Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 64
Filter
Add more filters










Publication year range
1.
Transl Anim Sci ; 8: txae094, 2024.
Article in English | MEDLINE | ID: mdl-38957732

ABSTRACT

In a 10-wk study, alterations in the rate of fertility, egg viability, and hatch parameters of adult geese exposed to different breeding methods were investigated. Twenty-four matured geese (4.0 ±â€…0.45 average weight) were randomly divided into three groups (TNM-natural mating group, TIM-artificial insemination group, TNI-natural mating and insemination group) of two replicates with four geese per replicate in a completely randomized design. Fresh semen collected from six ganders (5.2 ±â€…0.69 average weight) was pooled and used to inseminate the geese in TIM and TN1 at 0.2Ml at insemination times. The geese in TNM and TNI were allowed to mate naturally. Insemination and mating was done at 3 d interval and eggs from each treatment were collected daily. Incubation of eggs was done weekly, candling and transfer to hatcher were done on day 27 and goslings hatched out on day 30. Fertility, early embryo mortality (EEM), mid embryo mortality (MEM), late embryo mortality (LEM), hatch of fertile eggs (HOF), and hatch of set eggs (HOS) were obtained and analyzed using descriptive statistics and ANOVA and means separated using least significant difference test. Geese in TNI had significantly higher fertility (93.33 ±â€…10.97%) than TNM (59.67 ±â€…31.29%) and TIM (83.60 ±â€…17.14%). The EEM was higher in TIM than in the two other groups while the HOF and HOS were higher in TNM and TNI than in TIM. This study suggests that in comparison with TIM, higher fertility, hatchability, and lower embryo mortality can be obtained when geese are inseminated and naturally mated simultaneously.

