Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 39
Filter
Add more filters










Publication year range
1.
Mar Drugs ; 21(7)2023 Jun 28.
Article in English | MEDLINE | ID: mdl-37504912

ABSTRACT

This study set out to evaluate the wound healing properties of brittle star extracts in vitro and in vivo. Due to the great arm regeneration potential of the brittle star, Ophiocoma cynthiae, the present study aimed to evaluate the wound healing effect of hydroalcoholic extracts of brittle star undergoing arm regeneration in wound healing models. The brittle star samples were collected from Nayband Bay, Bushehr, Iran. After wound induction in the arm of brittle stars, hydroalcoholic extracts relating to different times of arm regeneration were prepared. The GC-MS analysis, in vitro MTT cell viability and cell migration, Western blot, and computational analysis tests were performed. Based on the in vitro findings, two BSEs were chosen for in vivo testing. Macroscopic, histopathological and biochemical evaluations were performed after treatments. The results showed positive proliferative effects of BSEs. Specifically, forty-two compounds were detected in all groups of BSEs using GC-MS analysis, and their biological activities were assessed. The MTT assay showed that the 14 d BSE had a higher proliferative effect on HFF cells than 7 d BSE. The cell migration assay showed that the wound area in 7 d and 14 d BSEs was significantly lower than in the control group. Western blot analysis demonstrated an increase in the expression of proliferation-related proteins. Upon the computational analysis, a strong affinity of some compounds with proteins was observed. The in vivo analysis showed that the evaluation of wound changes and the percentage of wound healing in cell migration assay in the 7 d BSE group was better than in the other groups. Histopathological scores of the 7 d BSE and 14 d BSE groups were significantly higher than in the other groups. In conclusion, the hydroalcoholic extract of O. cynthiae undergoing arm regeneration after 7 and 14 days promoted the wound healing process in the cell and rat skin wound healing model due to their proliferative and migratory biological activity.


Subject(s)
Plant Extracts , Wound Healing , Rats , Animals , Plant Extracts/pharmacology , Echinodermata , Cell Movement , Tissue Extracts/pharmacology
2.
Front Zool ; 20(1): 15, 2023 Apr 21.
Article in English | MEDLINE | ID: mdl-37085882

ABSTRACT

Brittle stars, unlike most other echinoderms, do not use their small tube feet for locomotion but instead use their flexible arms to produce a rowing or reverse rowing movement. They are among the fastest-moving echinoderms with the ability of complex locomotory behaviors. Considering the high species diversity and variability in morphotypes, a proper understanding of intra- and interspecies variation in arm flexibility and movement is lacking. This study focuses on the exploration of the methods to investigate the variability in brittle star locomotion and individual arm use. We performed a two-dimensional (2D) image processing on horizontal movement only. The result indicated that sinuosity, disc displacement and arm angle are important parameters to interpret ophiuroid locomotion. A dedicated Python script to calculate the studied movement parameters and visualize the results applicable to all 5-armed brittle stars was developed. These results can serve as the basis for further research in robotics inspired by brittle star locomotion.

3.
Heliyon ; 9(3): e14538, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36967974

ABSTRACT

In the current study, aqueous extract of O. scolopendrina (OSE) was used to synthesize AgNPs in a simple and environmentally friendly manner. The biosynthesized OSE-AgNPs were also assessed for its catalytic, antibacterial, anti-diabetic, antioxidant and dye degradation properties. The techniques like UV-visible spectroscopic examinations, TEM, SEM, TGA, zeta potential and FT-IR were used in the characterization investigations. The bioproduction of OSE-AgNPs was preliminary confirmed by UV-visible spectroscopic based investigation followed by microscopic visualization. The synthesized OSE-AgNPs exhibited a reddish brown colour and nearly spherical forms with sizes between 5 and 50 nm quantified by TEM and SEM. The attendance of functional groups like -OH and -NH present in OSE caps on the AgNPs surface was confirmed by FTIR analysis. Interestingly, in the presence of OSE-AgNPs, the degradation of dyes (CV, 95% and EY, 96% in 15 min) were noticeably accelerated. Further, OSE-AgNPs demonstrated substantial antibacterial activity; robust antioxidant properties andnotable anti-diabetic activities. This is the first account on the biosynthetic process of AgNPs using the aqueous extract of O. scolopendrina.

