Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.911
Filter
1.
Plant Physiol Biochem ; 214: 108888, 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38954944

ABSTRACT

Trichomes are specialized epidermal structures that protect plants from biotic and abiotic stresses by synthesizing, storing, and secreting defensive compounds. This study investigates the role of the Gossypium arboreum DNA topoisomerase VI subunit B gene (GaTOP6B) in trichome development and branching. Sequence alignment revealed a high similarity between GaTOP6B and AtTOP6B, suggesting a conserved function in trichome regulation. Although AtTOP6B acts as a positive regulator of trichome development, functional analyses showed contrasting effects: Virus-induced gene silencing (VIGS) of GaTOP6B in cotton increased trichome density, while its overexpression in Arabidopsis decreased trichome density but enhanced branching. This demonstrates that GaTOP6B negatively regulates trichome number, indicating species-specific roles in trichome initiation and branching between cotton and Arabidopsis. Overexpression of the GaTOP6B promotes jasmonic acid synthesis, which in turn inhibits the G1/S or G2/M transitions, stalling the cell cycle. On the other hand, it suppresses brassinolide synthesis and signaling while promoting cytokinin degradation, further inhibiting mitosis. These hormonal interactions facilitate the transition of cells from the mitotic cycle to the endoreduplication cycle. As the level of endoreduplication increases, trichomes develop an increased number of branches. These findings highlight GaTOP6B's critical role as a regulator of trichome development, providing new genetic targets for improving cotton varieties in terms of enhanced adaptability and resilience.

2.
Heliyon ; 10(11): e32451, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38961991

ABSTRACT

Path planning is an crucial research area in robotics. Compared to other path planning algorithms, the Rapidly-exploring Random Tree (RRT) algorithm possesses both search and random sampling properties, and thus has more potential to generate high-quality paths that can balance the global optimum and local optimum. This paper reviews the research on RRT-based improved algorithms from 2021 to 2023, including theoretical improvements and application implementations. At the theoretical level, branching strategy improvement, sampling strategy improvement, post-processing improvement, and model-driven RRT are highlighted, at the application level, application scenarios of RRT under welding robots, assembly robots, search and rescue robots, surgical robots, free-floating space robots, and inspection robots are detailed, and finally, many challenges faced by RRT at both the theoretical and application levels are summarized. This review suggests that although RRT-based improved algorithms has advantages in large-scale scenarios, real-time performance, and uncertain environments, and some strategies that are difficult to be quantitatively described can be designed based on model-driven RRT, RRT-based improved algorithms still suffer from the problems of difficult to design the hyper-parameters and weak generalization, and in the practical application level, the reliability and accuracy of the hardware such as controllers, actuators, sensors, communication, power supply and data acquisition efficiency all pose challenges to the long-term stability of RRT in large-scale unstructured scenarios. As a part of autonomous robots, the upper limit of RRT path planning performance also depends on the robot localization and scene modeling performance, and there are still architectural and strategic choices in multi-robot collaboration, in addition to the ethics and morality that has to be faced. To address the above issues, I believe that multi-type robot collaboration, human-robot collaboration, real-time path planning, self-tuning of hyper-parameters, task- or application-scene oriented algorithms and hardware design, and path planning in highly dynamic environments are future trends.

3.
Front Plant Sci ; 15: 1384237, 2024.
Article in English | MEDLINE | ID: mdl-38962245

ABSTRACT

The search for elite cultivars with better architecture has been a demand by farmers of the chickpea and lentil crops, which aims to systematize their mechanized planting and harvesting on a large scale. Therefore, the identification of genes associated with the regulation of the branching and architecture of these plants has currently gained great importance. Herein, this work aimed to gain insight into transcriptomic changes of two contrasting chickpea and lentil cultivars in terms of branching pattern (little versus highly branched cultivars). In addition, we aimed to identify candidate genes involved in the regulation of shoot branching that could be used as future targets for molecular breeding. The axillary and apical buds of chickpea cultivars Blanco lechoso and FLIP07-318C, and lentil cultivars Castellana and Campisi, considered as little and highly branched, respectively, were harvested. A total of 1,624 and 2,512 transcripts were identified as differentially expressed among different tissues and contrasting cultivars of chickpea and lentil, respectively. Several gene categories were significantly modulated such as cell cycle, DNA transcription, energy metabolism, hormonal biosynthesis and signaling, proteolysis, and vegetative development between apical and axillary tissues and contrasting cultivars of chickpea and lentil. Based on differential expression and branching-associated biological function, ten chickpea genes and seven lentil genes were considered the main players involved in differentially regulating the plant branching between contrasting cultivars. These collective data putatively revealed the general mechanism and high-effect genes associated with the regulation of branching in chickpea and lentil, which are potential targets for manipulation through genome editing and transgenesis aiming to improve plant architecture.

