Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 41
Filter
Add more filters











Publication year range
1.
J Econ Entomol ; 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38984916

ABSTRACT

The majority of field corn, Zea mays L., in the southeastern United States has been genetically engineered to express insecticidal toxins produced by the soil bacterium, Bacillus thuringiensis (Bt). Field corn is the most important mid-season host for corn earworm, Helicoverpa zea (Boddie) (Lepidoptera: Noctuidae), which has developed resistance to all Cry toxins in Bt corn. From 2020 to 2023, corn earworm pupae were collected from early- and late-planted pyramided hybrids expressing Bt toxins and non-Bt near-isolines in North and South Carolina (16 trials). A total of 5,856 pupae were collected across all trials, with 55 and 88% more pupae collected in later-planted trials relative to early plantings in North and South Carolina, respectively. Only 20 pupae were collected from hybrids expressing Cry1F + Cry1Ab + Vip3A20 across all trials. Averaged across trials, Cry1A.105 + Cry2Ab2 hybrids reduced pupal weight by 6 and 9% in North and South Carolina, respectively, relative to the non-Bt near-isoline. Cry1F + Cry1Ab hybrids reduced pupal weight on average by 3 and 8% in North and South Carolina, respectively, relative to the non-Bt near-isoline. The impact of the Bt toxins on pupal weight varied among trials. When combined with data from 2014 to 2019 from previous studies, a significant decline in the percent reduction in pupal weight over time was found in both states and hybrid families. This study demonstrates a continued decline in the sublethal impacts of Bt toxins on corn earworm, emphasizing the importance of insect resistance management practices.

2.
Front Insect Sci ; 4: 1268092, 2024.
Article in English | MEDLINE | ID: mdl-38469336

ABSTRACT

Bioassays were conducted under controlled conditions to determine the response of Spodoptera frugiperda (J. E. Smith) larvae fed with corn materials expressing Bacillus thuringiensis (Bt) insecticidal endotoxins: (1) VT Double Pro® (VT2P) expressing Cry1A.105-Cry2Ab2 proteins and (2) VT Triple Pro® (VT3P) expressing Cry1A.105-Cry2Ab2-Cry3Bb1 proteins. The parameters assessed were: (i) mortality rate, and (ii) growth inhibition (GI) with respect to the control. To conduct this study, larvae were collected from commercial non-Bt corn fields, in four agricultural sub-regions in Colombia, between 2018 and 2020. Fifty-two populations were assessed from the field and neonate larvae from each of the populations were used for the bioassays. The study found that mortality rates in the regions for larvae fed with VT2P corn ranged from 95.1 to 100.0%, with a growth inhibition (%GI) higher than 76.0%. Similarly, mortality rate for larvae fed with VT3P corn were between 91.4 and 100.0%, with a %GI above 74.0%. The population collected in Agua Blanca (Espinal, Tolima; Colombia) in 2020, showed the lowest mortality rate of 53.2% and a %GI of 73.5%, with respect to the control. The population that exhibited the lowest %GI was collected in 2018 in Agua Blanca (Espinal, Tolima, Colombia) with a 30.2%, growth inhibition, with respect to the control. In recent years, the use of plant tissue to monitor susceptibility to fall armyworm has proven to be useful in the resistance management program for corn in Colombia determining that the FAW populations are still susceptible to Bt proteins contained in VT2P and VT3P.

3.
J Econ Entomol ; 116(5): 1804-1811, 2023 10 10.
Article in English | MEDLINE | ID: mdl-37555261

ABSTRACT

The polyphagous pest Helicoverpa zea (Lepidoptera: Noctuidae) has evolved practical resistance to transgenic corn and cotton producing Cry1 and Cry2 crystal proteins from Bacillus thuringiensis (Bt) in several regions of the United States. However, the Bt vegetative insecticidal protein Vip3Aa produced by Bt corn and cotton remains effective against this pest. To advance knowledge of resistance to Vip3Aa, we selected a strain of H. zea for resistance to Vip3Aa in the laboratory. After 28 generations of continuous selection, the resistance ratio was 267 for the selected strain (GA-R3) relative to a strain not selected with Vip3Aa (GA). Resistance was autosomal and almost completely recessive at a concentration killing all individuals from GA. Declines in resistance in heterogeneous strains containing a mixture of susceptible and resistant individuals reared in the absence of Vip3Aa indicate a fitness cost was associated with resistance. Previously reported cases of laboratory-selected resistance to Vip3Aa in lepidopteran pests often show partially or completely recessive resistance at high concentrations and fitness costs. Abundant refuges of non-Bt host plants can maximize the benefits of such costs for sustaining the efficacy of Vip3Aa against target pests.


