Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 794
Filter
1.
Glia ; 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38946065

ABSTRACT

Microglia continuously remodel synapses, which are embedded in the extracellular matrix (ECM). However, the mechanisms, which govern this process remain elusive. To investigate the influence of the neural ECM in synaptic remodeling by microglia, we disrupted ECM integrity by injection of chondroitinase ABC (ChABC) into the retrosplenial cortex of healthy adult mice. Using in vivo two-photon microscopy we found that ChABC treatment increased microglial branching complexity and ECM phagocytic capacity and decreased spine elimination rate under basal conditions. Moreover, ECM attenuation largely prevented synaptic remodeling following synaptic stress induced by photodamage of single synaptic elements. These changes were associated with less stable and smaller microglial contacts at the synaptic damage sites, diminished deposition of calreticulin and complement proteins C1q and C3 at synapses and impaired expression of microglial CR3 receptor. Thus, our findings provide novel insights into the function of the neural ECM in deposition of complement proteins and synaptic remodeling by microglia.

2.
Front Immunol ; 15: 1405597, 2024.
Article in English | MEDLINE | ID: mdl-38983846

ABSTRACT

Endometriosis (EM) is defined as the engraftment and proliferation of functional endometrial-like tissue outside the uterine cavity, leading to a chronic inflammatory condition. While the precise etiology of EM remains elusive, recent studies have highlighted the crucial involvement of a dysregulated immune system. The complement system is one of the predominantly altered immune pathways in EM. Owing to its involvement in the process of angiogenesis, here, we have examined the possible role of the first recognition molecule of the complement classical pathway, C1q. C1q plays seminal roles in several physiological and pathological processes independent of complement activation, including tumor growth, placentation, wound healing, and angiogenesis. Gene expression analysis using the publicly available data revealed that C1q is expressed at higher levels in EM lesions compared to their healthy counterparts. Immunohistochemical analysis confirmed the presence of C1q protein, being localized around the blood vessels in the EM lesions. CD68+ macrophages are the likely producer of C1q in the EM lesions since cultured EM cells did not produce C1q in vitro. To explore the underlying reasons for increased C1q expression in EM, we focused on its established pro-angiogenic role. Employing various angiogenesis assays on primary endothelial endometriotic cells, such as migration, proliferation, and tube formation assays, we observed a robust proangiogenic effect induced by C1q on endothelial cells in the context of EM. C1q promoted angiogenesis in endothelial cells isolated from EM lesions (as well as healthy ovary that is also rich in C1q). Interestingly, endothelial cells from EM lesions seem to overexpress the receptor for the globular heads of C1q (gC1qR), a putative C1q receptor. Experiments with siRNA to silence gC1qR resulted in diminished capacity of C1q to perform its angiogenic functions, suggesting that C1q is likely to engage gC1qR in the pathophysiology of EM. gC1qR can be a potential therapeutic target in EM patients that will disrupt C1q-mediated proangiogenic activities in EM.


Subject(s)
Complement C1q , Endometriosis , Neovascularization, Pathologic , Endometriosis/metabolism , Endometriosis/immunology , Endometriosis/pathology , Endometriosis/genetics , Complement C1q/genetics , Complement C1q/metabolism , Humans , Female , Neovascularization, Pathologic/genetics , Neovascularization, Pathologic/immunology , Endothelial Cells/metabolism , Endothelial Cells/immunology , Endometrium/immunology , Endometrium/metabolism , Endometrium/pathology , Macrophages/immunology , Macrophages/metabolism , Cells, Cultured , Adult , Cell Proliferation
3.
J Neurochem ; 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-39018376

ABSTRACT

Microglia, the immune cells of the central nervous system, are dynamic and heterogenous cells. While single cell RNA sequencing has become the conventional methodology for evaluating microglial state, transcriptomics do not provide insight into functional changes, identifying a critical gap in the field. Here, we propose a novel organelle phenotyping approach in which we treat live human induced pluripotent stem cell-derived microglia (iMGL) with organelle dyes staining mitochondria, lipids, lysosomes and acquire data by live-cell spectral microscopy. Dimensionality reduction techniques and unbiased cluster identification allow for recognition of microglial subpopulations with single-cell resolution based on organelle function. We validated this methodology using lipopolysaccharide and IL-10 treatment to polarize iMGL to an "inflammatory" and "anti-inflammatory" state, respectively, and then applied it to identify a novel regulator of iMGL function, complement protein C1q. While C1q is traditionally known as the initiator of the complement cascade, here we use organelle phenotyping to identify a role for C1q in regulating iMGL polarization via fatty acid storage and mitochondria membrane potential. Follow up evaluation of microglia using traditional read outs of activation state confirm that C1q drives an increase in microglia pro-inflammatory gene production and migration, while suppressing microglial proliferation. These data together validate the use of a novel organelle phenotyping approach and enable better mechanistic investigation of molecular regulators of microglial state.