2.
Stud Mycol ; 107: 251-388, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38600961

ABSTRACT

During 25 surveys of global Phytophthora diversity, conducted between 1998 and 2020, 43 new species were detected in natural ecosystems and, occasionally, in nurseries and outplantings in Europe, Southeast and East Asia and the Americas. Based on a multigene phylogeny of nine nuclear and four mitochondrial gene regions they were assigned to five of the six known subclades, 2a-c, e and f, of Phytophthora major Clade 2 and the new subclade 2g. The evolutionary history of the Clade appears to have involved the pre-Gondwanan divergence of three extant subclades, 2c, 2e and 2f, all having disjunct natural distributions on separate continents and comprising species with a soilborne and aquatic lifestyle and, in addition, a few partially aerial species in Clade 2c; and the post-Gondwanan evolution of subclades 2a and 2g in Southeast/East Asia and 2b in South America, respectively, from their common ancestor. Species in Clade 2g are soilborne whereas Clade 2b comprises both soil-inhabiting and aerial species. Clade 2a has evolved further towards an aerial lifestyle comprising only species which are predominantly or partially airborne. Based on high nuclear heterozygosity levels ca. 38 % of the taxa in Clades 2a and 2b could be some form of hybrid, and the hybridity may be favoured by an A1/A2 breeding system and an aerial life style. Circumstantial evidence suggests the now 93 described species and informally designated taxa in Clade 2 result from both allopatric non-adaptive and sympatric adaptive radiations. They represent most morphological and physiological characters, breeding systems, lifestyles and forms of host specialism found across the Phytophthora clades as a whole, demonstrating the strong biological cohesiveness of the genus. The finding of 43 previously unknown species from a single Phytophthora clade highlight a critical lack of information on the scale of the unknown pathogen threats to forests and natural ecosystems, underlining the risk of basing plant biosecurity protocols mainly on lists of named organisms. More surveys in natural ecosystems of yet unsurveyed regions in Africa, Asia, Central and South America are needed to unveil the full diversity of the clade and the factors driving diversity, speciation and adaptation in Phytophthora. Taxonomic novelties: New species: Phytophthora amamensis T. Jung, K. Kageyama, H. Masuya & S. Uematsu, Phytophthora angustata T. Jung, L. Garcia, B. Mendieta-Araica, & Y. Balci, Phytophthora balkanensis I. Milenkovic, Z. Tomic, T. Jung & M. Horta Jung, Phytophthora borneensis T. Jung, A. Durán, M. Tarigan & M. Horta Jung, Phytophthora calidophila T. Jung, Y. Balci, L. Garcia & B. Mendieta-Araica, Phytophthora catenulata T. Jung, T.-T. Chang, N.M. Chi & M. Horta Jung, Phytophthora celeris T. Jung, L. Oliveira, M. Tarigan & I. Milenkovic, Phytophthora curvata T. Jung, A. Hieno, H. Masuya & M. Horta Jung, Phytophthora distorta T. Jung, A. Durán, E. Sanfuentes von Stowasser & M. Horta Jung, Phytophthora excentrica T. Jung, S. Uematsu, K. Kageyama & C.M. Brasier, Phytophthora falcata T. Jung, K. Kageyama, S. Uematsu & M. Horta Jung, Phytophthora fansipanensis T. Jung, N.M. Chi, T. Corcobado & C.M. Brasier, Phytophthora frigidophila T. Jung, Y. Balci, K. Broders & I. Milenkovic, Phytophthora furcata T. Jung, N.M. Chi, I. Milenkovic & M. Horta Jung, Phytophthora inclinata N.M. Chi, T. Jung, M. Horta Jung & I. Milenkovic, Phytophthora indonesiensis T. Jung, M. Tarigan, L. Oliveira & I. Milenkovic, Phytophthora japonensis T. Jung, A. Hieno, H. Masuya & J.F. Webber, Phytophthora limosa T. Corcobado, T. Majek, M. Ferreira & T. Jung, Phytophthora macroglobulosa H.-C. Zeng, H.-H. Ho, F.-C. Zheng & T. Jung, Phytophthora montana T. Jung, Y. Balci, K. Broders & M. Horta Jung, Phytophthora multipapillata T. Jung, M. Tarigan, I. Milenkovic & M. Horta Jung, Phytophthora multiplex T. Jung, Y. Balci, K. Broders & M. Horta Jung, Phytophthora nimia T. Jung, H. Masuya, A. Hieno & C.M. Brasier, Phytophthora oblonga T. Jung, S. Uematsu, K. Kageyama & C.M. Brasier, Phytophthora obovoidea T. Jung, Y. Balci, L. Garcia & B. Mendieta-Araica, Phytophthora obturata T. Jung, N.M. Chi, I. Milenkovic & M. Horta Jung, Phytophthora penetrans T. Jung, Y. Balci, K. Broders & I. Milenkovic, Phytophthora platani T. Jung, A. Pérez-Sierra, S.O. Cacciola & M. Horta Jung, Phytophthora proliferata T. Jung, N.M. Chi, I. Milenkovic & M. Horta Jung, Phytophthora pseudocapensis T. Jung, T.-T. Chang, I. Milenkovic & M. Horta Jung, Phytophthora pseudocitrophthora T. Jung, S.O. Cacciola, J. Bakonyi & M. Horta Jung, Phytophthora pseudofrigida T. Jung, A. Durán, M. Tarigan & M. Horta Jung, Phytophthora pseudoccultans T. Jung, T.-T. Chang, I. Milenkovic & M. Horta Jung, Phytophthora pyriformis T. Jung, Y. Balci, K.D. Boders & M. Horta Jung, Phytophthora sumatera T. Jung, M. Tarigan, M. Junaid & A. Durán, Phytophthora transposita T. Jung, K. Kageyama, C.M. Brasier & H. Masuya, Phytophthora vacuola T. Jung, H. Masuya, K. Kageyama & J.F. Webber, Phytophthora valdiviana T. Jung, E. Sanfuentes von Stowasser, A. Durán & M. Horta Jung, Phytophthora variepedicellata T. Jung, Y. Balci, K. Broders & I. Milenkovic, Phytophthora vietnamensis T. Jung, N.M. Chi, I. Milenkovic & M. Horta Jung, Phytophthora ×australasiatica T. Jung, N.M. Chi, M. Tarigan & M. Horta Jung, Phytophthora ×lusitanica T. Jung, M. Horta Jung, C. Maia & I. Milenkovic, Phytophthora ×taiwanensis T. Jung, T.-T. Chang, H.-S. Fu & M. Horta Jung. Citation: Jung T, Milenkovic I, Balci Y, Janousek J, Kudlácek T, Nagy ZÁ, Baharuddin B, Bakonyi J, Broders KD, Cacciola SO, Chang T-T, Chi NM, Corcobado T, Cravador A, Dordevic B, Durán A, Ferreira M, Fu C-H, Garcia L, Hieno A, Ho H-H, Hong C, Junaid M, Kageyama K, Kuswinanti T, Maia C, Májek T, Masuya H, Magnano di San Lio G, Mendieta-Araica B, Nasri N, Oliveira LSS, Pane A, Pérez-Sierra A, Rosmana A, Sanfuentes von Stowasser E, Scanu B, Singh R, Stanivukovic Z, Tarigan M, Thu PQ, Tomic Z, Tomsovský M, Uematsu S, Webber JF, Zeng H-C, Zheng F-C, Brasier CM, Horta Jung M (2024). Worldwide forest surveys reveal forty-three new species in Phytophthora major Clade 2 with fundamental implications for the evolution and biogeography of the genus and global plant biosecurity. Studies in Mycology 107: 251-388. doi: 10.3114/sim.2024.107.04.

