Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 5.516
Filter
1.
Microb Pathog ; 193: 106773, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38960213

ABSTRACT

Meyerozyma guilliermondii (Candida guilliermondii) is one of the Candida species associated with invasive candidiasis. With the potential for expressing industrially important enzymes, M. guilliermondii strain SO possessed 99 % proteome similarity with the clinical ATCC 6260 isolate and showed pathogenicity towards zebrafish embryos. Recently, three secreted aspartyl proteinases (SAPs) were computationally identified as potential virulence factors in this strain without in vitro verification of SAP activity. The quantification of Candida SAPs activity in liquid broth were also scarcely reported. Thus, this study aimed to characterize M. guilliermondii strain SO's ability to produce SAPs (MgSAPs) in different conditions (morphology and medium) besides analyzing its growth profile. MgSAPs' capability to cleave bovine serum albumin (BSA) was also determined to propose that MgSAPs as the potential virulence factors compared to the avirulent Saccharomyces cerevisiae. M. guilliermondii strain SO produced more SAPs (higher activity) in yeast nitrogen base-BSA-dextrose broth compared to yeast extract-BSA-dextrose broth despite insignificantly different SAP activity in both planktonic and biofilm cells. FeCl3 supplementation significantly increased the specific protein activity (∼40 %). The BSA cleavage by MgSAPs at an acidic pH was proven through semi-quantitative SDS-PAGE, sharing similar profile with HIV-1 retropepsin. The presented work highlighted the MgSAPs on fungal cell wall and extracellular milieu during host infection could be corroborated to the quantitative production in different growth modes presented herein besides shedding lights on the potential usage of retropepsin's inhibitors in treating candidiasis. Molecular and expression analyses of MgSAPs and their deletion should be further explored to attribute their respective virulence effects.

2.
Int Microbiol ; 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38955904

ABSTRACT

The study aimed to investigate Candida albicans presence, antifungal resistance, biofilm formation, putative virulence genes, and molecular characterization in oral samples of dogs and cats. A total of 239 oral samples were collected from cats and dogs of various breeds and ages at Erciyes University, Faculty of Veterinary Medicine Clinics, between May 2017 and April 2018. Among 216 isolates obtained, 15 (6.95%) were identified as C. albicans, while 8 (3.7%) were non-albicans Candida species. Antifungal susceptibility testing revealed sensitivities to caspofungin, fluconazole, and flucytosine in varying proportions. Molecular analysis indicated the presence of fluconazole and caspofungin resistance genes in all C. albicans isolates. Additionally, virulence genes ALS1, HWP1, and HSP90 showed variable presence. Biofilm formation varied among isolates, with 46.7% strong, 33.3% moderate, and 20% weak producers. PCA analysis categorized isolates into two main clusters, with some dog isolates grouped separately. The findings underscore the significance of oral care and protective measures in pets due to C. albicans prevalence, biofilm formation, virulence factors, and antifungal resistance in their oral cavity, thereby aiding clinical diagnosis and treatment in veterinary medicine.

3.
Inflammation ; 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38963571

ABSTRACT

Our previous research indicated that Sodium houttuyfonate (SH) can effectively ameliorate dextran sulfate sodium (DSS)-induced colitis exacerbated by Candida albicans. However, the underlying protective mechanism of SH remains unclear. Therefore, in this study, a mice colitis model was infected with C. albicans, and the total colonic miRNAs were assessed. Furthermore, the differentially expressed miRNAs were enriched, clustered, and analyzed. Moreover, based on the dual luciferase analysis of NFKBIZ modulation by miR-32-5p, the in vitro and in vivo therapeutic effects of SH on inflammatory response, fungal burden, oxidative stress, and apoptosis were assessed at transcriptional and translational levels in the presence of agonist and antagonist. A total of 1157 miRNAs were identified, 84 of which were differentially expressed. Furthermore, qRT-PCR validated that SH treatment improved 17 differentially expressed miRNAs with > fourfold upregulation or > sixfold downregulation. Similar to most differentially altered miRNA, C. albicans significantly increased Dectin-1, NF-κB, TNF-α, IL-1ß, IL-17A, and decreased miR-32-5p which negatively targeted NFKBIZ. In addition, SH treatment reduced inflammatory response and fungal burden in a colitis model with C. albicans infection. Further analyses indicated that in C. albicans infected Caco2 cells, SH inhibited fungal growth, oxidative stress, and apoptosis by increasing Dectin-1, NF-κB, NFKBIZ, TNF-α, IL-1ß, IL-17A, and decreasing miR-32-5p. Therefore, SH can ameliorate the severity of colitis aggravated by C. albicans via the Dectin-1/NF-κB/miR-32-5p/NFKBIZ axis.