4.
Front Immunol ; 15: 1372432, 2024.
Article in English | MEDLINE | ID: mdl-38903527

ABSTRACT

Background: Cancer-associated fibroblasts (CAFs) are the primary stromal cells found in tumor microenvironment, and display high plasticity and heterogeneity. By using single-cell RNA-seq technology, researchers have identified various subpopulations of CAFs, particularly highlighting a recently identified subpopulation termed antigen-presenting CAFs (apCAFs), which are largely unknown. Methods: We collected datasets from public databases for 9 different solid tumor types to analyze the role of apCAFs in the tumor microenvironment. Results: Our data revealed that apCAFs, likely originating mainly from normal fibroblast, are commonly found in different solid tumor types and generally are associated with anti-tumor effects. apCAFs may be associated with the activation of CD4+ effector T cells and potentially promote the survival of CD4+ effector T cells through the expression of C1Q molecules. Moreover, apCAFs exhibited highly enrichment of transcription factors RUNX3 and IKZF1, along with increased glycolytic metabolism. Conclusions: Taken together, these findings offer novel insights into a deeper understanding of apCAFs and the potential therapeutic implications for apCAFs targeted immunotherapy in cancer.


Subject(s)
Cancer-Associated Fibroblasts , Neoplasms , Single-Cell Analysis , Tumor Microenvironment , Tumor Microenvironment/immunology , Tumor Microenvironment/genetics , Cancer-Associated Fibroblasts/metabolism , Cancer-Associated Fibroblasts/immunology , Humans , Neoplasms/immunology , Neoplasms/genetics , Gene Expression Regulation, Neoplastic , Gene Expression Profiling , Core Binding Factor Alpha 3 Subunit/genetics , Core Binding Factor Alpha 3 Subunit/metabolism , Transcriptome
5.
J Agric Food Chem ; 2024 Jun 09.
Article in English | MEDLINE | ID: mdl-38853533

ABSTRACT

Microglia phagocytose synapses have an important effect on the pathogenesis of neurological disorders. Here, we investigated the neuroprotective effects of the walnut-derived peptide, TWLPLPR(TW-7), against LPS-induced cognitive deficits in mice and explored the underlying C1q-mediated microglia phagocytose synapses mechanisms in LPS-treated HT22 cells. The MWM showed that TW-7 improved the learning and memory capacity of the LPS-injured mice. Both transmission electron microscopy and immunofluorescence analysis illustrated that synaptic density and morphology were increased while associated with the decreased colocalized synapses with C1q. Immunohistochemistry and immunofluorescence demonstrated that TW-7 effectively reduced the microglia phagocytosis of synapses. Subsequently, overexpression of C1q gene plasmid was used to verify the contribution of the TW-7 via the classical complement pathway-regulated mitochondrial function-mediated microglia phagocytose synapses in LPS-treated HT22 cells. These data suggested that TW-7 improved the learning and memory capability of LPS-induced cognitively impaired mice through a mechanism associated with the classical complement pathway-mediated microglia phagocytose synapse.

6.
Cell ; 2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38942014

ABSTRACT

Neuroimmune interactions mediate intercellular communication and underlie critical brain functions. Microglia, CNS-resident macrophages, modulate the brain through direct physical interactions and the secretion of molecules. One such secreted factor, the complement protein C1q, contributes to complement-mediated synapse elimination in both developmental and disease models, yet brain C1q protein levels increase significantly throughout aging. Here, we report that C1q interacts with neuronal ribonucleoprotein (RNP) complexes in an age-dependent manner. Purified C1q protein undergoes RNA-dependent liquid-liquid phase separation (LLPS) in vitro, and the interaction of C1q with neuronal RNP complexes in vivo is dependent on RNA and endocytosis. Mice lacking C1q have age-specific alterations in neuronal protein synthesis in vivo and impaired fear memory extinction. Together, our findings reveal a biophysical property of C1q that underlies RNA- and age-dependent neuronal interactions and demonstrate a role of C1q in critical intracellular neuronal processes.