3.
AoB Plants ; 16(2): plae011, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38497049

ABSTRACT

Abstract. Plants with specialized pollination systems frequently exhibit adaptations for self-pollination, and this contradictory situation has been explained in terms of the reproductive assurance function of selfing. In the neotropics, several plant lineages rely on specialized vertebrate pollinators for sexual reproduction, including the highly diverse Bromeliaceae family, which also displays a propensity for selfing. Thus far, the scarce evidence on the role of selfing in bromeliads and in other neotropical plant groups is inconclusive. To provide insights into the evolution and persistence of self-fertilization in the breeding systems of Bromeliaceae, we studied four sympatric epiphytic species from the genus Werauhia (Tillandsioideae) in Costa Rica. We documented their floral biology, pollination ecology and breeding systems. We estimated the contribution of selfing by comparing the reproductive success between emasculated flowers requiring pollinator visits and un-manipulated flowers capable of selfing and exposed to open pollination across two flowering seasons. The studied species displayed specialized pollination by nectar-feeding bats as well as a high selfing ability (auto-fertility index values > 0.53), which was attained by a delayed selfing mechanism. Fruit set from natural cross-pollination was low (<26% in both years) and suggested limited pollinator visitation. In line with this, we found a very low bat visitation to flowers using video-camera recording, from 0 to 0.24 visits per plant per night. On the contrary, the contribution of selfing was comparatively significant since 54-80% of the fruit set from un-manipulated flowers can be attributed to autonomous self-pollination. We concluded that inadequate cross-pollination services diminished the reproductive success of the studied Werauhia, which was compensated for by a delayed selfing mechanism. The low negative effects of inbreeding on seed set and germination likely reinforce the persistence of selfing in this bromeliad group. These results suggest that selfing in bat-pollinated bromeliads may have evolved as a response to pollinator limitation.

4.
Mol Ecol ; 33(5): e17279, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38308460

ABSTRACT

In this issue of Molecular Ecology, Salter et al. (2023) discovered that the Cuban Northern Bobwhite subspecies, Colinus virginianus cubanensis (Gould, 1850), is an ancient hybrid population formed due to historical hybridization potentially brought by waves of historical human migration. This study revealed a complex mixture of gene flow from distinct spatiotemporal origins underlying a seemingly semi-independent evolutionary trajectory. Hybridization can be more common and complex than we thought.


Subject(s)
Colinus , Gene Flow , Animals , Humans , Colinus/genetics , Biological Evolution , Hybridization, Genetic
5.
Protoplasma ; 261(2): 271-279, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37787780

ABSTRACT

Gametophytic self-incompatibility (GSI) has been mainly described in species-rich clades within Orchidaceae. We report GSI for a genus within Maxillariinae, one of the most conspicuous and diverse subtribes of neotropical orchids. Here, we describe the reproductive system of Brasiliorchis picta, B. phoenicanthera, and B. porphyrostele. Anatomical studies of fruit development showed that pollen tubes of aborted, self-pollinated flowers degenerate half-way in the stylar channel and never reach the ovules. Spontaneous self-pollination and emasculation set no fruits for none of the sampled species, thus supporting the hypothesis that these three species studied rely on the agency of pollinators and pollinator-mediated cross-pollination to set fruit. Fruit set from cross-pollinations ranged from 33.4 to 77.5%. One self-pollinated fruit of B. porphyrostele developed to completion. All other fruits aborted between 10 and 21 days after pollination. These data support previous evidence of variable strength GSI being exhibited in orchid species. Additional studies of self-incompatibility systems are needed to evaluate their role in species diversification and evolution of reproductive strategies in Maxillariinae and to allow for effective conservation strategies of threatened orchid species.