Subject(s)
Bacillus thuringiensis , Lepidoptera , Moths , Animals , United States , Zea mays/genetics , Endotoxins/pharmacology , Insecticide Resistance/genetics , Bacillus thuringiensis Toxins , Hemolysin Proteins/pharmacology , Moths/genetics , Bacillus thuringiensis/genetics , Bacterial Proteins/genetics , Bacterial Proteins/pharmacology , Plants, Genetically Modified/genetics
4.
J Econ Entomol ; 116(3): 916-926, 2023 06 13.
Article in English | MEDLINE | ID: mdl-36939027

ABSTRACT

The first case of field-evolved resistance in European corn borer, Ostrinia nubilalis (Hübner) (Lepidoptera: Crambidae) to transgenic corn (Zea mays L.) producing a Bacillus thuringiensis (Bt) Berliner toxin was discovered in Nova Scotia, Canada in 2018. This case involved resistance to Bt corn producing Cry1Fa toxin. As a mitigation response, Bt corn hybrids producing only Cry1Fa were replaced in that region with hybrids producing two or three Bt toxins targeting O. nubilalis. In this study, we collected O. nubilalis in several corn-growing regions of Canada during 2018 to 2020 and tested their progeny for susceptibility to four Bt toxins produced by currently available Bt corn that targets O. nubilalis: Cry1Fa, Cry1Ab, Cry1A.105, and Cry2Ab. Based on toxin concentrations killing 50% of larvae from 23 field-derived strains relative to two susceptible laboratory strains, the resistance ratio was at least 10 for Cry1Fa for 12 strains (52% of strains) consisting of 10 strains from Nova Scotia, as well as strains from near Montreal, Quebec and Roseisle, Manitoba. We found low but statistically significant resistance relative to at least one of two susceptible strains for Cry1Ab (23% of strains), Cry1A.105 (45% of strains), and Cry2Ab (14% of strains), with maximum resistance ratios of 3.9, 5.8, and 2.0, respectively. These results provide key information for addressing O. nubilalis resistance to Bt corn in Canada.


Subject(s)
Bacillus thuringiensis , Moths , Animals , Bacillus thuringiensis Toxins , Zea mays/genetics , Bacillus thuringiensis/genetics , Bacterial Proteins/genetics , Bacterial Proteins/pharmacology , Moths/genetics , Endotoxins/pharmacology , Hemolysin Proteins/pharmacology , Hemolysin Proteins/genetics , Canada , Plants, Genetically Modified/genetics , Insecticide Resistance
5.
Insects ; 14(3)2023 Feb 21.
Article in English | MEDLINE | ID: mdl-36975899

ABSTRACT

Insect pests are increasingly evolving practical resistance to insecticidal transgenic crops that produce Bacillus thuringiensis (Bt) proteins. Here, we analyzed data from the literature to evaluate the association between practical resistance to Bt crops and two pest traits: fitness costs and incomplete resistance. Fitness costs are negative effects of resistance alleles on fitness in the absence of Bt toxins. Incomplete resistance entails a lower fitness of resistant individuals on a Bt crop relative to a comparable non-Bt crop. In 66 studies evaluating strains of nine pest species from six countries, costs in resistant strains were lower in cases with practical resistance (14%) than without practical resistance (30%). Costs in F1 progeny from crosses between resistant and susceptible strains did not differ between cases with and without practical resistance. In 24 studies examining seven pest species from four countries, survival on the Bt crop relative to its non-Bt crop counterpart was higher in cases with practical resistance (0.76) than without practical resistance (0.43). Together with previous findings showing that the nonrecessive inheritance of resistance is associated with practical resistance, these results identify a syndrome associated with practical resistance to Bt crops. Further research on this resistance syndrome could help sustain the efficacy of Bt crops.

