Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 370
Filter
1.
Angew Chem Int Ed Engl ; : e202410118, 2024 Jul 12.
Article in English | MEDLINE | ID: mdl-38997791

ABSTRACT

Molecular phosphorescence in the second near-infrared window (NIR-II, 1000-1700 nm) holds promise for deep-tissue optical imaging with high contrast by overcoming background fluorescence interference. However, achieving bright and stable NIR-II molecular phosphorescence suitable for biological applications remains a formidable challenge. Herein, we report a new series of symmetric isocyanorhodium(I) complexes that could form oligomers and exhibit bright, long-lived (7-8 µs) phosphorescence in aqueous solution via metallophilic interaction. Ligand substituents with enhanced dispersion attraction and electron-donating properties were explored to extend excitation/emission wavelengths and enhanced stability. Further binding the oligomers with fetal bovine serum (FBS) resulted in NIR-II molecular phosphorescence with high quantum yields (up to 3.93%) and long-term stability in biological environments, enabling in vivo tracking of single-macrophage dynamics and high-contrast time-resolved imaging. These results pave the way for the development of highly-efficient NIR-II molecular phosphorescence for biomedical applications.

2.
Chemistry ; : e202401938, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38984590

ABSTRACT

Nanoparticles (NPs), including perovskite nanocrystals (PNCs) with single photon purity, present challenges in fluorescence correlation spectroscopy (FCS) studies due to their distinct photoluminescence (PL) behaviors. In particular, the zero-time correlation amplitude [g2(0)] and the associated diffusion timescale (τD) of their FCS curves show substantial dependency on pump intensity (IP). Optical saturation inadequately explains the origin of this FCS phenomenon in NPs, thus setting them apart from conventional dye molecules, which do not manifest such behavior. This observation is apparently attributed to either photo-brightening or optical trapping, both lead to increased NP occupancy (N) in the excitation volume, consequently reducing the g2(0) amplitude [since g2(0) α 1/N] at high IP. However, an advanced FCS study utilizing alternating laser excitation at two different intensities dismisses such possibilities. Further investigation into single-particle blinking behaviors as a function of IP reveals that the intensity dependence of g2(0) primarily arises from the brightness heterogeneity prevalent in almost all types of NPs. This report delves into the complexities of the photophysical properties of NPs and their adverse impacts on FCS studies.

3.
Front Psychiatry ; 15: 1364930, 2024.
Article in English | MEDLINE | ID: mdl-39035603

ABSTRACT

We investigated the relationship between individuals' mental health traits and the characteristics of YouTube videos they watch. The mental health traits considered were stress, depression, anxiety, and self-esteem, which were measured using a survey questionnaire. We considered violence shown in a video, brightness and saturation of a video as video characteristics. We utilized the viewing history log data of the participants and analyzed the videos they watched on YouTube using computer vision techniques based on deep learning algorithms. The results revealed that viewers' consumption of violent videos was positively related to stress, depression, and anxiety, but negatively related to self-esteem. Individuals with higher levels of stress, depression, or anxiety tended to view darker videos than those with lower levels of stress, depression, or anxiety.

4.
Article in English | MEDLINE | ID: mdl-39034639

ABSTRACT

Advanced photosensitizers for high-performance fluorescence imaging-guided photothermal therapy demand excellent near-infrared (NIR) brightness [molar absorption coefficient (ε) × quantum yield (QY)] and exceptional photothermal performance [ε × photothermal conversion efficiency (PCE)]. However, integrating high brightness and potent photothermal performance within a single molecule faces a formidable challenge. This article proposes a method to address this issue by preparing J-aggregate nanoparticles (NPs) using molecules with high ε. J-aggregates effectively improve QY and induce molecular emission redshift, while high ε molecules play a crucial role in improving the brightness and photothermal performance. By optimizing the molecular structure based on the pyrrolopyrrole cyanine (PPCy), precise control over the QY and PCE of PPCy J-aggregates is achieved. Ultimately, PDDO NPs exhibiting superior brightness (ε × QY = 3.32 × 104 M-1 cm-1) and photothermal performance (ε × PCE = 1.21 × 105 M-1 cm-1) are identified as high-performance photosensitizers. Notably, each parameter represents one of the highest levels among the reported fluorescence or photothermal probes to date. The in vivo studies demonstrate that PDDO NPs possess exceptional NIR imaging capabilities and remarkable photothermal tumor inhibition rates. This study provides innovative insights into the development of high-performance multifunctional photosensitizers.