Subject(s)
Orchidaceae , Pollen , Reproduction , Pollination , Fruit , Flowers
6.
BMC Plant Biol ; 23(1): 432, 2023 Sep 15.
Article in English | MEDLINE | ID: mdl-37715144

ABSTRACT

BACKGROUND: The Convolvulaceae is a large family containing species exhibiting a range of breeding systems and pollinated by diverse animal taxa. We studied the pollination ecology of 15 Convolvulaceae species, representing seven genera (Argyreia Lour., Camonea Raf., Evolvulus L., Hewittia Wight & Arn., Ipomoea L., Merremia Dennst. ex Endl., and Operculina Silva Manso), in northeastern Thailand, a family that is highly diverse yet understudied in the paleotropics. Specifically, we studied their compatibility systems and degrees of pollinator dependency using pollination experiments, examined pollinator composition and visitation rates using video observation, and determined if there is an association between pollinator visitation rates and degree of pollinator dependence. RESULTS: Our results showed that most species are self-compatible, but the degree of pollinator dependence varies. Six species were found to be highly dependent on pollinators, as two are self-incompatible and four are self-compatible but had reduced seed set when pollinators were excluded, possibly due to herkogamy. Seven species showed low dependence on pollinators and seed set remained high when pollinators were excluded. Pollinator dependence was inconclusive for two species as seed set was low in all pollination treatments. We also found an association between pollinator visitation rates and degree of pollinator dependence. Specifically, species exhibiting high pollinator dependence received frequent visits from pollinators, while species exhibiting low pollinator dependence either received frequent visits from pollinators (and received high amounts of xenogamous pollen) or infrequent visits from pollinators (and received significantly lower amounts of xenogamous pollen). Most of our study species were primarily visited by bees (e.g., Lasioglossum, Amegilla, Apis, and meliponines), with the exception of one night-blooming species that was visited primarily by crepuscular butterflies and hawkmoths. CONCLUSIONS: The cumulative findings of this study demonstrate how pollinator dependence is influenced by breeding system, and suggest that pollinator visitation is consistently high for species exhibiting high pollinator dependence but varies across species exhibiting low pollinator dependence. Our findings are also important for assessing the conservation risks of paleotropical Convolvulaceae.


Subject(s)
Butterflies , Convolvulaceae , Ipomoea , Animals , Bees , Plant Breeding , Ecology
7.
Plant Biol (Stuttg) ; 25(3): 457-467, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36728131

ABSTRACT

Polyploidy and whole genome duplication are major evolutionary drivers in plants. Climate variations during the Pleistocene have influenced distribution and range expansion worldwide. Similar trends have been reported for Cerrado plants, but no attempt has been made to link phylogeography with ploidy and breeding changes. Thus, we aimed to (i) assess ploidy and genome size of Eriotheca estevesiae Carv.-Sobr., and compare it with E. pubescens (Mart.) Schott & Endl. (Both included into the Eriotheca Stellate Trichome Species Complex - ESTSC). (ii) Subsequently, we investigated their phylogeography to see whether genetic structure and range expansion trends were similar to those previously described for the Cerrado biome. Finally (iii), we discuss whether ESTSC phylogeographic patterns could be associated with geographic parthenogenesis processes. Common cytogenetic techniques and flow cytometry were used to confirm chromosome number and genome size of E. estevesiae. We used three cpDNA regions to analyse 14 ESTSC Cerrado populations, for which we also obtained ploidy level and breeding information. We investigated haplotype diversity, population structure and tested neutrality, aiming to reconstruct phylogeographic scenarios. We found three ploidy levels and eight cpDNA haplotypes in ESTSC, one shared by most populations. Haplotype and ploidy distribution corroborated that E. pubescens, the widely distributed polyploid and apomictic species, may have originated from northern diploid and probably sexual E. estevesiae. Matrilinear cpDNA links support the idea that apomixis and polyploidy in ESTSC may have allowed range expansion during the Pleistocene, in a process analogous to the geographic parthenogenesis described elsewhere.


Subject(s)
Apomixis , Phylogeography , Trees/genetics , Grassland , Seeds , Plant Breeding , Polyploidy , DNA, Chloroplast/genetics , Genetic Variation
8.
Mol Ecol ; 32(4): 756-771, 2023 02.
Article in English | MEDLINE | ID: mdl-36478264