4.
New Phytol ; 2024 Jul 06.
Article in English | MEDLINE | ID: mdl-38970467

ABSTRACT

Shoot branching is determined by a balance between factors that promote axillary bud dormancy and factors that release buds from the quiescent state. The TCP family of transcription factors is classified into two classes, Class I and Class II, which usually play different roles. While the role of the Class II TCP BRANCHED1 (BRC1) in suppressing axillary bud development in Arabidopsis thaliana has been widely explored, the function of Class I TCPs in this process remains unknown. We analyzed the role of Class I TCP14 and TCP15 in axillary branch development in Arabidopsis through a series of genetic and molecular studies. In contrast to the increased branch number shown by brc1 mutants, tcp14 tcp15 plants exhibit a reduced number of branches compared with wild-type. Our findings provide evidence that TCP14 and TCP15 act by counteracting BRC1 function through two distinct mechanisms. First, they indirectly reduce BRC1 expression levels. Additionally, TCP15 directly interacts with BRC1 decoying it from chromatin and thereby preventing the transcriptional activation of a set of BRC1-dependent genes. We describe a molecular mechanism by which Class I TCPs physically antagonize the action of the Class II TCP BRC1, aligning with their opposite roles in axillary bud development.

5.
Cureus ; 16(6): e61763, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38975486

ABSTRACT

The genitofemoral nerve (GFN) presents with a variable course in nearly half of the population. This variation can be seen in its availability, course, and branching. Here, a notable case during a cadaveric dissection revealed an unusually high bifurcation of the GFN on the left side, contrasting with the typical bifurcation observed on the right. This divergence was highlighted using colored markers to aid educational visualization, facilitating a comprehensive learning experience about the nerve's variability and its functional implications, such as the cremasteric reflex. Embryologically, these variations stem from the migratory paths of myotomes during development, influenced by extrinsic signals and growth factors. Despite the high incidence of anatomical variability, the muscular structure remains consistent, suggesting that the nerve's formation is more susceptible to developmental shifts than the muscles it innervates. Clinically, understanding GFN variations is crucial due to the nerve's involvement in conditions like genitofemoral neuropathy, which can arise from surgical procedures. Accurate knowledge of these variations aids in precise diagnostic and therapeutic interventions, reducing complications, and enhancing patient outcomes in lower abdominal and groin surgeries. However, further research is needed to elucidate the exact embryological and genetic underpinnings of these variations.

6.
Acta Trop ; 257: 107311, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38972560

ABSTRACT

BACKGROUND: Malaria is the world's most fatal and challenging parasitic disease, caused by the Plasmodium parasite, which is transmitted to humans by the bites of infected female mosquitoes. Bangladesh is the most vulnerable region to spread malaria because of its geographic position. In this paper, we have considered the dynamics of vector-host models and observed the stochastic behavior. This study elaborates on the seasonal variability and calculates the probability of disease outbreaks. METHODS: We present a model for malaria disease transmission and develop its corresponding continuous-time Markov chain (CTMC) representation. The proposed vector-host models illustrate the malaria transmission model along with sensitivity analysis. The deterministic model with CTMC curves is depicted to show the randomness in real scenarios. Sequentially, we expand these studies to a time-varying stochastic vector-host model that incorporates seasonal variability. Phase plane analysis is conducted to explore the characteristics of the disease, examine interactions among various compartments, and evaluate the impact of key parameters. The branching process approximation is developed for the corresponding vector-host model to calculate the probability outbreak. Numerous numerical results are accomplished to observe the analytical investigation. RESULTS: Seasonality and contact patterns affect the dynamics of disease outbreaks. The numerical illustration provides that the probability of a disease outbreak depends on the infected host or vector. Additionally, periodic transmission rates have a great influence on the probability outbreak. The basic reproduction number (R0) is derived, which is the main justification for studying the dynamical behavior of epidemic models. CONCLUSIONS: Seasonal variability significantly impacts malaria transmission, and the probability of disease outbreaks is influenced by time and the initial number of infected individuals. Moreover, the branching process approximation is applicable when the population size is large enough and the basic reproduction number is less than 1. In the future, such analysis can help decision-makers understand the impact of various parameters and their stochastic behavior in the vector-host model to prevent such types of disease outbreaks.