4.
Mar Drugs ; 21(3)2023 Feb 24.
Article in English | MEDLINE | ID: mdl-36976197

ABSTRACT

Echinoderms have been attracting increasing attention for their polysaccharides, with unique chemical structure and enormous potential for preparing drugs to treat diseases. In this study, a glucan (TPG) was obtained from the brittle star Trichaster palmiferus. Its structure was elucidated by physicochemical analysis and by analyzing its low-molecular-weight products as degraded by mild acid hydrolysis. The TPG sulfate (TPGS) was prepared, and its anticoagulant activity was investigated for potential development of anticoagulants. Results showed that TPG consisted of a consecutive α1,4-linked D-glucopyranose (D-Glcp) backbone together with a α1,4-linked D-Glcp disaccharide side chain linked through C-1 to C-6 of the main chain. The TPGS was successfully prepared with a degree of sulfation of 1.57. Anticoagulant activity results showed that TPGS significantly prolonged activated partial thromboplastin time, thrombin time, and prothrombin time. Furthermore, TPGS obviously inhibited intrinsic tenase, with an EC50 value of 77.15 ng/mL, which was comparable with that of low-molecular-weight heparin (LMWH) (69.82 ng/mL). TPGS showed no AT-dependent anti-FIIa and anti-FXa activities. These results suggest that the sulfate group and sulfated disaccharide side chains play a crucial role in the anticoagulant activity of TPGS. These findings may provide some information for the development and utilization of brittle star resources.


Subject(s)
Anticoagulants , Glucans , Animals , Anticoagulants/pharmacology , Anticoagulants/chemistry , Sulfates/chemistry , Heparin, Low-Molecular-Weight , Echinodermata , Polysaccharides/pharmacology , Partial Thromboplastin Time
5.
J Exp Biol ; 226(3)2023 02 01.
Article in English | MEDLINE | ID: mdl-36651231

ABSTRACT

As the climate continues to change, it is not just the magnitude of these changes that is important - equally critical is the timing of these events. Conditions that may be well tolerated at one time can become detrimental if experienced at another, as a result of seasonal acclimation. Temperature is the most critical variable as it affects most aspects of an organism's physiology. To address this, we quantified arm regeneration and respiration in the Australian brittle star Ophionereis schayeri for 10 weeks in response to a +3°C warming (18.5°C, simulating a winter heatwave) compared with ambient winter temperature (15.5°C). The metabolic scaling rate (b=0.635 at 15.5°C and 0.746 at 18.5°C) with respect to size was similar to that of other echinoderms and was not affected by temperature. Elevated temperature resulted in up to a 3-fold increase in respiration and a doubling of regeneration growth; however, mortality was greater (up to 44.2% at 18.5°C), especially in the regenerating brittle stars. Metabolic rate of the brittle stars held at 18.5°C was much higher than expected (Q10≈23) and similar to that of O. schayeri tested in summer, which was near their estimated thermotolerance limits. The additional costs associated with the elevated metabolism and regeneration rates incurred by the unseasonably warm winter temperatures may lead to increased mortality and predation risk.


Subject(s)
Arm , Echinodermata , Animals , Seasons , Australia , Echinodermata/physiology , Temperature , Acclimatization/physiology , Oceans and Seas
6.
Front Chem ; 11: 1332921, 2023.
Article in English | MEDLINE | ID: mdl-38235395

ABSTRACT

Introduction: The Persian Gulf is home to a diverse range of marine life, including various species of fish, crustaceans, mollusks, and echinoderms. This study investigates the potential therapeutic properties of venoms from echinoderms in the Persian Gulf, specifically their ability to inhibit cholinesterases (Acetylcholinesterase and butyrylcholinesterase) and act as antioxidants. Methods: Four venoms from two echinoderm species, including the spine, gonad, and coelomic fluids of sea urchins, as well as brittle star venoms, were analyzed using various methods, including LD50 determination, protein analysis, antioxidant assays, GC-MS for secondary metabolite identification, and molecular docking simulations. Results and discussion: The study's results revealed the LD50 of the samples as follows: 2.231 ± 0.09, 1.03 ± 0.05, 1.12 ± 0.13, and 6.04 ± 0.13 mg/mL, respectively. Additionally, the protein levels were 44.037 ± 0.002, 74.223 ± 0.025, 469.97 ± 0.02, and 104.407 ± 0.025 µg/mL, respectively. SDS-PAGE and total protein studies indicated that at least part of the venom was proteinaceous. Furthermore, the study found that the brittle star samples exhibited significantly higher antioxidant activity compared to other samples, including the standard ascorbic acid, at all tested concentrations. GC-MS analysis identified 12, 23, 21, and 25 compounds in the samples, respectively. These compounds had distinct chemical and bioactive structures, including alkaloids, terpenes, and steroids. Conclusion: These venoms displayed strong cholinesterase inhibitory and antioxidant activities, likely attributed to their protein content and the presence of alkaloids, terpenes, and steroids. Notably, the alkaloid compound C 7 was identified as a promising candidate for further research in Alzheimer's disease therapy. In conclusion, echinoderms in the Persian Gulf may hold significant potential for discovering novel therapeutic agents.

