBT are presented. All eleven individuals have a deletion of exon 2 (delEx2, NM_001918.3:c.48_171del); six individuals are homozygous and five individuals are compound heterozygous with a novel missense variant (NM_001918.5:c.916 T > C [p.Ser306Pro]) confirmed to be in trans. Western Blot indicates decreased amount of protein product in delEx2;c.916 T > C liver cells and absence of protein product in delEx2 homozygous hepatocytes. Ultrahigh performance liquid chromatography-tandem mass spectrometry demonstrates an accumulation of branched-chain amino acids and alpha-ketoacids in explanted hepatocytes. Individuals with these variants have a neonatal-onset, non-thiamine-responsive, classical form of MSUD. Strikingly, the entire cohort is derived from families who immigrated to the Washington, DC, metro area from Honduras or El Salvador suggesting the possibility of a founder effect.
Subject(s)
Maple Syrup Urine Disease , 3-Methyl-2-Oxobutanoate Dehydrogenase (Lipoamide)/genetics , Central America , Genomics , Humans , Infant, Newborn , Maple Syrup Urine Disease/genetics , MutationABSTRACT
Maple syrup urine disease (MSUD) is an autosomal recessive neurometabolic disorder caused by severe deficiency of branched-chain α-keto acid dehydrogenase complex activity, which catalyzes the oxidative decarboxylation of the branched-chain α-keto acids (BCKA). The metabolic blockage results in tissue accumulation and high urinary excretion of the branched-chain amino acids (BCAA) leucine, isoleucine and valine, as well as alloisoleucine, and their respective BCKA α-ketoisocaproic (α-KIC), α-ketoisovaleric and α-keto-ß-methylvaleric acids. Affected patients usually manifest acute episodes of encephalopathy associated with seizures, coma and life-threatening cerebral edema in the first weeks of life, which is followed by progressive neurological deterioration with motor delay, ataxia, intellectual disability and psychiatric symptoms. The pathophysiology of the brain damage in MSUD has been mainly focused on brain amino acid imbalance leading to deficient cerebral protein and neurotransmitter synthesis. However, the acute episodes of severe neurological symptoms accompanied by large increases of BCKA/BCAA levels suggest neurotoxic actions of these compounds. In this particular, mounting evidence from humans and animal models support an important role of particularly leucine and α-KIC on the pathogenesis of the brain injury in MSUD. In this review we will present the current knowledge of the major mechanisms presumably involved in MSUD neuropathology and highlight the neurotoxic properties of the BCAA and BCKA, disturbing brain bioenergetics and redox homeostasis, besides inducing neuroinflammation. We suggest that these pathomechanisms may contribute to the neurological sequelae of MSUD patients and hopefully allow the design of novel therapeutic strategies, including antioxidant and bioenergetics stimulating drugs targeting the mitochondria.
Subject(s)
Maple Syrup Urine Disease , Neurotoxicity Syndromes , Amino Acids , Amino Acids, Branched-Chain/metabolism , Animals , Humans , Keto Acids/pharmacology , Leucine/metabolism , Maple Syrup Urine Disease/metabolismABSTRACT
Maple Syrup Urine Disease (MSUD) is caused by the deficiency in the activity of the branched-chain α-ketoacid dehydrogenase complex (BCKDC), resulting in the accumulation of the branched-chain amino acids (BCAA) leucine, isoleucine, and valine, and their respective branched-chain α-keto acids. Patients with MSUD are at high risk of developing chronic neuropsychiatric disorders; however, the pathophysiology of brain damage in these patients remains unclear. We hypothesize that MSUD can cause depressive symptoms in patients. To test our hypothesis, Wistar rats were submitted to the BCAA and tianeptine (antidepressant) administration for 21 days, starting seven days postnatal. Depression-like symptoms were assessed by testing for anhedonia and forced swimming after treatments. After the last test, the brain structures were dissected for the evaluation of neutrophins. We demonstrate that chronic BCAA administration induced depressive-like behavior, increased BDNF levels, and decreased NGF levels, suggesting a relationship between BCAA toxicity and brain damage, as observed in patients with MSUD. However, the administration of tianeptine was effective in preventing behavioral changes and restoring neurotrophins levels.