6.
Pest Manag Sci ; 79(3): 1018-1029, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36326028

ABSTRACT

BACKGROUND: The invasive fall armyworm, Spodoptera frugiperda (J.E. Smith), has caused serious corn yield losses and increased the frequency of insecticide spraying on corn in Africa and Asia. Drawing lessons from the use of Bt corn to manage fall armyworm in the Americas, China released a certificate for the genetically modified corn event DBN3601T pyramidally expressing Cry1Ab and Vip3Aa19 for industrialization in 2021. Performance of the DBN3601T event against invasive fall armyworm in China was evaluated by plant tissue-based bioassays and field trials during 2019-2021. RESULTS: In the bioassays, tissues and organs of DBN3601T corn differed significantly in lethality to fall armyworm neonates in the order: leaf > husk > tassel and kernel > silk. In field trials, compared with non-Bt corn, DBN3601T corn greatly suppressed fall armyworm populations and damage; larval density, damage incidence, and leaf damage scores for DBN3601T corn were significantly lower than for non-Bt corn at different vegetative stages, and efficacy against larval populations during the 3 years ranged from 95.24% to 98.30%. CONCLUSION: A laboratory bioassay and 3-year field trials confirmed that DBN3601T corn greatly suppressed fall armyworm populations and has high potential as a control of this invasive pest, making it a key tactic for integrated management of fall armyworm in China. © 2022 Society of Chemical Industry.


Subject(s)
Endotoxins , Zea mays , Animals , Humans , Infant, Newborn , Spodoptera/genetics , Endotoxins/genetics , Zea mays/genetics , Plants, Genetically Modified/genetics , Bacterial Proteins/genetics , Hemolysin Proteins/genetics , Larva/genetics , China , Insecticide Resistance
7.
Plants (Basel) ; 11(16)2022 Aug 20.
Article in English | MEDLINE | ID: mdl-36015465

ABSTRACT

Bt (Bacillus thuringiensis) corn is one of the top three large-scale commercialized anti-insect transgenic crops around the world. In the present study, we tested the Bt protein content, defense chemicals contents, and defense enzyme activities in both the leaves and roots of Bt corn varieties 5422Bt1 and 5422CBCL, as well as their conventional corn 5422 seedlings, with two fully expanded leaves which had been treated with 2.5 mM exogenous salicylic acid (SA) to the aboveground part for 24 h. The result showed that the SA treatment to the aboveground part could significantly increase the polyphenol oxidase activity of conventional corn 5422, the Bt protein content, and peroxidase activities of Bt corn 5422Bt1, as well as the polyphenol oxidase and peroxidase activity of Bt corn 5422CBCL in the leaves. In the roots, the polyphenol oxidase and peroxidase activity of conventional corn 5422, the polyphenol oxidase and superoxide dismutase activities of Bt corn 5422Bt1, the DIMBOA (2,4-dihydroxy-7-methoxy-2H, 1, 4-benzoxazin-3 (4H)-one) content, and four defense enzymes activities of Bt corn 5422CBCL were systematically increased. These findings suggest that the direct effect of SA application to aboveground part on the leaf defense responses in Bt corn 5422CBCL is stronger than that in non-Bt corn. Meanwhile, the systemic effect of SA on the root defense responses in Bt corn 5422CBCL is stronger than that in conventional corn 5422 and Bt corn 5422Bt1. It can be concluded that the Bt gene introduction and endogenous chemical defense responses of corns act synergistically during the SA-induced defense processes to the aboveground part. Different transformation events affected the root defense response when the SA treatment was applied to the aboveground part.

8.
Pest Manag Sci ; 78(4): 1457-1466, 2022 Apr.
Article in English | MEDLINE | ID: mdl-34951106

ABSTRACT

BACKGROUND: Binding site models, derived from in vitro competition binding studies, have been widely used for predicting potential cross-resistance among insecticidal proteins from Bacillus thuringiensis. However, because discrepancies have been found between binding data and observed cross-resistance patterns in some insect species, new tools are required to study the functional relevance of the shared binding sites. RESULTS: Here, an in vivo approach has been applied to the competition studies to establish the functional relevance of shared binding sites as determined by in vitro competition assays. Using Cry disabled proteins as competitors in mixed protein overlay assays, we assessed the preference of Cry1Ab, Cry1Fa, and Cry1A.105 proteins for shared binding sites in vivo in two important corn pests, Ostrinia nubilalis and Spodoptera frugiperda. CONCLUSION: This study shows that in vivo and in vitro binding site competition assays can provide useful information to better ascertain whether different Cry proteins share binding sites and, consequently, whether cross-resistance due to binding site alteration can occur. © 2021 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Subject(s)
Bacillus thuringiensis , Animals , Bacillus thuringiensis/chemistry , Bacterial Proteins/metabolism , Binding Sites , Endotoxins/metabolism , Endotoxins/pharmacology , Hemolysin Proteins/metabolism , Hemolysin Proteins/pharmacology , Spodoptera/metabolism , Zea mays/genetics , Zea mays/metabolism
9.
Insect Sci ; 28(3): 574-589, 2021 Jun.
Article in English | MEDLINE | ID: mdl-32478944