7.
BMC Genomics ; 23(1): 574, 2022 Aug 11.
Article in English | MEDLINE | ID: mdl-35953768

ABSTRACT

BACKGROUND: Echinoderms are established models in experimental and developmental biology, however genomic resources are still lacking for many species. Here, we present the draft genome of Ophioderma brevispinum, an emerging model organism in the field of regenerative biology. This new genomic resource provides a reference for experimental studies of regenerative mechanisms. RESULTS: We report a de novo nuclear genome assembly for the brittle star O. brevispinum and annotation facilitated by the transcriptome assembly. The final assembly is 2.68 Gb in length and contains 146,703 predicted protein-coding gene models. We also report a mitochondrial genome for this species, which is 15,831 bp in length, and contains 13 protein-coding, 22 tRNAs, and 2 rRNAs genes, respectively. In addition, 29 genes of the Notch signaling pathway are identified to illustrate the practical utility of the assembly for studies of regeneration. CONCLUSIONS: The sequenced and annotated genome of O. brevispinum presented here provides the first such resource for an ophiuroid model species. Considering the remarkable regenerative capacity of this species, this genome will be an essential resource in future research efforts on molecular mechanisms regulating regeneration.


Subject(s)
Echinodermata , Genome, Mitochondrial , Animals , Cell Nucleus , Echinodermata/genetics , Molecular Sequence Annotation , Regeneration/genetics , Transcriptome
8.
Article in English | MEDLINE | ID: mdl-35644319

ABSTRACT

Lectins are carbohydrate-binding proteins that possess specific sugar-binding properties and are involved in various biological activities in different organisms. In this study, purification, characterization, and cDNA cloning of a brittle star lectin, designated as Ophioplocus japonicus agglutinin (OJA), were conducted. OJA was isolated from the brittle star O. japonicus by affinity chromatography on a Sephadex G-25 column, followed by ion-exchange chromatography on a Resource Q column. This lectin yielded distinct bands at approximately 176 or 17 kDa on sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) under non-reducing or reducing conditions, respectively. It also exhibited Ca2+-dependent hemagglutination activity, which, however, was not affected by other metal cations, such as Ba2+, Co2+, Cu2+, Zn2+, Fe2+, Mg2+, and Mn2+. The OJA activity was strongly inhibited by glucose and xylose among the monosaccharides tested, and by bovine thyroglobulin among the glycoproteins tested. Cloning of the OJA cDNA revealed that its primary structure contained the C-type lectin domain (CTLD). The results of this study showed that OJA is an echinoderm-derived glucose/xylose-specific lectin that belongs to the C-type lectin superfamily.


Subject(s)
Lectins, C-Type , Xylose , Animals , Cattle , Cloning, Molecular , DNA, Complementary/genetics , Electrophoresis, Polyacrylamide Gel , Glucose , Molecular Weight
9.
Mitochondrial DNA B Resour ; 7(4): 596-597, 2022.
Article in English | MEDLINE | ID: mdl-35386627

ABSTRACT

We describe the first mitochondrial genome of a brittle star Asteroschema tubiferum Matsumoto 1911 in family Asteroschematidae. The mitogenome was sequenced and assembled using next-generation sequencing technology, and were 16,361 bp in size with 37 genes containing 13 protein-coding genes, 22 tRNA genes, 2 rRNA genes, and a control region. The phylogenetic tree was constructed based on 13 protein-coding mitochondrial genes of A. tubiferum and 26 species in the phylum Echinodermata by RAxML, which showed that it was mostly related to the species in Family Gorgonocephalidae. These results could provide a novel insight to the phylogeny of Ophiuroidea.