7.
J Agric Food Chem ; 2024 Jul 18.
Article in English | MEDLINE | ID: mdl-39025827

ABSTRACT

The glycoside hydrolase family 70 (GH70) contains bacterial extracellular multidomain enzymes, synthesizing α-glucans from sucrose or starch-like substrates. A few dozen have been biochemically characterized, while crystal structures cover only the core domains and lack significant parts of auxiliary domains. Here we present a systematic overview of GH70 enzymes and their 3D structural organization and bacterial origin. A representative set of 234 permuted and 25 nonpermuted GH70 enzymes was generated, covering 12 bacterial families and 3 phyla and containing 185 predicted glucansucrases (GS), 15 branching sucrases (BrS), 8 "twin" GS-BrSs, and 51 α-glucanotransferases (α-GT). Analysis of AlphaFold models of all 259 entries showed that, apart from the core domains, the structural variation regarding auxiliary domains is far greater than anticipated, with nine different domain types. We analyzed the phylogenetic distribution and discuss the possible roles of auxiliary domains as well as possible correlations between enzyme specificity, auxiliary domain type, and bacterial origin.

8.
Plants (Basel) ; 13(13)2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38999601

ABSTRACT

The ramet system is a typical structural type in the life history of clonal plants. This massive structure is formed by many similar ramets connected by underground rhizomes, which are independent and mutually influential. Therefore, the ramet system is unique to bamboo forests, and its role in the construction, maintenance, and productivity of bamboo populations is irreplaceable. Mulch management is a high-level cultivation model for bamboo forests that is used to cultivate bamboo shoots. However, the basic conditions of bamboo ramet systems in this managed model are poorly understood. This study analyzed the underground rhizome morphology, bud bank, and branching of bamboo ramets in a Phyllostachys praecox C.D. Chu et C.S. Chao 'Prevernalis' forest to explore the growth patterns of bamboo ramets in high-level management fields. In mulched bamboo forests, the bamboo rhizomes, distributed in intermediate positions of the bamboo ramet system, were long with many lateral buds and branches, and those at the initial and distal ends were short with few lateral buds and branches. The initial end of the ramet system reduced the ramet system, the intermediate part expanded the ramet system, and the distal end promoted ramet system regeneration. Owing to the continuous reduction, expansion, and renewal of ramet systems, the bamboo rhizome system demonstrates mobility and adaptability. This study found that a higher level of bamboo forest management increased the possibility of artificial fragmentation of the ramet system and that improving the efficiency of the ramet system was beneficial for maintaining its high vitality. Thus, this study provides a crucial reference for guiding the precise regulation of bamboo ramet systems in artificial bamboo forests.

9.
Bull Math Biol ; 86(8): 101, 2024 Jul 06.
Article in English | MEDLINE | ID: mdl-38970749

ABSTRACT

We establish a general framework using a diffusion approximation to simulate forward-in-time state counts or frequencies for cladogenetic state-dependent speciation-extinction (ClaSSE) models. We apply the framework to various two- and three-region geographic-state speciation-extinction (GeoSSE) models. We show that the species range state dynamics simulated under tree-based and diffusion-based processes are comparable. We derive a method to infer rate parameters that are compatible with given observed stationary state frequencies and obtain an analytical result to compute stationary state frequencies for a given set of rate parameters. We also describe a procedure to find the time to reach the stationary frequencies of a ClaSSE model using our diffusion-based approach, which we demonstrate using a worked example for a two-region GeoSSE model. Finally, we discuss how the diffusion framework can be applied to formalize relationships between evolutionary patterns and processes under state-dependent diversification scenarios.