ABSTRACT

The fall armyworm, Spodoptera frugiperda (J.E. Smith), is a major target pest of Bt crops (e.g., corn, cotton, and soybean) in North and South America. This pest has recently invaded Africa and Asia including China and the invasion has placed a great threat to the food security in many countries of these two continents. Due to the extensive use of Bt crops, practical resistance of S. frugiperda to Cry1F corn (TC 1507) with field control problems has widely occurred in Puerto Rico, Brazil, Argentina, and the mainland United States. Analyzing data generated from decade-long studies showed that several factors might have contributed to the wide development of the resistance. These factors include (1) limited modes of action of Bt proteins used in Bt crops; (2) cross-resistance among Cry1 proteins; (3) use of nonhigh dose Bt crop traits; (4) that the resistance is complete on Bt corn plants; (5) abundant in initial Cry1F resistance alleles; and (6) lack of fitness costs/recessive fitness costs of the resistance. The long-term use of Bt crop technology in the Americas suggests that Bt corn can be an effective tool for controlling S. frugiperda in China. IRM programs for Bt corn in China should be as simple as possible to be easily adopted by small-scale growers. The following aspects may be considered in its Bt corn IRM programs: (1) use of only "high dose" traits for both S. frugiperda and stalk borers; (2) developing and implementing a combined resistance monitoring program; (3) use "gene pyramiding" as a primary IRM strategy; and (4) if possible, Bt corn may not be planted in the areas where S. frugiperda overwinters. Lessons and experience gained from the global long-term use of Bt crops should have values in improving IRM programs in the Americas, as well as for a sustainable use of Bt corn technology in China.


Subject(s)
Bacillus thuringiensis Toxins , Endotoxins , Hemolysin Proteins , Insecticide Resistance , Pest Control/methods , Spodoptera/drug effects , Zea mays/genetics , Americas , Animals , Bacillus thuringiensis/genetics , Bacillus thuringiensis/metabolism , Bacillus thuringiensis Toxins/genetics , Bacillus thuringiensis Toxins/pharmacology , China , Crops, Agricultural/genetics , Endotoxins/genetics , Endotoxins/pharmacology , Hemolysin Proteins/genetics , Hemolysin Proteins/pharmacology , Introduced Species , Plants, Genetically Modified/genetics , Spodoptera/physiology
10.
Trends Biotechnol ; 39(2): 105-107, 2021 02.
Article in English | MEDLINE | ID: mdl-32713608

ABSTRACT

In late 2018, the highly destructive and polyphagous fall armyworm was first detected in China. It is now a major economic threat to corn production. In this article, the main control strategies that are available are reviewed and prospects to manage this pest with Bacillus thuringiensis (Bt) corn in China are discussed.


Subject(s)
Pest Control , Plants, Genetically Modified , Spodoptera , Animals , Bacillus thuringiensis/genetics , Bacterial Proteins/genetics , Biotechnology , China , Endotoxins/genetics , Hemolysin Proteins/genetics , Plants, Genetically Modified/genetics , Plants, Genetically Modified/parasitology , Spodoptera/physiology , Zea mays/genetics , Zea mays/parasitology
11.
Pest Manag Sci ; 77(4): 2106-2113, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33350567