4.
Front Cell Infect Microbiol ; 14: 1392564, 2024.
Article in English | MEDLINE | ID: mdl-38983116

ABSTRACT

Antifungal resistance and antifungal tolerance are two distinct terms that describe different cellular responses to drugs. Antifungal resistance describes the ability of a fungus to grow above the minimal inhibitory concentration (MIC) of a drug. Antifungal tolerance describes the ability of drug susceptible strains to grow slowly at inhibitory drug concentrations. Recent studies indicate antifungal resistance and tolerance have distinct evolutionary trajectories. Superficial candidiasis bothers millions of people yearly. Miconazole has been used for topical treatment of yeast infections for over 40 years. Yet, fungal resistance to miconazole remains relatively low. Here we found different clinical isolates of Candida albicans had different profile of tolerance to miconazole, and the tolerance was modulated by physiological factors including temperature and medium composition. Exposure of non-tolerant strains with different genetic backgrounds to miconazole mainly induced development of tolerance, not resistance, and the tolerance was mainly due to whole chromosomal or segmental amplification of chromosome R. The efflux gene CDR1 was required for maintenance of tolerance in wild type strains but not required for gain of aneuploidy-mediated tolerance. Heat shock protein Hsp90 and calcineurin were essential for maintenance as well as gain of tolerance. Our study indicates development of aneuploidy-mediated tolerance, not resistance, is the predominant mechanism of rapid adaptation to miconazole in C. albicans, and the clinical relevance of tolerance deserves further investigations.


Subject(s)
Aneuploidy , Antifungal Agents , Calcineurin , Candida albicans , Drug Resistance, Fungal , Fungal Proteins , HSP90 Heat-Shock Proteins , Miconazole , Microbial Sensitivity Tests , Miconazole/pharmacology , Candida albicans/drug effects , Candida albicans/genetics , Candida albicans/metabolism , HSP90 Heat-Shock Proteins/metabolism , HSP90 Heat-Shock Proteins/genetics , Antifungal Agents/pharmacology , Drug Resistance, Fungal/genetics , Fungal Proteins/genetics , Fungal Proteins/metabolism , Calcineurin/metabolism , Humans , Membrane Transport Proteins/genetics , Membrane Transport Proteins/metabolism , Candidiasis/microbiology , Candidiasis/drug therapy , Drug Tolerance
5.
Discov Nano ; 19(1): 115, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38980559

ABSTRACT

Candida albicans is one of the most dangerous pathogenic fungi in the world, according to the classification of the World Health Organization, due to the continued development of its resistance to currently available anticandidal agents. To overcome this problem, the current work provided a simple, one-step, cost-effective, and safe technique for the biosynthesis of new functionalized anticandidal selenium nanoparticles (Se NPs) against C. albicans ATCC10231 using the cell-free supernatant of Limosilactobacillus fermentum (OR553490) strain. The bacterial strain was isolated from yogurt samples available in supermarkets, in Damietta, Egypt. The mixing ratio of 1:9 v/v% between cell-free bacterial metabolites and sodium selenite (5 mM) for 72 h at 37 °C were the optimum conditions for Se NPs biosynthesis. Ultraviolet-visible spectroscopy (UV-Vis), Fourier transform infrared spectroscopy (FT-IR), transmission electron microscopy (TEM), X-ray diffraction (XRD), Zeta analyses, and elemental analysis system (EDS) were used to evaluate the optimized Se NPs. The Se NPs absorption peak appeared at 254 nm. Physicochemical analysis of Se NPs revealed the crystalline-shaped and well-dispersed formation of NPs with an average particle size of 17-30 nm. Se NPs have - 11.8 mV, as seen by the zeta potential graph. FT-IR spectrum displayed bands of symmetric and asymmetric amines at 3279.36 cm-1 and 2928.38 cm-1, aromatic and aliphatic (C-N) at 1393.32 cm-1 and 1237.11.37 cm-1 confirming the presence of proteins as stabilizing and capping agents. Se NPs acted as a superior inhibitor of C. albicans with an inhibition zone of 26 ± 0.03 mm and MIC value of 15 µg/mL compared to one of the traditional anticandidal agent, miconazole, which revealed 18 ± 0.14 mm and 75 µg/mL. The cytotoxicity test shows that Se NPs have a low toxic effect on the normal keratinocyte (IC50 ≈ 41.5 µg/mL). The results indicate that this green synthesis of Se NPs may have a promising potential to provide a new strategy for drug therapy.