7.
Microbes Infect ; : 105378, 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38880233

ABSTRACT

Antibody-dependent enhancement (ADE) of dengue virus (DENV) infection is one of the mechanisms contributing to increased severity during heterotypic, secondary infection. The complement protein C1q has been shown to reduce the magnitude of ADE in vitro. Therefore, we investigated the mechanisms of C1q modulation of ADE, focusing on processes of viral entry. Using a model of ADE of DENV-1 infection in human myeloid cell lines in the presence of monoclonal antibodies, 4G2 and 2H2, we found that C1q produced nearly a 40-fold reduction of ADE of DENV-1 in K562 cells, but had no effect in U937 cells. In K562 cells, C1q reduced adsorption of DENV-1/4G2 and exerted a dual inhibitory effect on adsorption and internalization of DENV-1/2H2. Distinct endocytic pathways in the presence of antibody corresponded to conditions where C1q produced a differential action. Also, C1q did not affect the intrinsic cell response mediated by FcγR in human myeloid cells. The modulation of ADE of DENV-1 by C1q is dependent on the FcγR expressed on immune cells and the specificity of the antibody comprising the immune complex. Understanding protective and pathogenic mechanisms in the humoral response to DENV infections is crucial for the successful design of antivirals and vaccines.

8.
Front Immunol ; 15: 1368852, 2024.
Article in English | MEDLINE | ID: mdl-38933264

ABSTRACT

The classical pathway of the complement system is activated by the binding of C1q in the C1 complex to the target activator, including immune complexes. Factor H is regarded as the key downregulatory protein of the complement alternative pathway. However, both C1q and factor H bind to target surfaces via charge distribution patterns. For a few targets, C1q and factor H compete for binding to common or overlapping sites. Factor H, therefore, can effectively regulate the classical pathway activation through such targets, in addition to its previously characterized role in the alternative pathway. Both C1q and factor H are known to recognize foreign or altered-self materials, e.g., bacteria, viruses, and apoptotic/necrotic cells. Clots, formed by the coagulation system, are an example of altered self. Factor H is present abundantly in platelets and is a well-known substrate for FXIIIa. Here, we investigated whether clots activate the complement classical pathway and whether this is regulated by factor H. We show here that both C1q and factor H bind to the fibrin formed in microtiter plates and the fibrin clots formed under in vitro physiological conditions. Both C1q and factor H become covalently bound to fibrin clots, and this is mediated via FXIIIa. We also show that fibrin clots activate the classical pathway of complement, as demonstrated by C4 consumption and membrane attack complex detection assays. Thus, factor H downregulates the activation of the classical pathway induced by fibrin clots. These results elucidate the intricate molecular mechanisms through which the complement and coagulation pathways intersect and have regulatory consequences.


Subject(s)
Blood Coagulation , Complement C1q , Complement Factor H , Complement Pathway, Classical , Fibrin , Humans , Complement Factor H/metabolism , Complement Factor H/immunology , Fibrin/metabolism , Complement C1q/metabolism , Complement C1q/immunology , Complement Pathway, Classical/immunology , Protein Binding , Complement Activation/immunology , Blood Platelets/immunology , Blood Platelets/metabolism
9.
Front Immunol ; 15: 1410032, 2024.
Article in English | MEDLINE | ID: mdl-38938561

ABSTRACT

Nephritis is a frequent and severe complication of Systemic Lupus Erythematous (SLE). The clinical course of lupus nephritis (LN) is usually characterized by alternating phases of remission and exacerbation. Flares of LN can lead to deterioration of kidney function, necessitating timely diagnosis and therapy. The presence of autoantibodies against C1q (anti-C1qAb) in the sera of SLE patients has been reported in various studies. Some research suggests that the presence and changes in the titer of anti-C1qAb may be associated with the development of LN, as well as with LN activity and renal flares. However, the exact role of anti-C1qAb in LN remains a subject of debate. Despite variability in the results of published studies, anti-C1qAb hold promise as noninvasive markers for assessing LN activity in SLE patients. Measuring anti-C1qAb levels could aid in diagnosing and managing LN during periods of both inactive disease and renal flares. Nevertheless, larger controlled trials with standardized laboratory assays are necessary to further establish the utility of anti-C1qAb in predicting the reactivation and remission of LN and guiding treatment strategies.