ABSTRACT

Biological invasions in remote areas that experience low human activity provide unique opportunities to elucidate processes responsible for invasion success. Here we study the most widespread invasive plant species across the isolated islands of the Southern Ocean, the annual bluegrass, Poa annua. To analyse geographical variation in genome size, genetic diversity and reproductive strategies, we sampled all major sub-Antarctic archipelagos in this region and generated microsatellite data for 470 individual plants representing 31 populations. We also estimated genome sizes for a subset of individuals using flow cytometry. Occasional events of island colonization are expected to result in high genetic structure among islands, overall low genetic diversity and increased self-fertilization, but we show that this is not the case for P. annua. Microsatellite data indicated low population genetic structure and lack of isolation by distance among the sub-Antarctic archipelagos we sampled, but high population structure within each archipelago. We identified high levels of genetic diversity, low clonality and low selfing rates in sub-Antarctic P. annua populations (contrary to rates typical of continental populations). In turn, estimates of selfing declined in populations as genetic diversity increased. Additionally, we found that most P. annua individuals are probably tetraploid and that only slight variation exists in genome size across the Southern Ocean. Our findings suggest multiple independent introductions of P. annua into the sub-Antarctic, which promoted the establishment of genetically diverse populations. Despite multiple introductions, the adoption of convergent reproductive strategies (outcrossing) happened independently in each major archipelago. The combination of polyploidy and a mixed reproductive strategy probably benefited P. annua in the Southern Ocean by increasing genetic diversity and its ability to cope with the novel environmental conditions.


Subject(s)
Genetic Variation , Polyploidy , Humans , Genetic Variation/genetics , Reproduction , Geography , Introduced Species , Oceans and Seas , Microsatellite Repeats/genetics
9.
Trends Ecol Evol ; 37(8): 694-705, 2022 08.
Article in English | MEDLINE | ID: mdl-35484023

ABSTRACT

Individual differences in growth and size of vertebrates often represent adaptive, plastic responses to contrasts in ecological conditions. Recent studies show that vertebrates can also modify their growth and size in an adaptive fashion in response to fine-grain changes in social conditions (which we refer to as strategic growth). Here, we review experimental evidence for strategic growth in social vertebrates. We describe a set of conditions under which strategic growth commonly occurs, and highlight potential examples of convergent evolution of strategic growth across the tree of life. This synthesis has implications for the way we think about organismal growth and size, because it underscores that the size of individuals can often be fine-tuned to their social environment.


Subject(s)
Social Environment , Vertebrates , Animals , Biological Evolution , Humans , Phenotype
10.
Animals (Basel) ; 12(3)2022 Feb 04.
Article in English | MEDLINE | ID: mdl-35158700

ABSTRACT

This study investigates the motivations and breeding practices of farmers keeping Dahomey cattle in European countries. Data were collected using a web-based open-closed questionnaire survey targeting 55 farmers from Germany, Switzerland and Austria. Descriptive analyses revealed that the earliest European Dahomey herds were established in 2005. Moreover, interest in the breed recently increased as 63.7% of the investigated farmers established their herds between 2016 and 2020. The average herd size comprises seven Dahomey cattle, kept for managing grassland (59.3%), for production of meat or as breeding stock (32.1%) and for a hobby (8.6%). The animals are mostly kept in grazing systems throughout the year, partly fattened with supplement feeds. The low disease incidence and no need for extra health care in the herds indicate the robustness of the breed. Furthermore, meat quality, calving ease, small size, calm character and low feed requirements of Dahomey cattle were valued by the farmers. For the preservation of these features, farmers confirmed their enthusiasm to support any breeding and conservation program of this smallholder breed in Europe and Benin. This study highlights the importance of small-sized cattle for sustainable breeding systems and with regard to ecosystem management practices.

11.
New Phytol ; 231(5): 2039-2049, 2021 09.
Article in English | MEDLINE | ID: mdl-34101188

ABSTRACT

Approximately one-half of all flowering plants express genetically based physiological mechanisms that prevent self-fertilisation. One such mechanism, termed RNase-based self-incompatibility, employs ribonucleases as the pistil component. Although it is widespread, it has only been characterised in a handful of distantly related families, partly due to the difficulties presented by life history traits of many plants, which complicate genetic research. Many species in the cactus family are known to express self-incompatibility but the underlying mechanisms remain unknown. We demonstrate the utility of a candidate-based RNA-seq approach, combined with some unusual features of self-incompatibility-causing genes, which we use to uncover the genetic basis of the underlying mechanisms. Specifically, we assembled transcriptomes from Schlumbergera truncata (crab cactus or false Christmas cactus), and interrogated them for tissue-specific expression of candidate genes, structural characteristics, correlation with expressed phenotype(s), and phylogenetic placement. The results were consistent with operation of the RNase-based self-incompatibility mechanism in Cactaceae. The finding yields additional evidence that the ancestor of nearly all eudicots possessed RNase-based self-incompatibility, as well as a clear path to better conservation practices for one of the most charismatic plant families.