5.
Perception ; : 3010066241253816, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38863405

ABSTRACT

We used a simple stimulus, dissociating perceptually relevant information in space, to differentiate between bottom-up and task-driven fixations. Six participants viewed a dynamic scene showing the reaction of an elastic object fixed to the ceiling being hit. In one condition they had to judge the object's stiffness and in the other condition its lightness. The results show that initial fixations tend to land in the centre of an object, independent of the task. After the initial fixation, participants tended to look at task diagnostic regions. This fixation behaviour correlates with high perceptual performance. Similarly, low-latency saccades lead to fixations that do not depend on the task, whereas higher latency does.

6.
J Pathol Inform ; 15: 100379, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38846642

ABSTRACT

Background: Currently, there is a paucity of guidelines relating to displays used for digital pathology making procurement decisions, and optimal display configuration, challenging.Experience suggests pathologists have personal preferences for brightness when using a conventional microscope which we hypothesized could be used as a predictor for display setup. Methods: We conducted an online survey across six NHS hospitals, totalling 108 practicing pathologists, to capture brightness adjustment habits on both microscopes and displays.A convenience subsample of respondents was then invited to take part in a practical task to determine microscope brightness and display luminance preferences in the normal working environment. A novel adaptation for a lightmeter was developed to directly measure the light output from the microscope eyepiece. Results: The survey (response rate 59% n=64) indicates 81% of respondents adjust the brightness on their microscope. In comparison, only 11% report adjusting their digital display. Display adjustments were more likely to be for visual comfort and ambient light compensation rather than for tissue factors, common for microscope adjustments. Part of this discrepancy relates to lack of knowledge of how to adjust displays and lack of guidance on whether this is safe; But, 66% felt that the ability to adjust the light on the display was important.Twenty consultants took part in the practical brightness assessment. Light preferences on the microscope showed no correlation with display preferences, except where a pathologist has a markedly brighter microscope light preference. All of the preferences in this cohort were for a display luminance of <500 cd/m2, with 90% preferring 350 cd/m2 or less. There was no correlation between these preferences and the ambient lighting in the room. Conclusions: We conclude that microscope preferences can only be used to predict display luminance requirements where the microscope is being used at very high brightness levels. A display capable of a brightness of 500 cd/m2 should be suitable for almost all pathologists with 300 cd/m2 suitable for the majority. Although display luminance is not frequently changed by users, the ability to do so was felt to be important by the majority of respondents.Further work needs to be undertaken to establish the relationship between diagnostic performance, luminance preferences, and ambient lighting levels.

7.
Cognition ; 250: 105842, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38850842

ABSTRACT

Physical attractiveness profoundly affects a broad array of life experiences and outcomes, and the eyes are an important determinant of physical attractiveness. We investigated whether a particular feature of the eyes - pupil size - affects perceived attractiveness. We present competing theoretical predictions of whether dilated (larger) or constricted (smaller) pupils should appear more physically attractiveness. Youthful features tend to be attractive (i.e., neoteny), and pupil size decreases across the lifespan, so dilated (enlarged) pupils may be more attractive as a signal of youth. Alternatively, constricted (small) pupils may be more attractive because, by revealing more of the iris, they increase both color and brightness of the eyes. The present experiments demonstrate that people appear more attractive when their pupils are constricted (Experiments 1-3). This effect is equally large with black-and-white images, indicating that color per se is not necessary for the effect (Experiment 4). Rather, constricted pupils make eyes appear brighter, which in turn renders the face more attractive (Experiment 5), even when controlling for how colorful the eyes appear (Experiment 6). These results identify constricted pupils as a novel facial feature that enhances attractiveness.


Subject(s)
Beauty , Pupil , Humans , Female , Male , Pupil/physiology , Adult , Young Adult , Facial Recognition/physiology , Iris/physiology , Adolescent
8.
Sci Rep ; 14(1): 11882, 2024 05 24.
Article in English | MEDLINE | ID: mdl-38789582