Subject(s)
Autoantibodies , Biomarkers , Complement C1q , Lupus Nephritis , Lupus Nephritis/diagnosis , Lupus Nephritis/immunology , Lupus Nephritis/blood , Humans , Complement C1q/immunology , Biomarkers/blood , Autoantibodies/blood , Autoantibodies/immunology , Disease Management , Animals
10.
Front Immunol ; 15: 1342467, 2024.
Article in English | MEDLINE | ID: mdl-38881889

ABSTRACT

Introduction: Significant neurologic morbidity is caused by pediatric cerebrospinal fluid (CSF) shunt infections. The underlying mechanisms leading to impaired school performance and increased risk of seizures are unknown, however, a better understanding of these mechanisms may allow us to temper their consequences. Recent evidence has demonstrated important roles for complement proteins in neurodevelopment and neuroinflammation. Methods: We examined complement activation throughout Staphylococcus epidermidis (S. epidermidis) central nervous system (CNS) catheter infection. In addition, based on accumulating evidence that C3 plays a role in synaptic pruning in other neuroinflammatory states we determined if C3 and downstream C5 led to alterations in synaptic protein levels. Using our murine model of S. epidermidis catheter infection we quantified levels of the complement components C1q, Factor B, MASP2, C3, and C5 over the course of infection along with bacterial burdens. Results: We found that MASP2 predominated early in catheter infection, but that Factor B was elevated at intermediate time points. Unexpectedly C1q was elevated at late timepoints when bacterial burdens were low or undetectable. Based on these findings and the wealth of information regarding the emerging roles of C1q in the CNS, this suggests functions beyond pathogen elimination during S. epidermidis CNS catheter infection. To identify if C3 impacted synaptic protein levels we performed synaptosome isolation and quantified levels of VGLUT1 and PSD95 as well as pre-, post- and total synaptic puncta in cortical layer V of C3 knockout (KO) and wild type mice. We also used C5 KO and wild type mice to determine if there was any difference in pre-, post- and total synaptic puncta. Discussion: Neither C3 nor C5 impacted synaptic protein abundance. These findings suggest that chronic elevations in C1q in the brain that persist once CNS catheter infection has resolved may be modulating disease sequalae.


Subject(s)
Catheter-Related Infections , Complement C1q , Staphylococcal Infections , Staphylococcus epidermidis , Animals , Staphylococcus epidermidis/physiology , Mice , Complement C1q/metabolism , Staphylococcal Infections/immunology , Staphylococcal Infections/microbiology , Catheter-Related Infections/microbiology , Catheter-Related Infections/immunology , Disease Models, Animal , Mice, Inbred C57BL , Male , Complement Activation , Female , Chronic Disease , Mice, Knockout
11.
J Thorac Dis ; 16(5): 3251-3259, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38883687

ABSTRACT

Background: There is a lack of readily available clinical markers of non-small cell lung cancer (NSCLC) immunotherapy efficacy. Previous studies have found that overexpressed complement component 1q (C1q) promotes macrophage M2 polarization and an immunosuppressive tumor microenvironment. This study aimed to evaluate the association between serum C1q and the efficacy of immune checkpoint inhibitors (ICIs) in patients with advanced NSCLC. Methods: A total of 168 patients with advanced NSCLC who received ICIs in the Renmin Hospital of Wuhan University were included in this study. Serum C1q levels were collected before and 3 weeks after immunotherapy treatment, together with other data on clinical and demographic characteristics. The primary outcome was overall survival (OS) (months from first dose of ICIs to death, censored at date of last follow-up). Secondary outcome was progression-free survival (PFS) [defined as months from first dose of ICIs to clinical or radiographic progression by Response Evaluation Criteria in Solid Tumors version 1.1 (RECIST 1.1) or death, censored at date of last follow-up] and objective response rate (ORR) which was defined as rate of complete response (CR) or partial response (PR) at best response by RECIST 1.1. Results: A total of 168 patients were included in this study, including 127 males (75.60%) and 41 females (24.40%). Thirty-nine patients achieved objective response (2 CR, 37 PR), and 111 patients (66.07%) had stable disease (SD) as best response. The ORR was 23.21% and the disease control rate was 89.28%. The upward trends of serum C1q levels between baseline and post-treatment were strongly associated with the shorter PFS [hazard ratio (HR) =1.554, 95% confidence interval (CI): 1.07-2.10, P=0.01] and OS (HR =1.444, 95% CI: 1.01-1.98, P=0.03). Moreover, taking the median OS 18.9 months as the cut-off of prognosis, receiver operating characteristic (ROC) analysis showed that serum baseline C1q yielded an area under the ROC curve of 0.785 (95% CI: 0.711-0.869). The optimal serum baseline C1q cut-off point to predict immunotherapy prognosis was 216.2 mg/L. Conclusions: These findings suggested that elevated serum C1q after ICIs treatment was related to a worse prognosis in NSCLC. Monitoring the baseline and dynamic data of C1q during hospitalization showed the potential to predict the prognosis of NSCLC patients.