ABSTRACT

BACKGROUND: Using natural populations of Helicoverpa zea from Arizona, we tested the hypotheses that gene flow between Bacillus thuringiensis (Bt) plants and non-Bt plants in a seed mixture of 10% non-Bt corn and 90% Bt corn producing Cry1A.105 and Cry2Ab reduces larval performance on ears from non-Bt plants, or increases performance on ears from Bt plants. RESULTS: Gene flow was not detected in blocks of non-Bt or Bt corn but was extensive in seed mixtures. Analyses of larval weight and abundance over a period of 3 to 4 weeks did not indicate consistent effects of gene flow on development rate and survival. However for non-Bt plants, the ear area damaged and percentage of ears with exit holes were significantly lower in the seed mixtures than blocks. By contrast, the percentage of ears with exit holes and ear damage did not differ significantly between the seed mixtures and blocks for Bt plants. Nearly 100% of the ears were damaged and the damaged area was substantial, showing that H. zea is a major ear-feeding pest in Arizona. Relative to non-Bt corn, the pyramided Bt corn did not significantly reduce the percentage of damaged ears and only reduced the ear area damaged by 21 to 39%, indicating that H. zea may have evolved resistance to Cry1A.105, Cry2Ab, or both. CONCLUSIONS: Our results indicate that gene flow between Bt and non-Bt plants in seed mixtures reduced effective refuge size, and that block refuges may be needed to manage the evolution of H. zea resistance to Bt corn in Arizona. © 2020 Society of Chemical Industry.


Subject(s)
Bacillus thuringiensis , Moths , Animals , Arizona , Bacillus thuringiensis/genetics , Bacterial Proteins/genetics , Endotoxins/genetics , Gene Flow , Hemolysin Proteins/genetics , Insecticide Resistance/genetics , Moths/genetics , Pest Control, Biological , Plants, Genetically Modified/genetics , Seeds , Zea mays/genetics
12.
Insects ; 11(12)2020 Nov 26.
Article in English | MEDLINE | ID: mdl-33255898

ABSTRACT

Fall armyworm is one of the main pests of conventional and Bacillus thuringiensis (Bt) corn in many countries in the Americas, Africa, Asia and in Australia. We conducted diet-overlay bioassays to determine the status of susceptibility to four Bt proteins (Cry1A.105, Cry2Ab2, Cry1F and Cry1Ac) in three different populations of fall armyworm from Mexico, and one population from Puerto Rico. Bioassays showed that fall armyworms from Puerto Rico were resistant to Cry1F with a resistance ratio 50 (RR50) higher than 10,000 ng/cm2 and to Cry1Ac with a RR50 = 12.2 ng/cm2, displaying the highest median lethal concentration (LC50) values to all Bt proteins tested. The effective concentration 50 (EC50) values further confirmed the loss of susceptibility to Cry1F and Cry1Ac in this population. However, LC50 and EC50 results with Cry1A.105 and Cry2Ab2 revealed that fall armyworm from Puerto Rico remained largely susceptible to these two proteins. The Mexican populations were highly susceptible to all the Bt proteins tested and displayed the lowest LC50 and EC50 values to all Bt proteins. Our results suggest that Cry1F and Cry1Ac resistance is stable in fall armyworm from Puerto Rico. However, this population remains susceptible to Cry1A.105 and Cry2Ab2. Results with Mexican fall armyworms suggest that possible deployment of Bt corn in Mexico will not be immediately challenged by Bt-resistant genes in those regions.

13.
J Econ Entomol ; 113(4): 1955-1962, 2020 08 13.
Article in English | MEDLINE | ID: mdl-32789524

ABSTRACT

The northern corn rootworm (NCR), Diabrotica barberi Smith & Lawrence, is an economic pest of maize in the U.S. Corn Belt. The objective of this study was to determine the baseline susceptibility of a laboratory NCR strain to Bt proteins eCry3.1Ab, mCry3A, Cry3Bb1, and Cry34/35Ab1 using seedling, single plant, and diet-toxicity assays. Plant assays were performed in greenhouse using corn hybrids expressing one of the Bt proteins and each respective near-isoline. Diet-toxicity assays, consisting of Bt proteins overlaid onto artificial diet were also conducted. In both plant assays, significantly more larvae survived Cry34/35Ab1-expressing corn compared with all other Bt-expressing corn, and larvae that survived eCry3.1Ab-expressing corn had significantly smaller head capsule widths compared with larvae that survived Cry34/35Ab1-expressing corn. In seedling assays, larvae surviving eCry3.1Ab-expressing corn also had significantly smaller head capsule widths compared with larvae that survived mCry3A-expressing corn. Additionally, larvae that survived mCry3A-expressing corn weighed significantly more than larvae surviving eCry3.1Ab- and Cry34/35Ab1-expressing corn. In single plant assays, no significant differences in larval dry weight was observed between any of the Bt-expressing corn. In diet assays, LC50s ranged from 0.14 (eCry3.1Ab) to 10.6 µg/cm2 (Cry34/35Ab1), EC50s ranged from 0.12 (Cry34/35Ab1) to 1.57 µg/cm2 (mCry3A), IC50s ranged from 0.08 (eCry3.1Ab) to 2.41 µg/cm2 (Cry34/35Ab1), and MIC50s ranged from 2.52 (eCry3.1Ab) to 14.2 µg/cm2 (mCry3A). These results establish the toxicity of four Bt proteins to a laboratory diapausing NCR strain established prior to the introduction of Bt traits and are important for monitoring resistance evolution in NCR field populations.