ABSTRACT

Fluorescent labels have strongly contributed to many advancements in bioanalysis, molecular biology, molecular imaging, and medical diagnostics. Despite a large toolbox of molecular and nanoscale fluorophores to choose from, there is still a need for brighter labels, e.g., for flow cytometry and fluorescence microscopy, that are preferably of molecular nature. This requires versatile concepts for fluorophore multimerization, which involves the shielding of dyes from other chromophores and possible quenchers in their neighborhood. In addition, to increase the number of readout parameters for fluorescence microscopy and eventually also flow cytometry, control and tuning of the labels' fluorescence lifetimes is desired. Searching for bright multi-chromophoric or multimeric labels, we developed PEGylated dyes bearing functional groups for their bioconjugation and explored their spectroscopic properties and photostability in comparison to those of the respective monomeric dyes for two exemplarily chosen fluorophores excitable at 488 nm. Subsequently, these dyes were conjugated with anti-CD4 and anti-CD8 immunoglobulins to obtain fluorescent conjugates suitable for the labeling of cells and beads. Finally, the suitability of these novel labels for fluorescence lifetime imaging and target discrimination based upon lifetime measurements was assessed. Based upon the results of our spectroscopic studies including measurements of fluorescence quantum yields (QY) and fluorescence decay kinetics we could demonstrate the absence of significant dye-dye interactions and self-quenching in these multimeric labels. Moreover, in a first fluorescence lifetime imaging (FLIM) study, we could show the future potential of this multimerization concept for lifetime discrimination and multiplexing.


Subject(s)
Fluorescent Dyes , Polyethylene Glycols , Fluorescent Dyes/chemistry , Polyethylene Glycols/chemistry , Humans , Microscopy, Fluorescence/methods , Flow Cytometry
9.
Ultrasound Med Biol ; 50(8): 1188-1193, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38697896

ABSTRACT

OBJECTIVE: This study investigated reliability and validity of muscle cross-sectional area and echo intensity using an automatic image analysis program. METHODS: Twenty-two participants completed two data collection trials consisting of ultrasound imaging of the vastus lateralis (VL) at 10 and 12 MHz. Images were analyzed manually and with Deep Anatomical Cross-Sectional Area (DeepACSA). Reliability statistics (i.e., intraclass correlation coefficient [ICC] model 2,1, standard error of measure expressed as a percentage of the mean [SEM%], minimal differences [MD] values needed to be considered real) and validity statistics (i.e., constant error [CE], total error [TE], standard error of the estimate [SEE]) were calculated. RESULTS: Automatic analyses of ACSA and EI demonstrated good reliability (10 MHz: ICC2,1 = 0.83 - 0.90; 12 MHz: ICC2,1 = 0.87-0.88), while manual analyses demonstrated moderate to excellent reliability (10 MHz: ICC2,1 = 0.82-0.99; 12 MHz: ICC2,1 = 0.73-0.99). Automatic analyses of ACSA presented greater error at 10 (CE = -0.76 cm2, TE = 4.94 cm2, SEE = 3.65 cm2) than 12 MHz (CE = 0.17 cm2, TE = 3.44 cm2, SEE = 3.11 cm2). Analyses of EI presented greater error at 10 (CE = 3.35 a.u., TE = 2.70 a.u., SEE = 2.58 a.u.) than at 12 MHz (CE = 3.21 a.u., TE = 2.61 a.u., SEE = 2.34 a.u.). CONCLUSION: The results suggest the DeepACSA program may be less reliable compared to manual analysis for VL ACSA but displayed similar reliability for EI. In addition, the results demonstrated the automatic program had low error for 10 and 12 MHz.


Subject(s)
Ultrasonography , Humans , Reproducibility of Results , Ultrasonography/methods , Male , Adult , Female , Young Adult , Organ Size , Muscle, Skeletal/diagnostic imaging , Muscle, Skeletal/anatomy & histology , Quadriceps Muscle/diagnostic imaging , Quadriceps Muscle/anatomy & histology , Image Processing, Computer-Assisted/methods
10.
Sensors (Basel) ; 24(9)2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38732817

ABSTRACT

Existing retinex-based low-light image enhancement strategies focus heavily on crafting complex networks for Retinex decomposition but often result in imprecise estimations. To overcome the limitations of previous methods, we introduce a straightforward yet effective strategy for Retinex decomposition, dividing images into colormaps and graymaps as new estimations for reflectance and illumination maps. The enhancement of these maps is separately conducted using a diffusion model for improved restoration. Furthermore, we address the dual challenge of perturbation removal and brightness adjustment in illumination maps by incorporating brightness guidance. This guidance aids in precisely adjusting the brightness while eliminating disturbances, ensuring a more effective enhancement process. Extensive quantitative and qualitative experimental analyses demonstrate that our proposed method improves the performance by approximately 4.4% on the LOL dataset compared to other state-of-the-art diffusion-based methods, while also validating the model's generalizability across multiple real-world datasets.