6.
J Biophotonics ; : e202400190, 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-39021314

ABSTRACT

Candida albicans biofilm can cause diseases that are resistant to conventional antifungal agents. Photodynamic (PDI), sonodynamic (SDI), and sonophotodynamic (SPDI) inactivation have arisen as promising antimicrobial strategies. This study evaluated these treatments mediated by curcumin against C. albicans biofilms. For this, C. albicans biofilms were submitted to PDI, SDI, or SPDI with different light and ultrasound doses, then, the viability assay was performed to measure the effectiveness. Finally, a mathematical model was suggested to fit acquired experimental data and understand the synergistic effect of light and ultrasound in different conditions. The results showed that SPDI, PDI, and SDI reduced the viability in 6 ± 1; 1 ± 1; and 2 ± 1 log, respectively, using light at 60 J/cm2, ultrasound at 3 W/cm2, and 80 µM of curcumin. The viability reduction was proportional to the ultrasound and light doses delivered. These results encourage the use of SPDI for the control of microbial biofilm.

7.
Front Chem ; 12: 1413253, 2024.
Article in English | MEDLINE | ID: mdl-39021388

ABSTRACT

MAX phases, characterized as nanolaminates of ternary carbides/nitrides structure, possess a unique combination of ceramic and metallic properties, rendering them pivotal in materials research. In this study, chromium aluminum carbide ternary compounds, Cr2AlC (211), Cr3AlC2 (312), and Cr4AlC3 (413) were successfully synthesized with high purity using a facile and cost-effective sol-gel method. Structural, morphological, and chemical characterization of the synthesized phases was conducted to understand the effects of composition changes and explore potential applications. Comprehensive characterization techniques including XRD for crystalline structure elucidations, SEM for morphological analysis, EDX for chemical composition, Raman spectroscopy for elucidation of vibrational modes, XPS to analyze elemental composition and surface chemistry, and FTIR spectroscopy to ensure the functional groups analysis, were performed. X-ray diffraction analysis indicated the high purity of the synthesized Cr2AlC phase as well as other ternary compounds Cr3AlC2 and Cr4AlC3, suggesting its suitability as a precursor for MXenes production. Additionally, the antimicrobial activity against Candida albicans and biocompatibility assessments against Escherichia coli (E. coli), Staphylococcus aureus (S. aureus), and HepG2 cell line were investigated. The results demonstrated significant antifungal activity of the synthesized phases against Candida albicans and negligible impact on the viability of E. coli and S. aureus. Interestingly, lower concentrations of Cr2AlC MAX phase induced cytotoxicity in HepG2 cells by triggering intercellular oxidative stress, while Cr3AlC2 and Cr4AlC3 exhibited lower cytotoxicity compared to Cr2AlC, highlighting their potential in biomedical applications.

8.
Indian J Microbiol ; 64(2): 529-539, 2024 Jun.
Article in English | MEDLINE | ID: mdl-39011013

ABSTRACT

Vaginal lactobacilli protect against bacterial vaginosis and vaginal candidiasis. They may have probiotic properties and help maintain the balance and health of the vaginal ecosystem while the loss of these bacteria predisposes females to urinary and genital infections. The aim of this study was to investigate the probiotic potential of vaginal Lactobacillus among healthy females in northern Iran. The Lactobacillus strains were isolated from vaginal samples and were identified by sequencing of the 16S rRNA fragment. Functional properties such as tolerance to low pH, H2O2 production, adherence ability to Hela cells and antagonistic activity against Candida albicans was examined. A total of 38 vaginal lactobacilli strains from five species, including Lactobacillus crispatus (n = 13), Lactobacillus gasseri (n = 10), Lactobacillus acidophilus (n = 6), Lactobacillus jensenii (n = 5) and Lactobacillus johnsonii (n = 4), were identified. All of the species showed significant tolerance to low pH over 24 h (p < 0.001). The best adherence ability to Hela cells was seen in Lactobacillus gasseri strains. Nearly 17 of the strains had higher anti-candida activity compared to the other strains. According to the findings, four lactobacilli strains isolated in the vaginal samples of healthy Iranian women had the best probiotic potential.