Subject(s)
Cactaceae , Self-Incompatibility in Flowering Plants , Cactaceae/genetics , Flowers/genetics , Phylogeny , Plant Proteins/genetics , Ribonucleases/genetics , Self-Incompatibility in Flowering Plants/genetics
12.
Am J Bot ; 108(4): 664-679, 2021 04.
Article in English | MEDLINE | ID: mdl-33818757

ABSTRACT

PREMISE: The Ocotea complex contains the greatest diversity of Lauraceae in the Neotropics. However, the traditional taxonomy of the group has relied on only three main floral characters, and previous molecular analyses have used only a few markers and provided limited support for relationships among the major clades. This lack of useful data has hindered the development of a comprehensive classification, as well as studies of character evolution. METHODS: We used RAD-seq data to infer the phylogenetic relationships of 149 species in the Ocotea complex, generating a reference-based assembly using the Persea americana genome. The results provide the basis for a phylogenetic classification that reflects our current molecular knowledge and for analyses of the evolution of breeding system, stamen number, and number of anther locules. RESULTS: We recovered a well-supported tree that demonstrates the paraphyly of Licaria, Aniba, and Ocotea and clarifies the relationships of Umbellularia, Phyllostemonodaphne, and the Old World species. To begin the development of a new classification and to facilitate precise communication, we also provide phylogenetic definitions for seven major clades. Our ancestral reconstructions show multiple origins for the three floral characters that have routinely been used in Lauraceae systematics, suggesting that these be used with caution in the future. CONCLUSIONS: This study advances our understanding of phylogenetic relationships and character evolution in a taxonomically difficult group using RAD-seq data. Our new phylogenetic names will facilitate unambiguous communication as studies of the Ocotea complex progress.


Subject(s)
Ocotea , Evolution, Molecular , Phylogeny , Plant Breeding , Sequence Analysis, DNA
13.
New Phytol ; 231(4): 1630-1643, 2021 08.
Article in English | MEDLINE | ID: mdl-33533069

ABSTRACT

Self-incompatibility alleles (S-alleles), which prevent self-fertilisation in plants, have historically been expected to benefit from negative frequency-dependent selection and invade when introduced to a new population through gene flow. However, the most taxonomically widespread form of self-incompatibility, the ribonuclease-based system ancestral to the core eudicots, functions through collaborative non-self recognition, which can affect both short-term patterns of gene flow and the long-term process of S-allele diversification. We analysed a model of S-allele evolution in two populations connected by migration, focussing on comparisons among the fates of S-alleles initially unique to each population and those shared among populations. We found that both shared and unique S-alleles from the population with more unique S-alleles were usually fitter compared with S-alleles from the population with fewer S-alleles. Resident S-alleles often became extinct and were replaced by migrant S-alleles, although this outcome could be averted by pollen limitation or biased migration. Collaborative non-self recognition will usually either result in the whole-sale replacement of S-alleles from one population with those from another or else disfavour introgression of S-alleles altogether.


Subject(s)
Pollen , Self-Fertilization , Alleles , Plants/genetics , Pollen/genetics
14.
J Hered ; 112(1): 108-121, 2021 03 12.
Article in English | MEDLINE | ID: mdl-33555304

ABSTRACT

In plants, long-distance dispersal is both attenuated and directed by specific movement vectors, including animals, wind, and/or water. Hence, movement vectors partly shape metapopulation genetic patterns that are, however, also influenced by other life-history traits such as clonal growth. We studied the relationship between area, isolation, plant-species richness, reproduction, and dispersal mechanisms with genetic diversity and divergence in 4 widespread wetland plant-species in a total of 20 island-like kettle-hole habitats surrounded by an intensive agricultural landscape. Our results showed that genetic parameters reflect the reproduction strategies with the highest genetic diversity being observed in the non-clonal, outcrossing Oenanthe aquatica compared to the clonal Lycopus europaeus, Typha latifolia, and Phragmites australis. Lycopus showed a positive relationship between genetic diversity and kettle-hole area, but a negative relationship with the number of neighboring kettle holes (less isolation). Genetic diversity increased with plant-species richness in the clonal species Phragmites and Lycopus; while it decreased in the non-clonal Oenanthe. Finally, genetic divergence and, therefore, connectivity differed between alternative dispersal strategies, where wind-dispersed Typha and Phragmites had a higher gene flow between the analyzed kettle holes compared with the insect-pollinated, hydrochorous Lycopus and Oenanthe. Our study provides information on genetic patterns related to reproduction and dispersal mechanisms of 4 common wetland species contributing to the understanding of the functioning of plant metacommunities occurring in kettle holes embedded in agricultural landscapes.