11.
Chembiochem ; 25(11): e202400068, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38623786

ABSTRACT

Far-red and near-infrared fluorescent proteins have regions of maximum transmission in most tissues and can be widely used as fluorescent biomarkers. We report that fluorescent phycobiliproteins originating from the phycobilisome core subunit ApcF2 can covalently bind biliverdin, named BDFPs. To further improve BDFPs, we conducted a series of studies. Firstly, we mutated K53Q and T144A of BDFPs to increase their effective brightness up to 190 % in vivo. Secondly, by homochromatic tandem fusion of high-brightness BDFPs to achieve monomerization, which increases the effective brightness by up to 180 % in vivo, and can effectively improve the labeling effect. By combining the above two approaches, the brightness of the tandem BDFPs was much improved compared with that of the previously reported fluorescent proteins in a similar spectral range. The tandem BDFPs were expressed stably while maintaining fluorescence in mammalian cells and Caenorhabditis elegans. They were also photostable and resistant to high temperature, low pH, and chemical denaturation. The tandem BDFPs advantages were proved in applications as biomarkers for imaging in super-resolution microscopy.


Subject(s)
Caenorhabditis elegans , Luminescent Proteins , Animals , Luminescent Proteins/chemistry , Luminescent Proteins/genetics , Luminescent Proteins/metabolism , Caenorhabditis elegans/metabolism , Humans , Phycobiliproteins/chemistry , Phycobiliproteins/metabolism , Biliverdine/chemistry , Biliverdine/metabolism , Fluorescent Dyes/chemistry , HEK293 Cells
12.
Entropy (Basel) ; 26(4)2024 Mar 28.
Article in English | MEDLINE | ID: mdl-38667851

ABSTRACT

We have explored the exponential surface brightness profile (SBP) of stellar disks, a topic extensively discussed by many authors yet seldom integrated with the study of correlations between black holes, bulges, and entire disks. Building upon our prior work in the statistical mechanics of disk-shaped systems and aligning with methodologies from other research, we analyze the influence of the central body. This analysis reveals analytical relationships among black holes, bulges, and the entire stellar disk. Additionally, we incorporate a specific angular momentum distribution (SAMD) that aligns more closely with observational data, showing that for the self-gravitating disk, with the same surface density, a reduction in its spin results in only a slight decrease in its radius, whereas with the same SAMD, an increment in its spin significantly limits its extent. A key feature of our model is its prediction that the surface density profile of an isolated disk will invariably exhibit downbending at a sufficient distance, a hypothesis that future observations can test. Our refined equations provide a notably improved fit for SBPs, particularly in the central regions of stellar disks. While our findings underscore the significance of statistical mechanics in comprehending spiral galaxy structures, they also highlight areas in our approach that warrant further discussion and exploration.

13.
ACS Appl Bio Mater ; 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38556979

ABSTRACT

Recent advances have been made in second near-infrared (NIR-II) fluorescence bioimaging and many related applications because of its advantages of deep penetration, high resolution, minimal invasiveness, and good dynamic visualization. To achieve high-performance NIR-II fluorescence bioimaging, various materials and probes with bright NIR-II emission have been extensively explored in the past few years. Among these NIR-II emissive materials, conjugated polymers and conjugated small molecules have attracted wide interest due to their native biosafety and tunable optical performance. This review summarizes the brightness strategies available for NIR-II emissive conjugated materials and highlights the recent developments in NIR-II fluorescence bioimaging. A concise, detailed overview of the molecular design and regulatory approaches is provided in terms of their high brightness, long wavelengths, and superior imaging performance. Then, various typical cases in which bright conjugated materials are used as NIR-II probes are introduced by providing step-by-step examples. Finally, the current problems and challenges associated with accessing NIR-II emissive conjugated materials for bright NIR-II fluorescence bioimaging are briefly discussed, and the significance and future prospects of these materials are proposed to offer helpful guidance for the development of NIR-II emissive materials.