Subject(s)
Computer Simulation , Extinction, Biological , Genetic Speciation , Mathematical Concepts , Models, Biological , Phylogeny , Animals , Models, Genetic , Biological Evolution , Population Dynamics/statistics & numerical data
10.
Genetics ; 2024 Jul 19.
Article in English | MEDLINE | ID: mdl-39028768

ABSTRACT

Neurons are highly polarized cells with dendrites and axons. Dendrites, which receive sensory information or input from other neurons, often display elaborately branched morphologies. While mechanisms that promote dendrite branching have been widely studied, less is known about the mechanisms that restrict branching. Using the nematode Caenorhabditis elegans, we identify rabr-1 (for Rab-related gene 1) as a factor that restricts branching of the elaborately branched dendritic trees of PVD and FLP somatosensory neurons. Animals mutant for rabr-1 show excessively branched dendrites throughout development and into adulthood in areas where the dendrites overlay epidermal tissues. Phylogenetic analyses show that RABR-1 displays similarity to small GTPases of the Rab-type, although based on sequence alone, no clear vertebrate ortholog of RABR-1 can be identified. We find that rabr-1 is expressed and can function in epidermal tissues, suggesting that rabr-1 restricts dendritic branching cell-non-autonomously. Genetic experiments further indicate that for the formation of ectopic branches rabr-1 mutants require the genes of the Menorin pathway, which have been previously shown to mediate dendrite morphogenesis of somatosensory neurons. A translational reporter for RABR-1 reveals a subcellular localization to punctate, perinuclear structures, which correlates with endosomal and autophagosomal markers, but anticorrelates with lysosomal markers suggesting an amphisomal character. Point mutations in rabr-1 analogous to key residues of small GTPases suggest that rabr-1 functions in a GTP-bound form independently of GTPase activity. Taken together, rabr-1 encodes for an atypical small GTPase of the Rab-type that cell-non-autonomously restricts dendritic branching of somatosensory neurons, likely independently of GTPase activity.

11.
Indian J Microbiol ; 64(2): 762-772, 2024 Jun.
Article in English | MEDLINE | ID: mdl-39011009

ABSTRACT

The thermophilic bacterium Thermosulfidibacter takaii is affiliated to the deep-branching bacterial lineage in the phylum Aquificota. However, the recent taxonomic study of the phylum Aquificota revealed that T. takaii has no specific association with the phylum. The fact that T. takaii is considered an important model organism for studying the evolution and kinetics of ancestral carbon metabolism pathways, its proper classification is therefore of significant interest. In this work, phylogenomics and comparative genomic analyses were employed to ascertain the taxonomic placement of T. takaii. Results from the phylogenetic analyses based on 16S rRNA gene and core genome sequences confirmed the exclusion of T. takaii from the phylum Aquificota and further revealed a phylum-level lineage for T. takaii. The analysis of conserved signature indels (CSIs) specific for the phylum Aquificota also supported the exclusion of T. takaii from the phylum. Pan-genome analysis of T. takaii along with the members of the closely related clade from the phylum Thermodesulfobacteriota revealed that T. takaii was indeed distinct, supporting its phylum-level placement. Furthermore, the presence of CSIs specific to T. takaii, and the results from the average nucleotide identity and average amino acid identity analyses, together with the unique characteristic of T. takaii also provided evidence supporting its assignment to a novel phylum. Based on these results, T. takaii is proposed to be transferred to a novel family, Thermosulfidibacteraceae fam. nov., of a novel order, Thermosulfidibacterales ord. nov., and a novel class, Thermosulfidibacteria classis nov., within a novel phylum Thermosulfidibacterota phyl. nov. Supplementary Information: The online version contains supplementary material available at 10.1007/s12088-024-01214-9.