10.
Learn Behav ; 50(1): 20-36, 2022 03.
Article in English | MEDLINE | ID: mdl-34877627

ABSTRACT

We propose an expansion of neuroecological comparisons to include the capabilities of brainless and non-neural organisms. We begin this enterprise by conducting a systematic search for studies on learning in echinoderms. Echinodermata are marine invertebrates comprising starfish, brittle stars, sea cucumbers, sea urchins, and sea lilies. Animals in this phylum lack any centralized brain and instead possess diffuse neural networks known as nerve nets. The learning abilities of these animals are of particular interest as, within the bilaterian clade, they are close evolutionary neighbors to chordates, a phylum whose members exhibit complex feats in learning and contain highly specialized brains. The learning capacities and limitations of echinoderms can inform the evolution of nervous systems and learning in Bilateria. We find evidence of both non-associative and associative learning (in the form of classical conditioning) in echinoderms, which was primarily focused on starfish. Additional evidence of learning is documented in brittle stars, sand dollars, and sea urchins. We then discuss the evolutionary significance of learning capabilities without a brain, the presence of embodied cognition across multiple groups, and compare the learning present in echinoderms with the impressive cognitive abilities documented in the oldest linage group within vertebrates (the major group within the phylum of chordates), fish.


Subject(s)
Brain , Echinodermata , Animals
11.
Zoolog Sci ; 38(4): 352-358, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34342956

ABSTRACT

A new species of brittle star, Ophiodelos okayoshitakai, is described from two specimens collected in Sagami Bay, central-eastern Japan. Photographic examination of the holotype specimen of the sole other congener, Ophiodelos insignis Koehler, 1930, indicates that Ophiodelos okayoshitakai sp. nov. is distinguished from O. insignis by i) the disc stumps covering on the dorsal side of the disc, ii) the dorsal and ventral arm plates being separated from each other on the proximal arm regions, iii) the dorsal arm plate being smooth, iv) the arm spines at proximal portion of the arm being six in number and smooth in shape, and v) the number and shape of the tentacle scales at proximal portion of the arm being up to two and spine-shaped adradially and oval abradially. Detailed morphological observations of this new species suggest the inclusion of Ophiodelos, whose familial affiliation remains unclear, in the suborder Ophiacanthina. More than 10 juveniles of various sizes were found in the disc of Ophiodelos okayoshitakai sp. nov., indicating a brooding reproduction. This is the first report of the genus Ophiodelos from Japanese waters. We also provided a nucleotide sequence for part of the cytochrome c oxidase subunit I (COI) gene in O. okayoshitakai sp. nov. for future studies of DNA barcoding and phylogeny.


Subject(s)
Echinodermata/physiology , Reproduction/physiology , Animals , Japan , Pacific Ocean
12.
Animals (Basel) ; 11(3)2021 Mar 23.
Article in English | MEDLINE | ID: mdl-33807022

ABSTRACT

During diving surveys for a Russian research project that monitored introduced species, red king crabs (Paralithodes camtschaticus) were collected at a coastal site of the Barents Sea to study the structure and dynamics of this species. Sampling of the organisms colonizing the crabs was part of this research project. For the first time, the presence of relatively large specimens of the common starfish Asterias rubens as epibionts of P. camtschaticus was observed in July 2010, 2018, and 2019. In 2010 and 2019, we also found three other echinoderm species (the Atlantic sea cucumber Cucumaria frondosa, the green sea urchin Strongylocentrotus droebachiensis, and the brittle star Ophiura sarsii). These findings add to the current list of associated species on king crabs not only in the Barents Sea but also in native areas of this host. Red king crabs have been documented as predators for these echinoderm species, and our records show additional possible interactions between king crabs and echinoderms in this region. More likely, the epibiotic lifestyle allows these echinoderms to avoid predation from red king crabs. There are no potential disadvantages derived by red king crabs through their relationships with the echinoderm epibionts due to low occurrences of these associations. We suggest no negative effects for the local red king crab population and populations of other commercial species in the Barents Sea.

13.
Zool Stud ; 60: e59, 2021.
Article in English | MEDLINE | ID: mdl-35665087

ABSTRACT

A new species, Ophiomonas shinseimaruae, is described based on five specimens collected from deep water settings, southeast of Cape Erimo, Hokkaido, Japan. Ophiomonas shinseimaruae sp. n. is distinguished from other congeners based on the following characters: elongate semi-circular and separated radial shields; triangular oral shields; flat and broad tentacle scales on the second tentacle pore; octagonal dorsal arm plates, approximately three times wider than long on proximal portion of the arm; and three arm spines present proximally on the arm. This is the first record of the genus Ophiomonas from Japanese waters. The COI nucleotide sequence for Ophiomonas shinseimaruae sp. n. is provided.

