Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.975
Filter
1.
Clin Toxicol (Phila) ; : 1-7, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38966916

ABSTRACT

INTRODUCTION: The epidemiological and clinical characteristics of acute poisoning with liquid laundry detergent capsules have been comprehensively reported. However, studies of laboratory test results in these exposures are uncommon. This study analyzed the impact of the ingestion of liquid laundry detergent capsules on admission laboratory tests in paediatric patients. METHODS: This retrospective study was conducted in the clinical toxicology unit of a paediatric poison centre between 2015 and 2021. Paediatric patients (less than 18 years of age) who ingested liquid laundry detergent capsules were included. The relationship between the European Association of Poisons Centers and Clinical Toxicologists/European Commission/International Programme on Chemical Safety Poisoning Severity Score and admission laboratory test results was assessed using Fisher's exact test or analysis of variance. RESULTS: A total of 156 patients were included in the study. A considerable proportion of patients presented with leucocytosis, acidosis, hyperlactataemia or base deficit. The median values of white blood cell count (P = 0.042), pH (P = 0.022), and base excess (P = 0.013) were significantly different among the Poisoning Severity Score groups. Hyperlactataemia was strongly associated with the Poisoning Severity Score (P = 0.003). DISCUSSION: Leucocytosis is a non-specific marker of severity following ingestion of liquid laundry detergent capsules. The incidence of metabolic acidosis and hyperlactataemia was higher in this study than in previous reports, but these metabolic features were not related to the severity of exposure. The exact mechanisms of toxicity are not yet known, but the high concentration of non-ionic and anionic surfactants, as well as propylene glycol and ethanol, in the capsule are likely contributing factors. CONCLUSIONS: Pediatric patients who ingest liquid laundry detergent capsules may develop leucocytosis, metabolic acidosis, hyperlactataemia, and a base deficit.

2.
World J Clin Cases ; 12(19): 3854-3865, 2024 Jul 06.
Article in English | MEDLINE | ID: mdl-38994299

ABSTRACT

BACKGROUND: Cold-dampness-type knee osteoarthritis is a common middle-aged and elderly disease, but its pathogenesis is not fully understood, and its clinical treatment has limitations. Glucosamine sulfate capsules are commonly used for treating arthritis, and San Bi Tang is a classic formula of traditional Chinese medicine (TCM) that has the effects of warming yang, dispelling dampness, relaxing muscles, and activating collaterals. This research hypothesized that the combination of modified San Bi Tang and glucosamine sulfate capsules could enhance the clinical efficacy of treating cold-dampness-type knee osteoarthritis through complementary effects. AIM: To analyze the clinical efficacy of San Bi Tang combined with glucosamine sulfate capsules when treating cold-dampness-type knee osteoarthritis. METHODS: A total of 110 patients with cold-dampness-type knee osteoarthritis were selected as research subjects and randomly divided into a control group and an experimental group of 55 cases each. The control group received only treatment with glucosamine sulfate capsules, while the experimental group received additional treatment with modified San Bi Tang for a duration of 5 wk. The patients' knee joint functions, liver and kidney function indicators, adverse reactions, and vital signs were evaluated and analyzed using SPSS 26.0 software. RESULTS: Before treatment, the two groups' genders, ages, and scores were not significantly different, indicating comparability. Both groups' scores improved after treatment, which could indicate pain and knee joint function improvement, but the test group had better scores. The TCM-specific symptoms and the clinical efficacy of the treatment in the test group were higher. Before and after treatment, there were no abnormalities in the patients' liver and kidney function indicators. CONCLUSION: The combination of modified San Bi Tang and glucosamine sulfate capsules is superior to treatment with sulfated glucosamine alone and has high safety.

3.
Mol Pharm ; 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38958668

ABSTRACT

In vivo studies of formulation performance with in vitro and/or in silico simulations are often limited by significant gaps in our knowledge of the interaction between administered dosage forms and the human gastrointestinal tract. This work presents a novel approach for the investigation of gastric motility influence on dosage form performance, by combining biopredictive dissolution tests in an innovative PhysioCell apparatus with mechanistic physiology-based pharmacokinetic modeling. The methodology was based on the pharmacokinetic data from a large (n = 118) cohort of healthy volunteers who ingested a capsule containing a highly soluble and rapidly absorbed drug under fasted conditions. The developed dissolution tests included biorelevant media, varied fluid flows, and mechanical stress events of physiological timing and intensity. The dissolution results were used as inputs for pharmacokinetic modeling that led to the deduction of five patterns of gastric motility and their prevalence in the studied population. As these patterns significantly influenced the observed pharmacokinetic profiles, the proposed methodology is potentially useful to other in vitro-in vivo predictions involving immediate-release oral dosage forms.