Subject(s)
Maple Syrup Urine Disease , Thiazepines , Amino Acids, Branched-Chain/metabolism , Animals , Maple Syrup Urine Disease/metabolism , Nerve Growth Factors/metabolism , Rats , Rats, Wistar , Thiazepines/pharmacologyABSTRACT
Maple Syrup Urine Disease (MSUD) is an autosomal recessive inherited disorder caused by a deficiency in the activity of the branched-chain alpha-ketoacid dehydrogenase complex leading to the accumulation of branched-chain amino acids (BCAA) leucine, isoleucine, and valine and their respective branched-chain α-ketoacids and corresponding hydroxy acids. Considering that Danio rerio, known as zebrafish, has been widely used as an experimental model in several research areas because it has favorable characteristics that complement other experimental models, this study aimed to evaluate oxidative stress parameters in zebrafish exposed to high levels of leucine (2 mM and 5 mM), in a model similar of MSUD. Twenty-four hours after exposure, the animals were euthanized, and the brain content dissected for analysis of oxidative stress parameters: thiobarbituric acid reactive substances (TBARS), 2',7'-dichlorofluorescein oxidation assay (DCF); content of sulfhydryl, and superoxide dismutase (SOD) and catalase (CAT) activities. Animals exposed to 2 mM and 5 mM leucine showed an increase in the measurement of TBARS and decreased sulfhydryl content. There were no significant changes in DCF oxidation. In addition, animals exposed to 2 mM and 5 mM leucine were found to have decreased SOD activity and increased CAT activity. Based on these results, exposure of zebrafish to high doses of leucine can act as a promising animal model for MSUD, providing a better understanding of the toxicity profile of leucine exposure and its use in future investigations and strategies related to the pathophysiology of MSUD.
Subject(s)
Maple Syrup Urine Disease , Zebrafish , Animals , Antioxidants/pharmacology , Brain/metabolism , Leucine/metabolism , Leucine/pharmacology , Maple Syrup Urine Disease/metabolism , Oxidative Stress , Superoxide Dismutase/metabolism , Thiobarbituric Acid Reactive Substances/metabolism , Zebrafish/metabolismABSTRACT
KEY MESSAGE: The functional absence of the electron-transfer flavoprotein: ubiquinone oxidoreductase (ETFQO) directly impacts electrons donation to the mitochondrial electron transport chain under carbohydrate-limiting conditions without major impacts on the respiration of cell cultures. Alternative substrates (e.g., amino acids) can directly feed electrons into the mitochondrial electron transport chain (mETC) via the electron transfer flavoprotein/electron-transfer flavoprotein: ubiquinone oxidoreductase (ETF/ETFQO) complex, which supports plant respiration during stress situations. By using a cell culture system, here we investigated the responses of Arabidopsis thaliana mutants deficient in the expression of ETFQO (etfqo-1) following carbon limitation and supplied with amino acids. Our results demonstrate that isovaleryl-CoA dehydrogenase (IVDH) activity was induced during carbon limitation only in wild-type and that these changes occurred concomit with enhanced protein content. By contrast, neither the activity nor the total amount of IVDH was altered in etfqo-1 mutants. We also demonstrate that the activities of mitochondrial complexes in etfqo-1 mutants, display a similar pattern as in wild-type cells. Our findings suggest that the defect of ETFQO protein culminates with an impaired functioning of the IVDH, since no induction of IVDH activity was observed. However, the functional absence of the ETFQO seems not to cause major impacts on plant respiration under carbon limiting conditions, most likely due to other alternative electron entry pathways.
Subject(s)
Arabidopsis Proteins , Arabidopsis , Electron-Transferring Flavoproteins , Amino Acids, Branched-Chain/pharmacology , Arabidopsis/cytology , Arabidopsis/drug effects , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Carbohydrate Metabolism , Cell Culture Techniques , Electron Transport Complex IV/genetics , Electron Transport Complex IV/metabolism , Electron-Transferring Flavoproteins/genetics , Electron-Transferring Flavoproteins/metabolism , Gene Expression Regulation, Plant , Isovaleryl-CoA Dehydrogenase/genetics , Isovaleryl-CoA Dehydrogenase/metabolism , Mitochondria/genetics , Mitochondria/metabolism , MutationABSTRACT
The purpose of this study was to investigate the effects of supplementation of whey protein (WP) versus leucine-matched collagen peptides (CP) on muscle thickness MT and performance after a resistance training (RT) program in young adults. Twenty-two healthy untrained participants were randomly assigned to either a WP (n = 11) or leucine-matched CP (n = 11) group and then submitted to a supervised 10-week RT program (3 days/week). The groups were supplemented with an equivalent amount of WP (35 g, containing 3.0 g of leucine) and CP (35 g, containing 1.0 g of leucine and 2.0 g of free leucine) during the intervention period (after each workout and in the evening on nontraining days). MT of the vastus lateralis and biceps brachii, isokinetic peak torque and mean power output of the elbow flexors, and peak power output of the lower body were assessed before and after the RT program. The WP group experienced a greater (interaction, p < .05) increase in the vastus lateralis (effect size, WP = 0.68 vs. CP = 0.38; % Δ, WP = 8.4 ± 2.5 vs. CP = 5.6 ± 2.6%) and biceps brachii muscle thickness (effect size, WP = 0.61 vs. CP = 0.35; % , WP = 10.1 ± 3.8 vs. CP = 6.0 ± 3.2%), with a similar increase in muscle performance (peak torque, mean power output, and peak power output) between groups (time p < .05). Supplementation with WP was superior to leucine content-matched CP supplementation in increasing muscle size, but not strength and power, after a 10-week RT program in young adults.