Subject(s)
Genetic Variation , Plant Dispersal , Poaceae/genetics , Typhaceae/genetics , Gene Flow , Genetics, Population , Inbreeding , Islands , Linkage Disequilibrium , Wetlands
15.
Oecologia ; 195(3): 751-758, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33566166

ABSTRACT

Temporal dynamics of plant-pollinator interactions inform the mechanisms of community assembly and stability. However, most studies on the dynamics of pollination networks do not consider plant reproductive traits thus offering poor understanding of the mechanism of how networks maintain stable structure under seasonal changes in flower community. We studied seasonal dynamics of pollination networks in a subtropical monsoon forest in China with a clear rainy season (April-September) and dry season (October-March) over 2 consecutive years. We constructed dioecy-ignored networks (combining visitations to dioecious male and female plants by ignoring the difference between dioecious and hermaphroditic plants) and dioecy-considered networks (excluding those visitations that only occurred either on dioecious male or female plants) for eight sampling sessions for each season. Although flower richness and flower abundance were higher in the rainy season than in the dry season, no pronounced seasonal difference was found in network specialization, nestedness and modularity for both networks. There were only significant differences in plant community robustness and pollinator specialization between seasons for dioecy-considered networks but not for dioecy-ignored networks. Furthermore, we found the flower abundance of dioecious and hermaphrodite plants mostly showed trade-off variation between rainy and dry seasons. Our results suggest various plant reproductive traits affect the temporal dynamics of pollination networks, which should be considered for conservation of plant-pollinator interactions in forest communities.


Subject(s)
Plant Breeding , Pollination , Animals , China , Ecosystem , Female , Flowers , Forests , Insecta , Male , Seasons
16.
PhytoKeys ; 165: 27-50, 2020.
Article in English | MEDLINE | ID: mdl-33192144

ABSTRACT

Four species of Poa L. are newly reported for sub-Saharan Africa and southern Africa, Poa compressa L., P. iconia Azn., P. infirma Kunth and P. nemoralis L. This is the first report of P. iconia from Africa. Vouchers at PRE of P. bulbosa L. all belong to var. vivipara Koeler, those of P. iconia belong to var. iconia and the one of P. trivialis L. belongs to var. trivialis. Two subspecies are recognised in P. pratensis L.: subsp. irrigata (Lindm.) H.Lindb. and subsp. pratensis. We also designate a lectotype for P. iconia and second-step lectotype for P. leptoclada Hochst. ex A.Rich. and report the first recording of a diclinous breeding system in P. binata Nees. Our account updates the treatment in Identification Guide to Southern African Grasses (Fish et al. 2015) including a key to the taxa and notes on infrageneric taxonomy, DNA subtypes, ecology, chromosome numbers and breeding systems.

17.
Am J Bot ; 107(8): 1198-1207, 2020 08.
Article in English | MEDLINE | ID: mdl-32700343

ABSTRACT

PREMISE: The timing of self-fertilization has potentially important consequences for the trajectory of mating system evolution, the opportunity for outcrossing, and the maintenance of genetic variation in populations. For primarily selfing taxa, it remains poorly understood as to how floral variation influences the opportunity for outcrossing and whether those attributes vary among populations across geographic ranges. METHODS: We examined variation in floral traits (herkogamy, protandry, flower size, stigma stage at anthesis, timing of stigma receptivity) in seven populations of Clarkia xantiana ssp. parviflora, a primarily selfing taxon, spanning from the western to eastern margins of its distribution. We also performed experimental emasculations and pollinations (followed by stigma severing) to quantify the extent of opportunities for outcrossing across flower development. RESULTS: There was marked among-population variation in all floral traits, particularly between far eastern and western populations. Emasculation experiments showed that the eastern populations had minimal autonomous selfing, but western populations had high rates of selfing within 24 h after anthesis. Population variation in autofertility was significantly predicted by floral trait variation, especially protandry and petal size. CONCLUSIONS: Greater protandry both extended the time over which outcrossing could potentially occur and reduced the probability of autonomous selfing, suggesting that there may be a tradeoff that results in fitness loss when pollinator visits are not common. The east-west pattern of differentiation in some floral traits parallels that of postglacial range expansion, suggesting that selection on the mating system may have been strong in the process of range expansion.