12.
Ocul Immunol Inflamm ; : 1-12, 2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38913993

ABSTRACT

PURPOSE: To assess the clinical relevance of pathophysiology-based biomarkers, specifically serum C1q and whole blood interferon gene signature score (IGSS), in ocular tuberculosis (OTB) diagnosis by conducting an integrative analysis of clinical presentations and treatment response. METHODS: This retrospective cohort study analysed data from 70 patients with suspected OTB at a tertiary care uveitis practice in Indonesia. Serum C1q levels and whole blood IGSS were quantified. Patients were categorized into four quadrants based on their biomarker profiles: quadrant 1 (high C1q & low IGSS), quadrant 2 (high C1q & high IGSS), quadrant 3 (low C1q & high IGSS), and quadrant 4 (low C1q & low IGSS). Characteristics of clinical presentations, work-up results, and treatment outcomes were explored according to the predefined quadrants. RESULTS: We identified that the majority of OTB patients diagnosed with concurrent active pulmonary TB were in quadrant 1, 2, or 3 (20/23, 87.0%). Twenty-seven patients (27/47, 57.4%) with clinically undifferentiated uveitis were in quadrant 4 (p < 0.001). Among patients in quadrants 1, 2, and 3, completion of a full course of antitubercular treatment (ATT) was associated with a lower number of patients showing persistence or recurrence of ocular inflammation compared to those who were not fully treated with ATT (14.3% vs 85.7%, p = 0.001). CONCLUSIONS: Based on the analysis of clinical features and treatment outcomes, patients with elevated levels of either or both serum C1q and whole blood IGSS may reflect active TB disease in the eye, necessitating full ATT management.

13.
Immunol Allergy Clin North Am ; 44(3): 483-502, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38937011

ABSTRACT

Urticarial vasculitis is a rare autoimmune disorder characterized by persistent edematous papules and plaques on the skin that last longer than 24 hours, often accompanied by systemic symptoms such as joint pain and fever. Unlike common urticaria, this condition involves inflammation of small blood vessels, leading to more severe and long-lasting skin lesions with a tendency to leave a bruiselike appearance. Diagnosis is challenging and may require a skin biopsy. Associated with underlying autoimmune diseases, treatment involves managing symptoms with medications such as antihistamines and corticosteroids, addressing the immune system's dysfunction, and treating any concurrent autoimmune conditions.


Subject(s)
Urticaria , Vasculitis , Humans , Urticaria/diagnosis , Urticaria/etiology , Urticaria/immunology , Vasculitis/diagnosis , Skin/pathology , Skin/immunology , Diagnosis, Differential , Histamine Antagonists/therapeutic use , Autoimmune Diseases/diagnosis , Autoimmune Diseases/immunology , Biopsy , Vasculitis, Leukocytoclastic, Cutaneous/diagnosis , Vasculitis, Leukocytoclastic, Cutaneous/immunology , Vasculitis, Leukocytoclastic, Cutaneous/etiology
14.
J Diabetes ; 16(7): e13574, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38924255

ABSTRACT

BACKGROUND: Cardiovascular disease (CVD) is recognized as a primary and severe comorbidity in patients with type 2 diabetes mellitus (T2DM) and is also identified as a leading cause of mortality within this population. Consequently, the identification of novel biomarkers for the risk stratification and progression of CVD in individuals with T2DM is of critical importance. METHODS: This retrospective cohort study encompassed 979 patients diagnosed with T2DM, of whom 116 experienced CVD events during the follow-up period. Clinical assessments and comprehensive blood laboratory analyses were conducted. Age- and sex-adjusted Cox proportional hazard regression analysis was utilized to evaluate the association between lipoprotein-associated phospholipase A2 (Lp-PLA2), C1q/tumor necrosis factor-related protein 3 (CTRP-3), and the incidence of CVD in T2DM. The diagnostic performance of these biomarkers was assessed through receiver operating characteristic (ROC) curve analysis and the computation of the area under the curve (AUC). RESULTS: Over a median follow-up of 84 months (interquartile range: 42 [32-54] months), both novel inflammatory markers, Lp-PLA2 and CTRP-3, and traditional lipid indices, such as low-density lipoprotein cholesterol and apolipoprotein B, exhibited aberrant expression in the CVD-afflicted subset of the T2DM cohort. Age- and sex-adjusted Cox regression analysis delineated that Lp-PLA2 (hazard ratio [HR] = 1.007 [95% confidence interval {CI}: 1.005-1.009], p < 0.001) and CTRP-3 (HR = 0.943 [95% CI: 0.935-0.954], p < 0.001) were independently associated with the manifestation of CVD in T2DM. ROC curve analysis indicated a substantial predictive capacity for Lp-PLA2 (AUC = 0.81 [95% CI: 0.77-0.85], p < 0.001) and CTRP-3 (AUC = 0.91 [95% CI: 0.89-0.93], p < 0.001) in forecasting CVD occurrence in T2DM. The combined biomarker approach yielded an AUC of 0.94 (95% CI: 0.93-0.96), p < 0.001, indicating enhanced diagnostic accuracy. CONCLUSIONS: The findings suggest that the biomarkers Lp-PLA2 and CTRP-3 are dysregulated in patients with T2DM who develop CVD and that each biomarker is independently associated with the occurrence of CVD. The combined assessment of Lp-PLA2 and CTRP-3 may significantly augment the diagnostic precision for CVD in the T2DM demographic.