9.
J Pharmacopuncture ; 27(2): 91-100, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38948309

ABSTRACT

Objectives: Candida albicans is an opportunistic pathogen that occurs as harmless commensals in the intestine, urogenital tract, and skin. It has been influenced by a variety of host conditions and has now evolved as a resistant strain. The aim of this study was thus detect the fluconazole resistant C. albicans from the root caries specimens and to computationally evaluate the interactions of an opaque-phase ABC transporter protein with the Psidium guajava bio-active compounds. Methods: 20 carious scrapings were collected from patients with root caries and processed for the isolation of C. albicans and was screened for fluconazole resistance. Genomic DNA was extracted and molecular characterization of Cdrp1 and Cdrp2 was done by PCR amplification. P. guajava methanolic extract was checked for the antifungal efficacy against the resistant strain of C. albicans. Further in-silico docking involves retrieval of ABC transporter protein and ligand optimization, molinspiration assessment on drug likeness, docking simulations and visualizations. Results: 65% of the samples showed the presence of C.albicans and 2 strains were fluconazole resistant. Crude methanolic extract of P. guajava was found to be promising against the fluconazole resistant strains of C. albicans. In-silico docking analysis showed that Myricetin was a promising candidate with a high docking score and other drug ligand interaction scores. Conclusion: The current study emphasizes that bioactive compounds from Psidium guajava to be a promising candidate for treating candidiasis in fluconazole resistant strains of C. albicans However, further in-vivo studies have to be implemented for the experimental validation of the same in improving the oral health and hygiene.

10.
mBio ; : e0124924, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38949302

ABSTRACT

Protein kinases are critical regulatory proteins in both prokaryotes and eukaryotes. Accordingly, protein kinases represent a common drug target for a wide range of human diseases. Therefore, understanding protein kinase function in human pathogens such as the fungus Candida albicans is likely to extend our knowledge of its pathobiology and identify new potential therapies. To facilitate the study of C. albicans protein kinases, we constructed a library of 99 non-essential protein kinase homozygous deletion mutants marked with barcodes in the widely used SN genetic background. Here, we describe the construction of this library and the characterization of the competitive fitness of the protein kinase mutants under 11 different growth and stress conditions. We also screened the library for protein kinase mutants with altered filamentation and biofilm formation, two critical virulence traits of C. albicans. An extensive network of protein kinases governs these virulence traits in a manner highly dependent on the specific environmental conditions. Studies on specific protein kinases revealed that (i) the cell wall integrity MAPK pathway plays a condition-dependent role in filament initiation and elongation; (ii) the hyper-osmolar glycerol MAPK pathway is required for both filamentation and biofilm formation, particularly in the setting of in vivo catheter infection; and (iii) Sok1 is dispensable for filamentation in hypoxic environments at the basal level of a biofilm but is required for filamentation in normoxia. In addition to providing a new genetic resource for the community, these observations emphasize the environmentally contingent function of C. albicans protein kinases.IMPORTANCECandida albicans is one of the most common causes of fungal disease in humans for which new therapies are needed. Protein kinases are key regulatory proteins and are increasingly targeted by drugs for the treatment of a wide range of diseases. Understanding protein kinase function in C. albicans pathogenesis may facilitate the development of new antifungal drugs. Here, we describe a new library of 99 protein kinase deletion mutants to facilitate the study of protein kinases. Furthermore, we show that the function of protein kinases in two virulence-related processes, filamentation and biofilm formation, is dependent on the specific environmental conditions.

11.
Bioorg Chem ; 151: 107614, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-39002512

ABSTRACT

With increasing health awareness of the pathogenic effects of disease-causing microorganisms, interest in and use (of medical textiles, disinfectants in medical devices, etc.) of antimicrobial substances have increased in various applications, such as medical textiles and disinfectants (alcohol-based and nonalcoholic), in medical devices There are several concerns with alcohol-based disinfectants, such as surface deformation of medical devices due to high alcohol content and damage to skin tissue caused by lipid and protein denaturation of cell membranes. Quaternary ammonium compounds (quats) were preferred because they have the potential to prepare water-based disinfectants. In this study, novel (3-chloropropyl)triethoxysilane (CPTMO) and (3-chloropropyl)triethoxysilane (CPTEO) based quaternary ammonium silane compounds (silane-quats) were developed using quats with carbon chain lengths of C12, C14, C16 and C18. Titration (ASTM D2074) was used to calculate the yield of the synthesis and the structures of the products were characterised by Fourier transform infrared spectroscopy (FTIR), nuclear magnetic resonance spectroscopy (13C NMR, 1H NMR) and gas chromatography-mass spectrometry (GC-MS).The in vitro antimicrobial activity of the synthesized samples was evaluated against Gram-positive (Staphylococcus aureus (S. aureus), Enterococcus hirae (E. hirae)) and Gram-negative (Escherichia coli (E. coli), Pseudomonas aeruginosa (P. aeruginosa)) bacteria and fungi (Candida albicans (C. albicans), Aspergillus brasiliensis (A. brasiliensis)) using the minimum inhibitory concentration (MIC) test. According to MIC tests, the silane-quats with the highest antimicrobial effects were dimethylhexadecyl[3-(trimethoxysilyl)propyl]ammonium chloride (SQ3), which had an MIC of < 16 µg/ml (ppm) against E. coli, S. aureus, E. hirae, C. albicans, and A. brasiliensis and 32 µg/ml against P. aeruginosa. The MIC test results also showed antimicrobial activity at least 2 times greater than that of the commercially available disinfectant benzalkonium chloride (BAC). Findings suggest that SQ3 (C16) holds promise as an effective medical disinfectant, presenting a novel approach to combating microbial infections in healthcare settings.