Subject(s)
Clarkia/genetics , Biological Evolution , Flowers , Pollination , Reproduction , Self-Fertilization
18.
Am J Bot ; 107(6): 910-922, 2020 06.
Article in English | MEDLINE | ID: mdl-32462680

ABSTRACT

PREMISE: Distylous species possess two floral morphs with reciprocal positioning of stigmas and anthers that is hypothesized to promote disassortative pollination. Theoretical models predict equal morph frequencies, but many populations depart from the expected 1:1 ratio, a pattern that often correlates with asymmetric mating between morphs and/or presence of a weak incompatibility system. Variation in reciprocity can also affect the likelihood of disassortative pollination and, hence, reproductive fitness. METHODS: We described variation in incompatibility systems and morph ratio in four Erythroxylum species to test if greater deviations from 1:1 ratios occur in populations of self-compatible species. Using adaptive inaccuracy, we described upper and lower organ reciprocity in species and populations and assessed the relationship of reciprocity to population means and coefficients of variation for fruit set to test if reciprocity could predict female reproductive success. RESULTS: Morphs occurred in 1:1 ratios in most populations of three Erythroxylum species with distylous self-incompatibility. In self-compatible E. campestre populations showed an excess of the long-styled morph, the short-styled morph, or were monomorphic for the short-styled morph. We detected deviations from reciprocity, with total inaccuracy ranging between 9.39% and 42.94%, and inaccuracy values were lowest in low organs. Across populations, we found a positive relationship between inaccuracy and the coefficient of variation of fruit set. CONCLUSIONS: Erythroxylum species showed variation in the distylous syndrome, with changes in the incompatibility system that corresponded with deviations from 1:1 morph ratio, and variation in reciprocity that correlated with variation in female reproductive fitness.


Subject(s)
Flowers , Pollination , Phenotype , Reproduction
19.
Mol Ecol ; 29(3): 624-638, 2020 02.
Article in English | MEDLINE | ID: mdl-31885115

ABSTRACT

One type of parental effect occurs when changes in parental phenotype or environment trigger changes to offspring phenotype. Such nongenetic parental effects can be precisely triggered in response to an environmental cue in time-locked fashion, or in other cases, persist for multiple generations after the cue has been removed, suggesting multiple timescales of action. For parental effects to serve as reliable signals of current environmental conditions, they should be reversible, such that when cues change, offspring phenotypes change in accordance. Social hierarchy is a prevalent feature of the environment, and current parental social status could signal the environment in which offspring will be born. Here, we sought to address parental effects of social status and their timescale of action in mice. We show that territorial competition in seminatural environments affects offspring growth. Although dominant males are not heavier than nondominant or control males, they produce faster growing offspring, particularly sons. The timing, effect-size, and sex-specificity of this association are modulated by maternal social experience. We show that a change in paternal social status is sufficient to modulate offspring weight: from one breeding cycle to the next, status-ascending males produce heavier sons than before, and status-descending males produce lighter sons than before. Current paternal status is also highly predictive of liver transcription in sons, including molecular pathways controlling oxidative phosphorylation and iron metabolism. These results are consistent with a parental effect of social experience, although alternative explanations are considered. In summary, changes in paternal social status are associated with changes in offspring growth and metabolism.


Subject(s)
Behavior, Animal/physiology , Transcription, Genetic/physiology , Animals , Female , Male , Mice , Mice, Inbred C57BL , Phenotype , Social Behavior , Social Environment
20.
Ecology ; 101(2): e02927, 2020 02.
Article in English | MEDLINE | ID: mdl-31713849

ABSTRACT

Understanding the drivers of animal distributions is a fundamental goal of ecology and informs habitat management. The costs and benefits of colonial aggregations in animals are well established, but the factors leading to aggregation in territorial animals remain unclear. Territorial animals might aggregate to facilitate social behavior such as (1) group defense from predators and/or parasites, (2) cooperative care of offspring, (3) extra-pair mating, and/or (4) mitigating costs of extra-pair mating through kin selection. Using experimental and observational methods, we tested predictions of all four hypotheses in a tallgrass prairie in northeast Kansas, United States. Grasshopper Sparrow (Ammodramus savannarum) males formed clumps of territories in some parts of the site while leaving other apparently suitable areas unoccupied. Despite substantial sampling effort (653 territories and 223 nests), we found no support for any hypothesized social driver of aggregation, nor evidence that aggregation increases nest success. Our results run counter to previous evidence that conspecific interactions shape territory distributions. These results suggest one of the following alternatives: (1) the benefits of aggregation accrue to different life-history stages, or (2) the benefits of territory aggregation may be too small to detect in short-term studies and/or the consequences of aggregation are sufficiently temporally and spatially variable that they do not always appear to be locally adaptive, perhaps exacerbated by changing landscape contexts and declining population sizes.


Subject(s)
Passeriformes , Songbirds , Animals , Ecosystem , Grassland , Interpersonal Relations , Male
SELECTION OF CITATIONS
SEARCH DETAIL
...