Subject(s)
1-Alkyl-2-acetylglycerophosphocholine Esterase , Biomarkers , Cardiovascular Diseases , Diabetes Mellitus, Type 2 , Aged , Female , Humans , Male , Middle Aged , 1-Alkyl-2-acetylglycerophosphocholine Esterase/blood , Biomarkers/blood , Cardiovascular Diseases/blood , Cardiovascular Diseases/diagnosis , Cardiovascular Diseases/etiology , Cardiovascular Diseases/epidemiology , Diabetes Mellitus, Type 2/blood , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/diagnosis , Follow-Up Studies , Retrospective Studies , Risk Factors , ROC Curve
15.
Microvasc Res ; 154: 104692, 2024 07.
Article in English | MEDLINE | ID: mdl-38705254

ABSTRACT

OBJECTIVES: Systemic vasculitis is a heterogenous group of autoimmune diseases characterized by enhanced cardiovascular mortality. Endothelial dysfunction is associated with accelerated vascular damage, representing a core pathophysiologic mechanism contributing to excess CV risk. Recent studies have also shown that complement activation holds significant role in the pathogenesis of Anti-Neutrophilic Cytoplasmic Autoantibody (ANCA) -associated vasculitis (AAV). Given the potential crosstalk between the endothelium and complement, we aimed to assess, for the first time simultaneously, easily accessible biomarkers of endothelial dysfunction and complement activation in SV. METHODS: We measured circulating endothelial microvesicles (EMVs) and soluble complement components representative of alternative, classical and terminal activation (C5b-9, C1q, Bb fragments, respectively) in a meticulously selected group of patients with systemic vasculitis, but without cardiovascular disease. Individuals free from systemic diseases, who were matched with patients for cardiovascular risk factors(hypertension, diabetes, smoking, dyslipidemia), comprised the control group. RESULTS: We studied 60 individuals (30 in each group). Patients with systemic vasculitis had elevated EMVs, higher levels of C5b-9 [536.4(463.4) vs 1200.94457.3), p = 0.003] and C1q [136.2(146.5 vs 204.2(232.9), p = 0.0129], compared to controls [232.0 (243.5) vs 139.3(52.1), p < 0.001]. In multivariate analysis both EMVs and C5b-9 were independently associated with disease duration (p = 0.005 and p = 0.004 respectively), yet not with disease activity. CONCLUSION: Patients with systemic vasculitis exhibit impaired endothelial function and complement activation, both assessed by easily accessible biomarkers, even in the absence of cardiovascular disease manifestations. EMVs and soluble complement components such as C5b-9 and C1q could be used as early biomarkers of endothelial dysfunction and complement activation, respectively, in clinical practice during the course of SV, yet their predictive value in terms of future cardiovascular disease warrants further verification in appropriately designed studies.


Subject(s)
Biomarkers , Complement Activation , Endothelium, Vascular , Humans , Male , Female , Middle Aged , Biomarkers/blood , Time Factors , Endothelium, Vascular/physiopathology , Endothelium, Vascular/immunology , Adult , Aged , Case-Control Studies , Cell-Derived Microparticles/metabolism , Cell-Derived Microparticles/pathology , Cell-Derived Microparticles/immunology , Complement Membrane Attack Complex/metabolism , Complement Membrane Attack Complex/immunology , Complement C1q/metabolism , Complement C1q/immunology , Endothelial Cells/pathology , Endothelial Cells/immunology , Endothelial Cells/metabolism , Systemic Vasculitis/immunology , Systemic Vasculitis/blood , Systemic Vasculitis/physiopathology , Systemic Vasculitis/diagnosis
16.
Pol J Pathol ; 75(1): 40-53, 2024.
Article in English | MEDLINE | ID: mdl-38741428