12.
Am J Reprod Immunol ; 92(1): e13893, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38958245

ABSTRACT

PROBLEM: Vulvovaginal candidiasis (VVC) is a common mucosal fungal infection, and Candida albicans is the main causative agent. The NLRP3 inflammasome plays an important role in VVC, but the underlying mechanism is unknown. METHOD OF STUDY: Vaginal epithelial cells were divided into three groups: control, C. albicans strain SC5314 (wild-type, WT), and WT+ Matt Cooper Compound 950 (MCC950, a specific NLRP3 inhibitor). After human vaginal epithelial cells were pretreated with 1 µmol/L MCC950 for 2 h, C. albicans (MOI = 1) was cocultured with the human vaginal epithelial cells for 12 h. The cell supernatants were collected, LDH was detected, and the IL-1ß and IL-18 levels were determined by ELISA. The expression of the pyroptosis-related proteins NLRP3, Caspase-1 p20 and GSDMD was measured by Western blotting analysis. The protein expression of the pyroptosis-related N-terminus of GSDMD (GSDMD-N) was detected by immunofluorescence. RESULTS: In this study, we showed that the WT C. albicans strain induced pyroptosis in vaginal epithelial cells, as indicated by the LDH and proinflammatory cytokine levels and the upregulated levels of the pyroptosis-related proteins NLRP3, Caspase-1 p20, and GSDMD-N. MCC950 reversed the changes in the expression of these proteins and proinflammatory cytokines in vaginal epithelial cells. CONCLUSION: C. albicans activated the NLRP3 inflammasome to induce vaginal epithelial cell pyroptosis. MCC950 inhibited the NLRP3 inflammasome, reduced vaginal epithelial cell pyroptosis, and decreased the release of inflammatory cytokines.


Subject(s)
Candida albicans , Candidiasis, Vulvovaginal , Epithelial Cells , Inflammasomes , NLR Family, Pyrin Domain-Containing 3 Protein , Pyroptosis , Vagina , Female , Humans , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Candidiasis, Vulvovaginal/immunology , Candidiasis, Vulvovaginal/microbiology , Candidiasis, Vulvovaginal/metabolism , Epithelial Cells/immunology , Epithelial Cells/metabolism , Inflammasomes/metabolism , Inflammasomes/immunology , Candida albicans/immunology , Vagina/microbiology , Vagina/immunology , Vagina/pathology , Interleukin-18/metabolism , Interleukin-1beta/metabolism , Indenes , Furans/pharmacology , Caspase 1/metabolism , Heterocyclic Compounds, 4 or More Rings/pharmacology , Phosphate-Binding Proteins/metabolism , Cells, Cultured , Sulfonamides
13.
J Microbiol ; 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38958871

ABSTRACT

Fleagrass, a herb known for its pleasant aroma, is widely used as a mosquito repellent, antibacterial agent, and for treating colds, reducing swelling, and alleviating pain. The antifungal effects of the essential oils of fleagrass and carvacrol against Candida albicans were investigated by evaluating the growth and the mycelial and biofilm development of C. albicans. Transmission electron microscopy was used to evaluate the integrity of the cell membrane and cell wall of C. albicans. Fleagrass exhibited high fungicidal activity against C. albicans at concentrations of 0.5% v/v (via the Ras1/cAMP/PKA pathway). Furthermore, transmission electron microscopy revealed damage to the cell wall and membrane after treatment with the essential oil, which was further confirmed by the increased levels of ß-1,3-glucan and chitin in the cell wall. This study showed that fleagrass exerts good fungicidal and hyphal growth inhibition activity against C. albicans by disrupting its cell wall, and thus, fleagrass may be a potential antifungal drug.