Subject(s)
Bacillus thuringiensis , Coleoptera , Animals , Bacillus thuringiensis/genetics , Bacterial Proteins , Coleoptera/genetics , Diet , Endotoxins , Hemolysin Proteins , Laboratories , Larva , Pest Control, Biological , Plants, Genetically Modified/genetics , Seedlings , Zea mays/genetics
14.
J Econ Entomol ; 113(3): 1563-1567, 2020 06 06.
Article in English | MEDLINE | ID: mdl-32207824

ABSTRACT

European corn borer, Ostrinia nubilalis Hübner (Lepidoptera: Crambidae), has been present in the United States for over 100 yr and documented on >200 plant species, including economically valuable crops. The reported preferred host of O. nubilalis is corn, Zea mays L. (Cyperales: Poaceae), although it is considered to be a generalist agricultural pest. Life cycles of the two pheromone races, E and Z, align with the seasonality of different agricultural plants. Since the introduction of Bt corn in 1996, overall O. nubilalis presence has declined and suggests that alternative crop plants might not be suitable hosts. We investigated plant vegetation preference of third-instar Z-race O. nubilalis for leaf disks of corn and a variety of other crops using 48 h no-choice and choice tests. Z-race larvae gained more mass on V6 non-Bt field corn leaf disks in comparison to other plant species options. Additionally, a preference for non-Bt field corn leaf disks was observed in most comparisons. Higher consumption of cucumber, Cucumis sativus L. (Cucurbitales: Cucurbitaceae), leaf disks as compared to non-Bt field corn leaf disks suggested an ability to feed on excised leaf tissues of a plant species that does not induce defenses to herbivory.


Subject(s)
Lepidoptera , Moths , Animals , Bacterial Proteins/genetics , Endotoxins , Moths/genetics , Pheromones , Plant Leaves , Plants, Genetically Modified , Zea mays/genetics
15.
J Econ Entomol ; 113(1): 390-398, 2020 02 08.
Article in English | MEDLINE | ID: mdl-31693095

ABSTRACT

The fall armyworm, Spodoptera frugiperda (J. E. Smith) (Lepidoptera: Noctuidae), is currently the most important maize pest in Mexico. Its control is mainly based on the use of conventional insecticides. Additionally, Bt-maize expressing Cry1F protein represents an alternative to control this pest. We estimated the baseline susceptibility in Mexican populations of S. frugiperda to Cry1F protein. Twenty-eight geographical populations were field collected from Baja California Sur, Chihuahua, Coahuila, Durango, Sinaloa, Sonora, and Tamaulipas states. The F1 neonate larvae of each population were subjected to diet-overlay bioassay. After 7 d of Cry1F exposure, the percent mortality and the percent growth inhibition with respect to the untreated control were recorded (S-LAB). The LC50 ranged from 14.4 (6.3-24.0) (Cajeme 1, Sonora) to 161.8 ng/cm2 (92.0-320) (Ahumada 2, Chihuahua), while the LC95 was between 207.1 (145-363) (Obregón, Sonora) and 1,217 ng/cm2 (510.8-7,390.0) (Río Bravo 2, Tamaulipas). The sensitivity ratios at 50% mortality, (LC50 field/LC50 S-Lab) and 95% mortality were ≤6.45 and ≤5.05-fold, respectively. The 50% growth inhibition (GI50) ranged from 2.8 (0.008-9.3) (Obregón, Sonora) to 42.4 ng/cm2 (3.6-147.0) (Cajeme 1, Sonora). The GI95 was between 75.4 (San Luis Río Colorado, Sonora) to 1,198 ng/cm2 (Cajeme 1, Sonora). The relative inhibition at 50% of the growth, (RI50 = GI50 field /GI50 S-LAB) was ≤3.5 and at 95% (RI95) was ≤1.91-fold. These results indicated susceptibility to Cry1F protein in the evaluated populations of S. frugiperda.