ABSTRACT

C1q/TNF-related protein-9 (CTRP9) has been reported to play roles in several types of retinal diseases. However, the role and the potential mechanism of CTRP9 in glaucoma are still incompletely understood. The expression of CTRP9 in OGD/R-induced retinal ganglion cells (RGCs) was detected by quantitative real-time polymerase chain reaction and western blot assay. Cell proliferation was identified by cell counting Kit-8 assay. Flow cytometry, enzyme-linked immunosorbent assay and western blot assay were performed to assess cell apoptosis. Unfolded protein response (UPR), endoplasmic reticulum (ER) stress and the AMPK pathway were evaluated by western blot assay. The data showed that the expression of CTRP9 was significantly downregulated in OGD/R-induced 661W cells. OGD/R treatment reduced cell viability, promoted cell apoptosis and activated the UPR and ER stress. The overexpression of CTRP9 reversed the effects of OGD/R on 661W cell viability, apoptosis, the UPR and ER stress, as well as the AMPK pathway. However, Compound C, an inhibitor of AMPK signaling, reversed the protection of CTRP9 overexpression against injury from OGD/R in 661W cells. In summary, the results revealed that CTRP9 abated the apoptosis and UPR of OGD/R-induced RGCs by regulating the AMPK pathway, which may provide a promising target for the treatment of glaucoma.


Subject(s)
AMP-Activated Protein Kinases , Apoptosis , Endoplasmic Reticulum Stress , Retinal Ganglion Cells , Signal Transduction , Unfolded Protein Response , Retinal Ganglion Cells/pathology , Retinal Ganglion Cells/metabolism , Animals , AMP-Activated Protein Kinases/metabolism , Mice , Cell Line , Adiponectin/metabolism , Cell Survival , Glucose/metabolism , Glaucoma/metabolism , Glaucoma/pathology , Glycoproteins
17.
Front Immunol ; 15: 1404752, 2024.
Article in English | MEDLINE | ID: mdl-38690267

ABSTRACT

Helminths produce calreticulin (CRT) to immunomodulate the host immune system as a survival strategy. However, the structure of helminth-derived CRT and the structural basis of the immune evasion process remains unclarified. Previous study found that the tissue-dwelling helminth Trichinella spiralis produces calreticulin (TsCRT), which binds C1q to inhibit activation of the complement classical pathway. Here, we used x-ray crystallography to resolve the structure of truncated TsCRT (TsCRTΔ), the first structure of helminth-derived CRT. TsCRTΔ was observed to share the same binding region on C1q with IgG based on the structure and molecular docking, which explains the inhibitory effect of TsCRT on C1q-IgG-initiated classical complement activation. Based on the key residues in TsCRTΔ involved in the binding activity to C1q, a 24 amino acid peptide called PTsCRT was constructed that displayed strong C1q-binding activity and inhibited C1q-IgG-initiated classical complement activation. This study is the first to elucidate the structural basis of the role of TsCRT in immune evasion, providing an approach to develop helminth-derived bifunctional peptides as vaccine target to prevent parasite infections or as a therapeutic agent to treat complement-related autoimmune diseases.


Subject(s)
Calreticulin , Complement C1q , Immune Evasion , Trichinella spiralis , Trichinella spiralis/immunology , Complement C1q/immunology , Complement C1q/metabolism , Complement C1q/chemistry , Animals , Calreticulin/immunology , Calreticulin/chemistry , Calreticulin/metabolism , Crystallography, X-Ray , Protein Binding , Molecular Docking Simulation , Helminth Proteins/immunology , Helminth Proteins/chemistry , Complement Activation/immunology , Immunoglobulin G/immunology , Humans , Antigens, Helminth/immunology , Antigens, Helminth/chemistry , Trichinellosis/immunology , Trichinellosis/parasitology , Complement Pathway, Classical/immunology , Protein Conformation
18.
Life (Basel) ; 14(5)2024 May 17.
Article in English | MEDLINE | ID: mdl-38792658

ABSTRACT

The interaction between IgM and C1q represents the first step of the classical pathway of the complement system in higher vertebrates. To identify the significance of particular IgM/C1q interactions, recombinant IgMs were used in both hexameric and pentameric configurations and with two different specificities, along with C1q derived from human serum (sC1q) and two recombinant single-chain variants of the trimeric globular region of C1q. Interaction and complement activation assays were performed using the ELISA format, and bio-layer interferometry measurements to study kinetic behavior. The differences between hexameric and pentameric IgM conformations were only slightly visible in the interaction assay, but significant in the complement activation assay. Hexameric IgM requires a lower concentration of sC1q to activate the complement compared to pentameric IgM, leading to an increased release of C4 compared to pentameric IgM. The recombinant C1q mimetics competed with sC1q in interaction assays and were able to inhibit complement activation. The bio-layer interferometry measurements revealed KD values in the nanomolar range for the IgM/C1q interaction, while the C1q mimetics exhibited rapid on and off binding rates with the IgMs. Our results make C1q mimetics valuable tools for developing recombinant C1q, specifically its variants, for further scientific studies and clinical applications.