12.
J Agric Food Chem ; 72(26): 14760-14768, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38899439

ABSTRACT

Potato common scab (PCS) is a widespread plant disease that lacks effective control measures. Using a small molecule elicitor, we activate the production of a novel class of polyketide antibiotics, streptolateritic acids A-D, in Streptomyces sp. FXJ1.172. These compounds show a promising control efficacy against PCS and an unusual acyclic pentacarboxylic acid structure. A gene cluster encoding a type I modular polyketide synthase is identified to be responsible for the biosynthesis of these metabolites. A cytochrome P450 (CYP) and an aldehyde dehydrogenase (ADH) encoded by two genes in the cluster are proposed to catalyze iterative oxidation of the starter-unit-derived methyl group and three of six branching methyl groups to carboxylic acids during chain assembly. Our findings highlight how activation of silent biosynthetic gene clusters can be employed to discover completely new natural product classes able to combat PCS and new types of modular polyketide synthase-based biosynthetic machinery.


Subject(s)
Bacterial Proteins , Multigene Family , Plant Diseases , Polyketide Synthases , Solanum tuberosum , Streptomyces , Streptomyces/genetics , Streptomyces/metabolism , Streptomyces/chemistry , Plant Diseases/microbiology , Solanum tuberosum/metabolism , Polyketide Synthases/genetics , Polyketide Synthases/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Bacterial Proteins/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/biosynthesis , Biosynthetic Pathways , Carboxylic Acids/chemistry , Carboxylic Acids/metabolism
13.
Molecules ; 29(12)2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38930853

ABSTRACT

Ion-molecular reactions play a significant role in molecular evolution within the interstellar medium. In this study, the entrance channel reaction, H3+ + C2H4 → H2 + C2H5+, was investigated using classical molecular dynamic (classical MD) and ring polymer molecular dynamic (RPMD) simulation techniques. We developed an analytical potential energy surface function with a permutationally invariant polynomial basis, specifically employing the monomial symmetrized approach. Our dynamic simulations reproduced the rate coefficient of 300 K for H3+ + C2H4 → H2 + C2H5+, aligning reasonably well with the values in the kinetic database commonly utilized in astrochemistry. The thermal rate coefficients obtained using both the classical MD and RPMD techniques exhibited an increase from 100 K to 300 K as the temperature rose. Additionally, we analyzed the excess energy distribution of the C2H5+ fragment with respect to temperature to investigate the indirect reaction pathway of C2H5+ → H2 + C2H3+. This result suggests that the indirect reaction pathway of C2H5+ → H2 + C2H3+ holds minor significance, although the distribution highly depends on the collisional temperature.

14.
Plants (Basel) ; 13(12)2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38931020

ABSTRACT

Pinus yunnanensis is an important component of China's economic development and forest ecosystems. The growth of P. yunnanensis seedlings experienced a slow growth phase, which led to a long seedling cultivation period. However, asexual reproduction can ensure the stable inheritance of the superior traits of the mother tree and also shorten the breeding cycle. The quantity and quality of branching significantly impact the cutting reproduction of P. yunnanensis, and a shaded environment affects lateral branching growth, development, and photosynthesis. Nonetheless, the physiological characteristics and the level of the transcriptome that underlie the growth of lateral branches of P. yunnanensis under shade conditions are still unclear. In our experiment, we subjected annual P. yunnanensis seedlings to varying shade intensities (0%, 25%, 50%, 75%) and studied the effects of shading on growth, physiological and biochemical changes, and gene expression in branching. Results from this study show that shading reduces biomass production by inhibiting the branching ability of P. yunnanensis seedlings. Due to the regulatory and protective roles of osmotically active substances against environmental stress, the contents of soluble sugars, soluble proteins, photosynthetic pigments, and enzyme activities exhibit varying responses to different shading treatments. Under shading treatment, the contents of phytohormones were altered. Additionally, genes associated with phytohormone signaling and photosynthetic pathways exhibited differential expression. This study established a theoretical foundation for shading regulation of P. yunnanensis lateral branch growth and provides scientific evidence for the management of cutting orchards.