14.
J Ophthalmic Vis Res ; 19(1): 71-81, 2024.
Article in English | MEDLINE | ID: mdl-38638628

ABSTRACT

Purpose: Saturated lights appear brighter than white lights of the same luminance. This is the Helmholtz-Kohlrausch (H-K) effect, and the phenomenon can be estimated by modeling achromatic luminance and saturation to total brightness. Current H-K effect models are different between women and men and are also more variable in women, which may be due to hormonal changes across the menstrual cycle (MC). Methods: Total brightness (B) and achromatic luminance (L) were measured across blue, green, yellow-green, yellow, and red hues. These data were measured along with salivary hormone levels for nine cycling women and seven oral contraceptive (OC) users at points representing the menstrual, peri-ovulation, and luteal phases. Results: Simple brightness/luminance (B/L) ratio estimates of the H-K effect did not differ by OC use or MC phase, but B/L ratios were higher for the red stimulus in cycling women than OC users during the luteal phase. Estrogen, progesterone, and their interaction predicted 18% of the variation in brightness for cycling women. For OC users, only estrogen could be fit to brightness models where it accounted for 5% of brightness variance. Conclusion: These findings first provide clear support for separating cycling women from OC users, particularly when examining long-wavelength mechanisms. Next, the interaction of OC use and MC phase on B/L ratios for the red stimulus adds to a rich history of long-wavelength mechanisms. Lastly, the current result amends previous brightness models with multiple hormone terms for cycling women but not OC users.

15.
Biol Psychol ; 188: 108787, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38552832

ABSTRACT

Color is a visual cue that can convey emotions and attract attention, and there is no doubt that brightness is an important element of color differentiation. To examine the impact of art training on color perception, 44 participants were assigned to two groups-one for those with and one for those without art training-in an EEG experiment. While the participants had their electroencephalographic data recorded, they scored their emotional responses to color stimuli of different brightness levels based on the Munsell color system. The behavioral results revealed that in both groups, high-brightness colors were rated more positively than low-brightness colors. Furthermore, event-related potential results for the artist group showed that high-brightness colors enhanced P2 and P3 amplitudes. Moreover, non-artists had longer N2 latency than artists, and there was a significant Group × Brightness interaction separately for the N2 and P3 components. Simple effect analysis showed that N2 and P3 amplitudes were substantially higher for high-brightness stimuli than for lower-brightness stimuli in the artistic group, but this was not the case in the non-artist group. Additionally, evoked event-related oscillation results showed that in both groups, high-brightness stimuli also elicited large delta, theta, and alpha as well as low gamma responses. These results indicate that high-brightness color stimuli elicit more positive emotions and stronger neurological reactions and that artistic training may have a positive effect on top-down visual perception.


Subject(s)
Color Perception , Electroencephalography , Photic Stimulation , Humans , Male , Female , Color Perception/physiology , Young Adult , Photic Stimulation/methods , Adult , Evoked Potentials/physiology , Emotions/physiology , Reaction Time/physiology , Evoked Potentials, Visual/physiology , Analysis of Variance
16.
Int J Biometeorol ; 68(6): 1143-1154, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38509399

ABSTRACT

Outdoor thermal comfort has become an important factor affecting human mental and physical health due to rapid urbanization. This study aimed to investigate the influence of brightness and prominent colors on thermal perception in hot summer and cold winter regions. Meteorological measurements were conducted accompanied by subjective thermal and visual questionnaires (n = 2020) during summer and winter. The physiological equivalent temperature (PET) was applied as thermal indices to evaluate the influence of visual conditions on thermal perception. The results showed that (1) the neutral PET is 20.2 °C with a range of 14.8 ~ 25.7 °C in Chongqing and neutral illumination range is 0 ~ 8663 lx. (2) Thermal sensitivity is most great in neutral brightness than bright and too bright groups. The influence of outdoor prominent colors in winter supports hue-heat hypothesis. However, in summer, result only supports the hypothesis under low thermal stress. Both cool and warm colors can reduce the thermal sensitivity of visitors compared to neutral colors (gray and white). (3) The interactions between colors and brightness are more obvious under low thermal stress levels. (4) Thermal perceptions of females are more greatly affected by brightness and prominent colors compared with males. These results could help landscape designers better understand the correlation between the thermal and visual environments and provide a reference for comprehensive designs of urban open spaces.


Subject(s)
Color , Thermosensing , Humans , China , Female , Male , Adult , Young Adult , Seasons , Temperature
17.
Sensors (Basel) ; 24(3)2024 Jan 26.
Article in English | MEDLINE | ID: mdl-38339537

ABSTRACT

The application of deep learning to image and video processing has become increasingly popular nowadays. Employing well-known pre-trained neural networks for detecting and classifying objects in images is beneficial in a wide range of application fields. However, diverse impediments may degrade the performance achieved by those neural networks. Particularly, Gaussian noise and brightness, among others, may be presented on images as sensor noise due to the limitations of image acquisition devices. In this work, we study the effect of the most representative noise types and brightness alterations on images in the performance of several state-of-the-art object detectors, such as YOLO or Faster-RCNN. Different experiments have been carried out and the results demonstrate how these adversities deteriorate their performance. Moreover, it is found that the size of objects to be detected is a factor that, together with noise and brightness factors, has a considerable impact on their performance.