14.
mBio ; : e0073224, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38953353

ABSTRACT

Candida albicans, an opportunistic fungal pathogen, produces the quorum-sensing molecule farnesol, which we have shown alters the transcriptional response and phenotype of human monocyte-derived dendritic cells (DCs), including their cytokine secretion and ability to prime T cells. This is partially dependent on the nuclear receptor peroxisome proliferator-activated receptor gamma (PPAR-γ), which has numerous ligands, including the sphingolipid metabolite sphingosine 1-phosphate. Sphingolipids are a vital component of membranes that affect membrane protein arrangement and phagocytosis of C. albicans by DCs. Thus, we quantified sphingolipid metabolites in monocytes differentiating into DCs by High-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS). Farnesol increased the activity of serine palmitoyltransferase, leading to increased levels of 3-keto-dihydrosphingosine, dihydrosphingosine, and dihydrosphingosine 1-phosphate and inhibited dihydroceramide desaturase by inducing oxidative stress, leading to increased levels of dihydroceramide and dihydrosphingomyelin species and reduced ceramide levels. Accumulation of dihydroceramides can inhibit mitochondrial function; accordingly, farnesol reduced mitochondrial respiration. Dihydroceramide desaturase inhibition increases lipid droplet formation, which we observed in farnesol-treated cells, coupled with an increase in intracellular triacylglycerol species. Furthermore, inhibition of dihydroceramide desaturase with either farnesol or specific inhibitors impaired the ability of DCs to prime interferon-γ-producing T cells. The effect of farnesol on sphingolipid metabolism, triacylglycerol synthesis, and mitochondrial respiration was not dependent on PPAR-γ. In summary, our data reveal novel effects of farnesol on sphingolipid metabolism, neutral lipid synthesis, and mitochondrial function in DCs that affect their instruction of T cell cytokine secretion, indicating that C. albicans can manipulate host cell metabolism via farnesol secretion.IMPORTANCECandida albicans is a common commensal yeast, but it is also an opportunistic pathogen which is one of the leading causes of potentially lethal hospital-acquired infections. There is growing evidence that its overgrowth in the gut can influence diseases as diverse as alcohol-associated liver disease and COVID-19. Previously, we found that its quorum-sensing molecule, farnesol, alters the phenotype of dendritic cells differentiating from monocytes, impairing their ability to drive protective T cell responses. Here, we demonstrate that farnesol alters the metabolism of sphingolipids, important structural components of the membrane that also act as signaling molecules. In monocytes differentiating to dendritic cells, farnesol inhibited dihydroceramide desaturase, resulting in the accumulation of dihydroceramides and a reduction in ceramide levels. Farnesol impaired mitochondrial respiration, known to occur with an accumulation of dihydroceramides, and induced the accumulation of triacylglycerol and oil bodies. Inhibition of dihydroceramide desaturase resulted in the impaired ability of DCs to induce interferon-γ production by T cells. Thus, farnesol production by C. albicans could manipulate the function of dendritic cells by altering the sphingolipidome.

15.
Int J Pharm ; 661: 124461, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38996824

ABSTRACT

Since the local treatment of oral candidiasis usually requires long-term administration of the antifungal drug, an ideal dosage form should be able to maintain the drug release over an extended period, assuring an adequate concentration at the infection site. In this context, we have considered the possibility of a buccal delivery of miconazole nitrate (MN) by mucoadhesive polymeric matrices. The loading of the antifungal drug in a hydrophilic matrix was made possible by taking advantage of the amphiphilic nature of liposomes (LP). The MN-loaded LP were prepared by a thin film evaporation method followed by extrusion, while solid matrices were obtained by freeze-drying a suspension of the LP in a polymeric solution based on chitosan (CH), sodium hyaluronate (HYA), or hydroxypropyl methylcellulose (HPMC). MN-loaded LP measured 284.7 ± 20.1 nm with homogeneous size distribution, adequate drug encapsulation efficiency (86.0 ± 3.3 %) and positive zeta potential (+47.4 ± 3.3). CH and HYA-based formulations almost completely inhibited C. albicans growth after 24 h, even if the HYA-based one released a higher amount of the drug. The CH-based matrix also provided the best mucoadhesive capacity and therefore represents the most promising candidate for the local treatment of oral candidiasis.