14.
Cell Tissue Res ; 381(3): 411-426, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32350640

ABSTRACT

Extracellular matrix (ECM) plays a dynamic role during tissue development and re-growth. Body part regeneration efficiency relies also on effective ECM remodelling and deposition. Among invertebrates, echinoderms are well known for their striking regenerative abilities since they can rapidly regenerate functioning complex structures. To gather insights on the involvement of ECM during arm regeneration, the brittle star Amphiura filiformis was chosen as experimental model. Eight ECM genes were identified and cloned, and their spatio-temporal and quantitative expression patterns were analysed by means of whole mount in situ hybridisation and quantitative PCR on early and advanced regenerative stages. Our results show that almost none of the selected ECM genes are expressed at early stages of regeneration, suggesting a delay in their activation that may be responsible for the high regeneration efficiency of these animals, as described for other echinoderms and in contrast to most vertebrates. Moreover, at advanced stages, these genes are spatially and temporally differentially expressed, suggesting that the molecular regulation of ECM deposition/remodelling varies throughout the regenerative process. Phylogenetic analyses of the identified collagen-like genes reveal complex evolutionary dynamics with many rounds of duplications and losses and pinpointed their homologues in selected vertebrates. The study of other ECM genes will allow a better understanding of ECM contribution to brittle star arm regeneration.


Subject(s)
Echinodermata/genetics , Extracellular Matrix/genetics , Extremities/pathology , In Situ Hybridization/methods , Animals
15.
J Struct Biol ; 211(1): 107481, 2020 07 01.
Article in English | MEDLINE | ID: mdl-32088334

ABSTRACT

Brittle stars are known for the high flexibility of their arms, a characteristic required for locomotion, food grasping, and for holding onto a great diversity of substrates. Their high agility is facilitated by the numerous discrete skeletal elements (ossicles) running through the center of each arm and embedded in the skin. While much has been learned regarding the structural diversity of these ossicles, which are important characters for taxonomic purposes, their impact on the arms' range of motion, by contrast, is poorly understood. In the present study, we set out to investigate how ossicle morphology and skeletal organization affect the flexibility of brittle star arms. Here, we present the results of an in-depth analysis of three brittle star species (Ophioplocus esmarki, Ophiopteris papillosa, and Ophiothrix spiculata), chosen for their different ranges of motion, as well as spine size and orientation. Using an integrated approach that combines behavioral studies with parametric modeling, additive manufacturing, micro-computed tomography, scanning electron microscopy, and finite element simulations, we present a high-throughput workflow that provides a fundamental understanding of 3D structure-kinematic relationships in brittle star skeletal systems.


Subject(s)
Echinodermata/anatomy & histology , Echinodermata/ultrastructure , Skeleton/ultrastructure , Animals , Biomechanical Phenomena , Echinodermata/physiology , Skeleton/anatomy & histology , Skeleton/physiology , X-Ray Microtomography
16.
J Exp Biol ; 223(Pt 4)2020 02 18.
Article in English | MEDLINE | ID: mdl-31974222

ABSTRACT

Bioluminescence is a widespread phenomenon in the marine environment. Among luminous substrates, coelenterazine is the most widespread luciferin, found in eight phyla. The wide phylogenetic coverage of this light-emitting molecule has led to the hypothesis of its dietary acquisition, which has so far been demonstrated in one cnidarian and one lophogastrid shrimp species. Within Ophiuroidea, the dominant class of luminous echinoderms, Amphiura filiformis is a model species known to use coelenterazine as substrate of a luciferin/luciferase luminous system. The aim of this study was to perform long-term monitoring of A. filiformis luminescent capabilities during captivity. Our results show (i) depletion of luminescent capabilities within 5 months when the ophiuroid was fed a coelenterazine-free diet and (ii) a quick recovery of luminescent capabilities when the ophiuroid was fed coelenterazine-supplemented food. The present work demonstrates for the first time a trophic acquisition of coelenterazine in A. filiformis to maintain light emission capabilities.