15.
Curr Top Dev Biol ; 160: 1-30, 2024.
Article in English | MEDLINE | ID: mdl-38937029

ABSTRACT

The salivary gland undergoes branching morphogenesis to elaborate into a tree-like structure with numerous saliva-secreting acinar units, all joined by a hierarchical ductal system. The expansive epithelial surface generated by branching morphogenesis serves as the structural basis for the efficient production and delivery of saliva. Here, we elucidate the process of salivary gland morphogenesis, emphasizing the role of mechanics. Structurally, the developing salivary gland is characterized by a stratified epithelium tightly encased by the basement membrane, which is in turn surrounded by a mesenchyme consisting of a dense network of interstitial matrix and mesenchymal cells. Diverse cell types and extracellular matrices bestow this developing organ with organized, yet spatially varied mechanical properties. For instance, the surface epithelial sheet of the bud is highly fluidic due to its high cell motility and weak cell-cell adhesion, rendering it highly pliable. In contrast, the inner core of the bud is more rigid, characterized by reduced cell motility and strong cell-cell adhesion, which likely provide structural support for the tissue. The interactions between the surface epithelial sheet and the inner core give rise to budding morphogenesis. Furthermore, the basement membrane and the mesenchyme offer mechanical constraints that could play a pivotal role in determining the higher-order architecture of a fully mature salivary gland.


Subject(s)
Morphogenesis , Salivary Glands , Salivary Glands/embryology , Salivary Glands/cytology , Salivary Glands/metabolism , Animals , Humans , Basement Membrane/metabolism , Cell Movement , Biomechanical Phenomena , Mesoderm/cytology , Mesoderm/embryology , Mesoderm/metabolism , Cell Adhesion
16.
J Math Biol ; 89(1): 11, 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38874772

ABSTRACT

Cheek and Johnston (JMB 86:70, 2023) consider a continuous-time Bienaymé-Galton-Watson tree conditioned on being alive at time T. They study the reproduction events along the ancestral lineage of an individual randomly sampled from all those alive at time T. We give a short proof of an extension of their main results (Cheek and Johnston in JMB 86:70, 2023, Theorems 2.3 and 2.4) to the more general case of Bellman-Harris processes. Our proof also sheds light onto the probabilistic structure of the rate of the reproduction events. A similar method will be applied to explain (i) the different ancestral reproduction bias appearing in work by Geiger (JAP 36:301-309, 1999) and (ii) the fact that the sampling rule considered by Chauvin et al. (SPA 39:117-130, 1991), (Theorem 1) leads to a time homogeneous process along the ancestral lineage.


Subject(s)
Reproduction , Models, Genetic , Animals , Phylogeny , Mathematical Concepts
17.
J Math Biol ; 89(1): 14, 2024 Jun 16.
Article in English | MEDLINE | ID: mdl-38879839

ABSTRACT

We consider a cell population subject to a parasite infection. Cells divide at a constant rate and, at division, share the parasites they contain between their two daughter cells. The sharing may be asymmetric, and its law may depend on the number of parasites in the mother. Cells die at a rate which may depend on the number of parasites they carry, and are also killed when this number explodes. We study the survival of the cell population as well as the mean number of parasites in the cells, and focus on the role of the parasites partitioning kernel at division.


Subject(s)
Host-Parasite Interactions , Models, Biological , Parasitic Diseases , Animals , Host-Parasite Interactions/physiology , Parasitic Diseases/parasitology , Cell Division , Mathematical Concepts , Humans , Parasites/pathogenicity , Parasites/physiology
18.
Elife ; 132024 Jun 21.
Article in English | MEDLINE | ID: mdl-38904660

ABSTRACT

A functional nervous system is built upon the proper morphogenesis of neurons to establish the intricate connection between them. The microtubule cytoskeleton is known to play various essential roles in this morphogenetic process. While many microtubule-associated proteins (MAPs) have been demonstrated to participate in neuronal morphogenesis, the function of many more remains to be determined. This study focuses on a MAP called HMMR in mice, which was originally identified as a hyaluronan binding protein and later found to possess microtubule and centrosome binding capacity. HMMR exhibits high abundance on neuronal microtubules and altering the level of HMMR significantly affects the morphology of neurons. Instead of confining to the centrosome(s) like cells in mitosis, HMMR localizes to microtubules along axons and dendrites. Furthermore, transiently expressing HMMR enhances the stability of neuronal microtubules and increases the formation frequency of growing microtubules along the neurites. HMMR regulates the microtubule localization of a non-centrosomal microtubule nucleator TPX2 along the neurite, offering an explanation for how HMMR contributes to the promotion of growing microtubules. This study sheds light on how cells utilize proteins involved in mitosis for non-mitotic functions.