16.
BMC Oral Health ; 24(1): 812, 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-39020326

ABSTRACT

OBJECTIVES: To investigate the clinical features and risk factors of Sjogren's Syndrome (SS) patients suffering from oral candidiasis and to provide a foundation for the prevention and treatment of oral candidiasis in SS patients. METHODS: The medical records of 479 SS patients admitted to the Second Hospital of Shanxi Medical University from 2018 to 2020 were analysed to determine the clinical characteristics and risk factors that influence the occurrence of oral candidiasis infection in SS patients. RESULTS: Patients with oral candidiasis were older than those without oral candidiasis (P < 0.05). Male SS patients had greater oral candidiasis rates (P < 0.05). Unstimulated whole saliva (UWS) and stimulated whole saliva (SWS) were both shown to be adversely associated with oral Candida infections (P < 0.001). Logistic regression revealed that a low UWS was an independent risk factor for oral Candida infections in SS patients (OR: 0.004, P = 0.023). Greater WBC counts (OR: 1.22, P < 0.001), lower haemoglobin levels (OR: 0.97, P = 0.007), lower serum albumin levels (OR: 0.88, P < 0.001), lower IgG levels (OR: 0.91, P = 0.011), lower IgA levels (OR: 0.75, P = 0.011), and lower IgM levels (OR: 0.91, P = 0.015) were found in patients with oral Candida infections. Patients on immunosuppressive medications (OR: 0.32, P = 0.011), particularly rapamycin (P < 0.001), had a decreased rate of oral Candida infections. CONCLUSIONS: Patients with oral candidiasis were older than those without oral candidiasis. Male SS patients are more likely to have oral candidiasis. Individuals with lower UWS and SWS are more susceptible to oral Candida infection. Oral Candida infections in SS patients depend on their immunological status. Rapamycin may increase the abundance of Treg cells to reduce oral Candida infection in SS patients.


Subject(s)
Candidiasis, Oral , Sjogren's Syndrome , Humans , Candidiasis, Oral/complications , Sjogren's Syndrome/complications , Male , Female , Risk Factors , Middle Aged , China/epidemiology , Adult , Saliva/microbiology , Aged , Retrospective Studies , Sex Factors
17.
AAPS PharmSciTech ; 25(6): 156, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38981986

ABSTRACT

Commercial topical formulations containing itraconazole (poorly water soluble), for mycotic infections, have poor penetration to infection sites beneath the nails and skin thereby necessitating oral administration. To improve penetration, colloidal solutions of itraconazole (G1-G4) containing Poloxamer 188, tween 80, ethanol, and propylene glycol were prepared and incorporated into HFA-134-containing sprays. Formulations were characterized using particle size, drug content, and Fourier-transform infrared spectroscopy (FTIR). In vitro permeation studies were performed using Franz diffusion cells for 8 h. Antimycotic activity on Candida albicans and Trichophyton rubrum was performed using broth micro-dilution and flow cytometry, while cytotoxicity was tested on HaCaT cell lines. Particle size ranged from 39.35-116.80 nm. FTIR and drug content revealed that G1 was the most stable formulation (optimized formulation). In vitro release over 2 h was 45% for G1 and 34% for the cream. There was a twofold increase in skin permeation, fivefold intradermal retention, and a sevenfold increase in nail penetration of G1 over the cream. Minimum fungicidal concentrations (MFC) against C. albicans were 0.156 and 0.313 µg/mL for G1 and cream, respectively. The formulations showed optimum killing kinetics after 48 h. MFC values against T. rubrum were 0.312 and 0.625 µg/mL for the G1 and cream, respectively. Transmission electron microscopy revealed organelle destruction and cell leakage for G1 in both organisms and penetration of keratin layers to destroy T. rubrum. Cytotoxicity evaluation of G1 showed relative safety for skin cells. The G1 formulation showed superior skin permeation, nail penetration, and fungicidal activity compared with the cream formulation.


Subject(s)
Antifungal Agents , Candida albicans , Colloids , Itraconazole , Antifungal Agents/pharmacology , Antifungal Agents/administration & dosage , Candida albicans/drug effects , Itraconazole/pharmacology , Itraconazole/administration & dosage , Itraconazole/chemistry , Humans , Animals , Trichophyton/drug effects , Microbial Sensitivity Tests/methods , Chemistry, Pharmaceutical/methods , Particle Size , Skin/metabolism , Skin/drug effects , Skin/microbiology , Skin Absorption/drug effects , Cell Line , HaCaT Cells , Nails/drug effects , Nails/microbiology , Nails/metabolism , Arthrodermataceae
18.
Future Microbiol ; : 1-11, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38979570

ABSTRACT

Aim: To develop a ß-AgVO3 gel and evaluate its physicochemical stability and antifungal activity against Candida albicans. Materials & methods: The gel was prepared from the minimum inhibitory concentration (MIC) of ß-AgVO3. The physicochemical stability was evaluated by centrifugation, accelerated stability (AS), storage (St), pH, syringability, viscosity and spreadability tests and antifungal activity by the agar diffusion. Results: The MIC was 62.5 µg/ml. After centrifugation, AS and St gels showed physicochemical stability. Lower viscosity and higher spreadability were observed for the higher ß-AgVO3 concentration and the minimum force for extrusion was similar for all groups. Antifungal effect was observed only for the ß-AgVO3 gel with 20xMIC. Conclusion: The ß-AgVO3 gel showed physicochemical stability and antifungal activity.