Subject(s)
Endotoxins , Hemolysin Proteins/genetics , Animals , Bacterial Proteins/genetics , Colorado , Insecticide Resistance , Larva , Mexico , Plants, Genetically Modified , Spodoptera , Zea mays/genetics
16.
Annu Rev Entomol ; 65: 273-292, 2020 01 07.
Article in English | MEDLINE | ID: mdl-31594412

ABSTRACT

With 20% of the world's population but just 7% of the arable land, China has invested heavily in crop biotechnology to increase agricultural productivity. We examine research on insect-resistant genetically engineered (IRGE) crops in China, including strategies to promote their sustainable use. IRGE cotton, rice, and corn lines have been developed and proven efficacious for controlling lepidopteran crop pests. Ecological impact studies have demonstrated conservation of natural enemies of crop pests and halo suppression of crop-pest populations on a local scale. Economic, social, and human health effects are largely positive and, in the case of Bt cotton, have proven sustainable over 20 years of commercial production. Wider adoption of IRGE crops in China is constrained by relatively limited innovation capacity, public misperception, and regulatory inaction, suggesting the need for further financial investment in innovation and greater scientific engagement with the public. The Chinese experience with Bt cotton might inform adoption of other Bt crops in China and other developing countries.


Subject(s)
Crops, Agricultural , Plants, Genetically Modified , Animals , Bacillus thuringiensis Toxins , Bacterial Proteins , Endotoxins , Genetic Engineering , Gossypium/genetics , Hemolysin Proteins , Insecta
17.
J Econ Entomol ; 112(6): 2894-2906, 2019 12 09.
Article in English | MEDLINE | ID: mdl-31375824

ABSTRACT

Recent studies suggest that resistance in Helicoverpa zea (Boddie) (Lepidoptera, Noctuidae) to Cry1A(b/c) and Cry2Ab2 toxins from the bacterium Bacillus thuringiensis Berliner (Bacillales: Bacillaceae) has increased and field efficacy is impacted in transgenic corn and cotton expressing these toxins. A third toxin, Vip3A, is available in pyramids expressing two or more Bt toxins in corn hybrids and cotton varieties, but uncertainty exists regarding deployment strategies. During a growing season, H. zea infests corn and cotton, and debate arises over use of Vip3A toxin in corn where H. zea is not an economic pest. We used a three-locus, spatially explicit simulation model to evaluate when using Vip3A in corn might hasten evolution of resistance to Vip3A, with implications in cotton where H. zea is a key pest. When using a conventional refuge in corn and initial resistance allele frequencies of Cry1A and Cry2A were 10%, transforming corn with Vip3A slowed resistance to these toxins and delayed resistance evolution to the three-toxin pyramid as a whole. When Cry resistance allele frequencies exceeded 30%, transforming corn with Vip3A hastened the evolution of resistance to the three-toxin pyramid in cotton. When using a seed blend refuge strategy, resistance was delayed longest when Vip3A was not incorporated into corn and used only in cotton. Simulations of conventional refuges were generally more durable than seed blends, even when 75% of the required refuge was not planted. Extended durability of conventional refuges compared to other models of resistance evolution are discussed as well as causes for unusual survivorship in seed blends.


Subject(s)
Moths , Zea mays , Animals , Bacterial Proteins , Endotoxins , Hemolysin Proteins , Insecticide Resistance , Pest Control, Biological , Plants, Genetically Modified , United States
18.
J Econ Entomol ; 112(5): 2324-2334, 2019 09 23.
Article in English | MEDLINE | ID: mdl-31165163