Subject(s)
Microtubule-Associated Proteins , Microtubules , Neurons , Animals , Mice , Cell Cycle Proteins/metabolism , Cell Cycle Proteins/genetics , Microtubule-Associated Proteins/metabolism , Microtubule-Associated Proteins/genetics , Microtubules/metabolism , Mitosis , Neurons/metabolism , Nuclear Proteins/metabolism , Nuclear Proteins/genetics
19.
Langenbecks Arch Surg ; 409(1): 198, 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38935142

ABSTRACT

PURPOSE: The anatomical variations of the recurrent laryngeal nerve (RLN) are common during thyroidectomy. We aimed to evaluate the risk of RLN paralysis in case of its anatomical variations, retrospectively. METHODS: The patients with primary thyroidectomy between January 2016 and December 2019 were enrolled. The effect of age, gender, surgical intervention, neuromonitorisation type, central neck dissection, postoperative diagnosis, neck side, extralaryngeal branching, non-RLN, relation of RLN to inferior thyroid artery (ITA), grade of Zuckerkandl tubercle on vocal cord paralysis (VCP) were investigated. RESULTS: This study enrolled 1070 neck sides. The extralaryngeal branching rate was 35.5%. 45.9% of RLNs were anterior and 44.5% were posterior to the ITA, and 9.6% were crossing between the branches of the ITA. The rate of total VCP was 4.8% (transient:4.5%, permanent: 0.3%). The rates of total and transient VCP were significantly higher in extralaryngeal branching nerves compared to nonbranching nerves (6.8% vs. 3.6%, p = 0.018; 6.8% vs. 3.2%, p = 0.006, respectively). Total VCP rates were 7.2%, 2.5%, and 2.9% in case of the RLN crossing anterior, posterior and between the branches of ITA, respectively (p = 0.003). The difference was also significant regarding the transient VCP rates (p = 0.004). Anterior crossing pattern increased the total and transient VCP rates 2.8 and 2.9 times, respectively. CONCLUSION: RLN crossing ITA anteriorly and RLN branching are frequent anatomical variations increasing the risk of VCP in thyroidectomy that cannot be predicted preoperatively. This study is the first one reporting that the relationship between RLN and ITA increased the risk of VCP.


Subject(s)
Recurrent Laryngeal Nerve , Thyroid Gland , Thyroidectomy , Vocal Cord Paralysis , Humans , Thyroidectomy/adverse effects , Female , Male , Vocal Cord Paralysis/etiology , Vocal Cord Paralysis/epidemiology , Middle Aged , Retrospective Studies , Adult , Thyroid Gland/blood supply , Thyroid Gland/surgery , Thyroid Gland/innervation , Aged , Recurrent Laryngeal Nerve Injuries/etiology , Risk Factors , Young Adult , Postoperative Complications/etiology , Postoperative Complications/epidemiology , Adolescent
20.
Bioengineering (Basel) ; 11(6)2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38927834

ABSTRACT

Autologous-engineered artificial tissues constitute an ideal alternative for radical surgery in terms of natural anticoagulation, self-repair, tissue regeneration, and the possibility of growth. Previously, we focused on the development and practical application of artificial tissues using "in-body tissue architecture (iBTA)", a technique that uses living bodies as bioreactors. This study aimed to further develop iBTA by fabricating tissues with diverse shapes and evaluating their physical properties. Although the breaking strength increased with tissue thickness, the nominal breaking stress increased with thinner tissues. By carving narrow grooves on the outer periphery of an inner core with narrow grooves, we fabricated approximately 2.2 m long cord-shaped tissues and net-shaped tissues with various designs. By assembling the two inner cores inside the branched stainless-steel pipes, a large graft with branching was successfully fabricated, and its aortic arch replacement was conducted in a donor goat without causing damage. In conclusion, by applying iBTA technology, we have made it possible, for the first time, to create tissues of various shapes and designs that are difficult using existing tissue-engineering techniques. Thicker iBTA-induced tissues exhibited higher rupture strength; however, rupture stress was inversely proportional to thickness. These findings broaden the range of iBTA-induced tissue applications.

SELECTION OF CITATIONS
SEARCH DETAIL
...