We used silver and vanadium to make a gel that can kill fungi in the mouth. We looked at the color of the gel, it's smell and also checked how well it lasted. The gel turned yellow and had no smell and did not spoil for at least 2 months. When we tested the gel against a type of fungus, it worked as well as another medicine called chlorhexidine, which is sold in pharmacies. But when we compared it with another medicine called nystatin, our gel was not as effective in killing the fungus.

19.
mBio ; : e0153524, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38980041

ABSTRACT

At human body temperature, the fungal pathogen Candida albicans can transition from yeast to filamentous morphologies in response to host-relevant cues. Additionally, elevated temperatures encountered during febrile episodes can independently induce C. albicans filamentation. However, the underlying genetic pathways governing this developmental transition in response to elevated temperatures remain largely unexplored. Here, we conducted a functional genomic screen to unravel the genetic mechanisms orchestrating C. albicans filamentation specifically in response to elevated temperature, implicating 45% of genes associated with the spliceosome or pre-mRNA splicing in this process. Employing RNA-Seq to elucidate the relationship between mRNA splicing and filamentation, we identified greater levels of intron retention in filaments compared to yeast, which correlated with reduced expression of the affected genes. Intriguingly, homozygous deletion of a gene encoding a spliceosome component important for filamentation (PRP19) caused even greater levels of intron retention compared with wild type and displayed globally dysregulated gene expression. This suggests that intron retention is a mechanism for fine-tuning gene expression during filamentation, with perturbations of the spliceosome exacerbating this process and blocking filamentation. Overall, this study unveils a novel biological process governing C. albicans filamentation, providing new insights into the complex regulation of this key virulence trait.IMPORTANCEFungal pathogens such as Candida albicans can cause serious infections with high mortality rates in immunocompromised individuals. When C. albicans is grown at temperatures encountered during human febrile episodes, yeast cells undergo a transition to filamentous cells, and this process is key to its virulence. Here, we expanded our understanding of how C. albicans undergoes filamentation in response to elevated temperature and identified many genes involved in mRNA splicing that positively regulate filamentation. Through transcriptome analyses, we found that intron retention is a mechanism for fine-tuning gene expression in filaments, and perturbation of the spliceosome exacerbates intron retention and alters gene expression substantially, causing a block in filamentation. This work adds to the growing body of knowledge on the role of introns in fungi and provides new insights into the cellular processes that regulate a key virulence trait in C. albicans.

20.
mSphere ; : e0037224, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38980069

ABSTRACT

Iron acquisition is critical for pathogens to proliferate during invasive infection, and the human fungal pathogen Candida albicans is no exception. The iron regulatory network, established in reference strain SC5314 and derivatives, includes the central player Sef1, a transcription factor that activates iron acquisition genes in response to iron limitation. Here, we explored potential variation in this network among five diverse C. albicans strains through mutant analysis, Nanostring gene expression profiling, and, for two strains, RNA-Seq. Our findings highlight four features that may inform future studies of natural variation and iron acquisition in this species. (i) Conformity: In all strains, major iron acquisition genes are upregulated during iron limitation, and a sef1Δ/Δ mutation impairs that response and growth during iron limitation. (ii) Response variation: Some aspects of the iron limitation response vary among strains, notably the activation of hypha-associated genes. As this gene set is tied to tissue damage and virulence, variation may impact the progression of infection. (iii) Genotype-phenotype variation: The impact of a sef1Δ/Δ mutation on cell wall integrity varies, and for the two strains examined the phenotype correlated with sef1Δ/Δ impact on several cell wall integrity genes. (iv) Phenotype discovery: DNA repair genes were induced modestly by iron limitation in sef1Δ/Δ mutants, with fold changes we would usually ignore. However, the response occurred in both strains tested and was reminiscent of a much stronger response described in Cryptococcus neoformans, a suggestion that it may have biological meaning. In fact, we observed that the iron limitation of a sef1Δ/Δ mutant caused recessive phenotypes to emerge at two heterozygous loci. Overall, our results show that a network that is critical for pathogen proliferation presents variation outside of its core functions.IMPORTANCEA key virulence factor of Candida albicans is the ability to maintain iron homeostasis in the host where iron is scarce. We focused on a central iron regulator, SEF1. We found that iron regulator Sef1 is required for growth, cell wall integrity, and genome integrity during iron limitation. The novel aspect of this work is the characterization of strain variation in a circuit that is required for survival in the host and the connection of iron acquisition to genome integrity in C. albicans.

SELECTION OF CITATIONS
SEARCH DETAIL
...