19.
Lipids Health Dis ; 23(1): 131, 2024 May 04.
Article in English | MEDLINE | ID: mdl-38704561

ABSTRACT

BACKGROUND: In the past few years, circulating complement C1q involvement in atherosclerosis has garnered growing research interest in addition to the emerging recognition of the novel lipid marker named atherogenic index of plasma (AIP). Nevertheless, among patients experiencing low-density lipoprotein cholesterol (LDL-C) levels less than 1.8mmol/L, the interplay between C1q combined with the AIP for coronary artery disease (CAD) is ambiguous. METHODS: Patients were stratified into a non-CAD and CAD group according to their coronary angiography. The association between C1q in conjunction with the AIP and CAD was explored using restricted cubic spline analyses and logistic regression models. To assess how it predicted, a receiver operating characteristic analysis was undertaken. RESULTS: A total of 7270 patients comprised 1476 non-CAD patients and 5794 patients diagnosed with CAD were analyzed. A comparison of the two groups showed that the C1q levels were notably higher compared to the CAD group, while AIP exhibited an inverse trend. Across quartiles of C1q, the AIP demonstrated a decline with increasing C1q levels, and significant differences were observed between the groups. A correlation analysis underscored a notable negative correlation between the two variables. Univariate and multivariate logistic regression analyses revealed significant associations between CAD and the C1q quartile groups/AIP. Furthermore, compared with the Q4 group, a decrease in the C1q levels corresponded to an escalation in CAD risk, with the odds ratio rising from 1.661 to 2.314. CONCLUSIONS: In conclusion, there appears to be a notable positive correlation between the combination of C1q with the AIP and CAD.


Subject(s)
Cholesterol, LDL , Complement C1q , Coronary Artery Disease , Humans , Complement C1q/metabolism , Male , Coronary Artery Disease/blood , Female , Middle Aged , Aged , Cholesterol, LDL/blood , Coronary Angiography , Biomarkers/blood , ROC Curve , Logistic Models , Atherosclerosis/blood , Risk Factors
20.
Clin Appl Thromb Hemost ; 30: 10760296241257517, 2024.
Article in English | MEDLINE | ID: mdl-38778544

ABSTRACT

Early identification of biomarkers that can predict the onset of sepsis-induced coagulopathy (SIC) in septic patients is clinically important. This study endeavors to examine the diagnostic and prognostic utility of serum C1q in the context of SIC. Clinical data from 279 patients diagnosed with sepsis at the Departments of Intensive Care, Respiratory Intensive Care, and Infectious Diseases at the Renmin Hospital of Wuhan University were gathered spanning from January 2022 to January 2024. These patients were categorized into two groups: the SIC group comprising 108 cases and the non-SIC group consisting of 171 cases, based on the presence of SIC. Within the SIC group, patients were further subdivided into a survival group (43 cases) and non-survival group (65 cases). The concentration of serum C1q in the SIC group was significantly lower than that in the non-SIC group. Furthermore, A significant correlation was observed between serum C1q levels and both SIC score and coagulation indices. C1q demonstrated superior diagnostic and prognostic performance for SIC patients, as indicated by a higher area under the curve (AUC). Notably, when combined with CRP, PCT, and SOFA score, C1q displayed the most robust diagnostic efficacy for SIC. Moreover, the combination of C1q with the SOFA score heightened predictive value concerning the 28-day mortality of SIC patients.


Subject(s)
Blood Coagulation Disorders , Complement C1q , Sepsis , Humans , Sepsis/blood , Sepsis/complications , Sepsis/diagnosis , Sepsis/mortality , Male , Female , Blood Coagulation Disorders/diagnosis , Blood Coagulation Disorders/etiology , Blood Coagulation Disorders/blood , Middle Aged , Complement C1q/metabolism , Prognosis , Aged , Biomarkers/blood
SELECTION OF CITATIONS
SEARCH DETAIL
...