Subject(s)
Diet , Echinodermata/physiology , Imidazoles/administration & dosage , Pyrazines/administration & dosage , Animals , Luminescent Measurements , Potassium Chloride/pharmacology
17.
Front Neurorobot ; 13: 66, 2019.
Article in English | MEDLINE | ID: mdl-31507399

ABSTRACT

A brittle star, an echinoderm with penta-radially symmetric body, can make decisions about its moving direction and move adapting to various circumstances despite lacking a central nervous system and instead possessing a rather simple distributed nervous system. In this study, we aimed to elucidate the essential control mechanism underlying the determination of moving direction in brittle stars. Based on behavioral findings on brittle stars whose nervous systems were lesioned in various ways, we propose a phenomenological mathematical model. We demonstrate via simulations that the proposed model can well reproduce the behavioral findings. Our findings not only provide insights into the mechanism for the determination of moving direction in brittle stars, but also help understand the essential mechanism underlying autonomous behaviors of animals. Moreover, they will pave the way for developing fully autonomous robots that can make decisions by themselves and move adaptively under various circumstances.

18.
Methods Cell Biol ; 151: 65-88, 2019.
Article in English | MEDLINE | ID: mdl-30948032

ABSTRACT

Echinoderms are important research models for a wide range of biological questions. In particular, echinoderm embryos are exemplary models for dissecting the molecular and cellular processes that drive development and testing how these processes can be modified through evolution to produce the extensive morphological diversity observed in the phylum. Modern attempts to characterize these processes depend on some level of genomic analysis; from querying annotated gene sets to functional genomics experiments to identify candidate cis-regulatory sequences. Given how essential these data have become, it is important that researchers using available datasets or performing their own genome-scale experiments understand the nature and limitations of echinoderm genomic analyses. In this chapter we highlight the current state of echinoderm genomic data and provide methodological considerations for common approaches, including analysis of transcriptome and functional genomics datasets.


Subject(s)
Echinodermata/genetics , Embryonic Development/genetics , Gene Expression Profiling/methods , Genomics/methods , Animals , Echinodermata/growth & development , Genome/genetics , Genomics/trends , Molecular Sequence Annotation/methods
19.
Methods Cell Biol ; 150: 125-169, 2019.
Article in English | MEDLINE | ID: mdl-30777174

ABSTRACT

Echinoderms are favored study organisms not only in cell and developmental biology, but also physiology, larval biology, benthic ecology, population biology and paleontology, among other fields. However, many echinoderm embryology labs are not well-equipped to continue to rear the post-embryonic stages that result. This is unfortunate, as such labs are thus unable to address many intriguing biological phenomena, related to their own cell and developmental biology studies, that emerge during larval and juvenile stages. To facilitate broader studies of post-embryonic echinoderms, we provide here our collective experience rearing these organisms, with suggestions to try and pitfalls to avoid. Furthermore, we present information on rearing larvae from small laboratory to large aquaculture scales. Finally, we review taxon-specific approaches to larval rearing through metamorphosis in each of the four most commonly-studied echinoderm classes-asteroids, echinoids, holothuroids and ophiuroids.


Subject(s)
Echinodermata/cytology , Larva/cytology , Metamorphosis, Biological/physiology , Animals , Developmental Biology/methods
20.
Methods Cell Biol ; 150: 3-46, 2019.
Article in English | MEDLINE | ID: mdl-30777182

ABSTRACT

Echinoderms and especially echinoids have a rich history as model systems for the study of oogenesis, fertilization, and early embryogenesis. The ease of collecting and maintaining adults, as well as in obtaining gametes and culturing large quantities of synchronous embryos, is complemented by the ability to do biochemistry, reverse genetics, embryo manipulations and study gene regulatory networks. The diversity of species and developmental modes as well as unparalleled transparency in early developmental stages also makes echinoderms an excellent system in which to study evolutionary aspects of developmental biology. This chapter provides a practical guide to experimental methods for procuring adults and gametes, achieving synchronous in vitro fertilization, and culturing embryos through early larval stages for several echinoderm species representing four classes (Echinoidea, Asteroidea, Ophiuroidea, and Holothuroidea). We provide specific examples of protocols for obtaining adults and gametes and for culturing embryos of a selected number of species for experimental analysis of their development. The species were chosen to provide breadth across the phylum Echinodermata, as well as to provide practical guidelines for handling some of the more commonly studied species. For each species, we highlight specific advantages, and special note is made of key issues to consider when handling adults, collecting gametes, or setting and maintaining embryo cultures. Finally, information regarding interspecific crosses is provided.


Subject(s)
Echinodermata/cytology , Embryo, Nonmammalian/cytology , Oocytes/cytology , Animals , Biological Evolution , Culture Techniques/methods , Developmental Biology/methods , Gene Regulatory Networks/genetics , Larva/cytology
SELECTION OF CITATIONS
SEARCH DETAIL
...