18.
Angew Chem Int Ed Engl ; 63(19): e202319874, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38372180

ABSTRACT

Helical nanographenes with high quantum yields and strong chiroptical responses are pivotal for developing circularly polarized luminescence (CPL) materials. Here, we present the successful synthesis of novel π-extended double [7]helicenes (ED7Hs) where two helicene units are fused at the meta- or para-position of the middle benzene ring, respectively, as the structural isomers of the reported ortho-fused ED7H. The structural geometry of these ED7Hs is clearly characterized by single-crystal X-ray analysis. Notably, this class of ED7Hs exhibits bright luminescence with high quantum yields exceeding 40 %. Through geometric regulation of two embedded [7]helicene units from ortho-, meta- to para-position, these ED7Hs display exceptional amplification in chiroptical responses. This enhancement is evident in a remarkable approximate fivefold increase in the absorbance and luminescence dissymmetry factors (gabs and glum), respectively, along with a boosted CPL brightness up to 176 M-1 cm-1, surpassing the performance of most helicene-based chiral NGs. Furthermore, DFT calculations elucidate that the geometric adjustment of two [7]helicene units allows the precise alignment of electric and magnetic transition dipole moments, leading to the observed enhancement of their chiroptical responses. This study offers an effective strategy for magnifying the CPL performance in chiral NGs, promoting their expanded application as CPL emitters.

19.
Small ; 20(26): e2309035, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38234137

ABSTRACT

Lanthanide-doped upconversion nanoparticles (UCNPs) hold promise for single-molecule imaging owing to their excellent photostability and minimal autofluorescence. However, their limited water dispersibility, often from the hydrophobic oleic acid ligand during synthesis, is a challenge. To address this, various surface modification strategies' impact on single-particle upconversion luminescence are studied. UCNPs are made hydrophilic through methods like ligand exchange with dye IR806, HCl or NOBF4 treatment, silica coating (SiO2 or mesoporous mSiO2), and self-assembly with polymer of DSPE-PEG or F127. The studies revealed that UCNPs modified with NOBF4 and DSPE-PEG exhibited notably higher single-particle brightness with minimal quenching (3% and 8%, respectively), followed by SiO2, F127, IR806, mSiO2, and HCl (84% quenching). HCl disrupted UCNPs's crystal lattice, weakening luminescence, while mSiO2 absorbed solvent molecules, causing luminescence quenching. Energy transfer to IR806 also reduced the brightness. Additionally, a prevalence of upconversion red emission over green is observed, with the red-to-green ratio increasing with irradiance. UCNPs coated with DSPE-PEG exhibited the brightest single-particle luminescence in water, retaining 48% of its original emission due to a lower critical micelle concentration and superior water protection. In summary, the investigation provides valuable insights into the role of surface chemistry on UCNPs at the single-particle level.

20.
ACS Appl Mater Interfaces ; 16(2): 2614-2623, 2024 Jan 17.
Article in English | MEDLINE | ID: mdl-38178791

ABSTRACT

Intercalation-based organic polymers that shift their colors during ion insertion and extraction provide a significant basis for existing electrochromic technology. Nevertheless, the complexity of modifying the structure in the skeleton or combining several diverse polymers to produce a full-color range has restricted the practical applications of electrochromic materials. Herein, we demonstrate two configurations of the poly(3,4-ethylenedioxythiophene) (PEDOT) Fabry-Perot (F-P) nanocavity-type electrochromic devices fabricated by spray coating lossless PEDOT on the F-P metasurfaces (Cr/ITO/Ag/Cr), which allows full-color response by simply controlling the thickness of dielectric layer indium tin oxide (ITO). However, the reflected light from the PEDOT F-P nanocavity-type electrode can be modulated by electrically controllable optical absorption of PEDOT. Besides, the subtle brightness regulation could be obtained in our F-P nanocavity electrochromic devices via altering the PEDOT thickness. Overall, our results offer a novel perspective for versatile color control of PEDOT.

SELECTION OF CITATIONS
SEARCH DETAIL
...