ABSTRACT

Western corn rootworm, Diabrotica virgifera virgifera LeConte (Coleoptera: Chrysomelidae), has developed resistance to transgenic corn that produces the insecticidal toxin Cry3Bb1 derived from the bacterium Bacillus thuringiensis (Bacillales: Bacillaceae) (Bt), with cross-resistance extending to corn with Bt toxins mCry3A and eCry3.1Ab. Additionally, some populations of western corn rootworm have evolved resistance to Cry34/35Ab1 corn. We conducted a 2-yr field and laboratory study that included three field locations: 1) Bt-susceptible population, 2) field with a recent history of Cry3Bb1 resistance, and 3) field with a long-term history of Cry3Bb1 resistance. The population with recently evolved Cry3Bb1 resistance showed resistance to Cry3Bb1 corn in both laboratory bioassays and field evaluations; by contrast, the population with a long-term history of Cry3Bb1 resistance showed resistance, in both laboratory and field experiments to Cry3Bb1 corn and corn with a pyramid of mCry3A plus eCry3.1Ab corn. Field-based evaluations also showed that the field population with a long-term history of Cry3Bb1 resistance imposed higher root injury to Cry3Bb1 corn and the pyramid of mCry3A plus eCry3.1Ab compared with the susceptible control. The results of this study are discussed in the context of developing strategies to manage western corn rootworm in areas where populations have evolved resistance to Cry3Bb1 corn.


Subject(s)
Bacillus thuringiensis , Coleoptera , Animals , Bacterial Proteins , Endotoxins , Insecticide Resistance , Larva , Pest Control, Biological , Plants, Genetically Modified , Zea mays
19.
J Econ Entomol ; 111(4): 1732-1744, 2018 08 03.
Article in English | MEDLINE | ID: mdl-29850890

ABSTRACT

Western bean cutworm, Striacosta albicosta Smith (Lepidoptera: Noctuidae), is a pest of corn, Zea maize L., and dry edible beans, Phaseolus sp. L., native to the western United States. Following the range expansion into the U.S. Corn Belt, pheromone trap monitoring began in the Great Lakes region in 2006. The first S. albicosta was captured in Michigan in 2006 and in Ontario, Canada in 2008. Pheromone traps were used to document spread and increasing captures of S. albicosta across Michigan and Ontario until 2012. Trapping confirmed the univoltine life cycle of S. albicosta in this region and identified peak flight, typically occurring in late July. Overwintering of S. albicosta in this region was confirmed by emergence from infested fields and overwintering experiments. Multiple soil textures were infested with prepupae, and recovery was assessed throughout the winter. Overwintering success was not affected by soil texture; however, prepupae were found at greater depths in coarse-textured soils. Soil temperatures at overwintering depths did not reach the supercooling point. Injury to corn by S. albicosta increased in incidence, severity and geographic range from 2010 to 2014 in field plots. Decreasing control of injury by Cry1F corn hybrids was observed over time. These findings show that S. albicosta has established as a perennial corn pest in the Great Lakes region due to observations of overwintering success and unmanaged injury. We recommend S. albicosta obtain primary pest status in this region within regulatory framework and a resistance management plan be required for traits targeting this pest.


Subject(s)
Moths , Zea mays , Animals , Bacterial Proteins , Endotoxins , Great Lakes Region , Larva , Michigan , Ontario , Plants, Genetically Modified
20.
Front Plant Sci ; 9: 39, 2018.
Article in English | MEDLINE | ID: mdl-29456543

ABSTRACT

In the agroecosystem, genetically engineered plants producing insecticidal Cry proteins from Bacillus thuringiensis (Bt) interact with non-target herbivores and other elements of the food web. Stacked Bt crops expose herbivores to multiple Cry proteins simultaneously. In this study, the direct interactions between SmartStax® Bt maize producing six different Cry proteins and two herbivores with different feeding modes were investigated. Feeding on leaves of Bt maize had no effects on development time, fecundity, or longevity of the aphid Rhopalosiphum padi (Hemiptera: Aphididae), and no effects on the egg hatching time, development time, sex ratio, fecundity, and survival of the spider mite Tetranychus urticae (Acari: Tetranychidae). The results thus confirm the lack of effects on those species reported previously for some of the individual Cry proteins. In the Bt maize leaves, herbivore infestation did not result in a consistent change of Cry protein concentrations. However, occasional statistical differences between infested and non-infested leaves were observed for some Cry proteins and experimental repetitions. Overall, the study provides evidence that the Cry proteins in stacked Bt maize do not interact with two common non-target herbivores.

SELECTION OF CITATIONS
SEARCH DETAIL