4.
Polymers (Basel) ; 16(11)2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38891533

ABSTRACT

The synthesis of polymer brushes on inorganic particles is an effective approach to surface modification. The polymer brushes on the surface endow the substrates with new surface properties. However, the lack of functional groups and the difficulty of surface modification have made it difficult to develop an effective method for the synthesis of polymer brushes on metal surfaces. Herein, a simple and versatile strategy for synthesizing polymer brushes on copper particles is reported. Tannic acid (TA) molecules are adsorbed onto the surfaces of copper particles, forming TA coatings. Quaternized poly(2-(dimethylamino)ethyl methacrylate)-block-polystyrene (qPDMAEMA-b-PS) block copolymer (BCP) chains are grafted on the TA coatings through hydrogen bonding and electrostatic interaction, and PS brushes are grafted on the copper particles. The effects of TA concentration on the adsorption of TA and PS brush synthesis are discussed. The PS brushes are able to form surface nanostructures on the copper particles through co-assembly with PDMAEMA-b-PS BCP chains. The effect of BCP concentration on the surface nanostructures is investigated. It is reasonable to expect that polymer brushes and surface nanostructures can be synthesized on different metal surfaces by using the TA-coating approach reported in this paper.

5.
Front Pharmacol ; 15: 1383831, 2024.
Article in English | MEDLINE | ID: mdl-38863976

ABSTRACT

Background: The COVID-19 pandemic has had a profound global impact, although the majority of recently infected cases have presented with mild to moderate symptoms. Previous clinical studies have demonstrated that Shufeng Jiedu (SFJD) capsule, a Chinese herbal patent medicine, effectively alleviates symptoms associated with the common cold, H1N1 influenza, and COVID-19. This study aimed to assess the efficacy and safety of SFJD capsules in managing symptoms of mild to moderate COVID-19 infection. Methods: A randomized, double-blind, placebo-controlled trial was conducted from May to December 2022 at two hospitals in China. Mild and moderate COVID-19-infected patients presenting respiratory symptoms within 3 days from onset were randomly assigned to either the SFJD or placebo groups in a 1:1 ratio. Individuals received SFJD capsules or a placebo three times daily for five consecutive days. Participants were followed up for more than 14 days after their RT-PCR nucleoid acid test for SARS-CoV-2 turned negative. The primary outcome measure was time to alleviate COVID-19 symptoms from baseline until the end of follow-up. Results: A total of 478 participants were screened; ultimately, 407 completed the trial after randomization (SFJD, n = 203; placebo, n = 204). No statistically significant difference in baseline parameters was observed between the two groups. The median time to alleviate all symptoms was 7 days in the SFJD group compared to 8 days in the placebo group (p = 0.037). Notably, the SFJD group significantly attenuated fever/chills (p = 0.04) and headache (p = 0.016) compared to the placebo group. Furthermore, the median time taken to reach normal body temperature within 24 h was reduced by 7 hours in the SFJD group compared to the placebo group (p = 0.033). No deaths or instances of serious or critical conditions occurred during this trial period; moreover, no serious adverse events were reported. Conclusion: The trial was conducted in a unique controlled hospital setting, and the 5-day treatment with SFJD capsules resulted in a 1-day reduction in overall symptoms, particularly headache and fever/chills, among COVID-19-infected participants with mild or moderate symptoms. Compared to placebo, SFJD capsules were found to be safe with fewer side effects. SFJD capsules could potentially serve as an effective treatment for alleviating mild to moderate symptoms of COVID-19. Clinical Trial Registration: https://www.isrctn.com/, identifier ISRCTN14236594.

6.
Expert Rev Endocrinol Metab ; 19(4): 367-375, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38842362

ABSTRACT

INTRODUCTION: Acromegaly is a rare endocrine disorder usually caused by a benign growth hormone‒secreting pituitary adenoma. Surgical adenoma resection is typically the first line of treatment, and medical therapy is used for patients with persistent disease following surgery, for adenoma recurrence, or for patients ineligible for, or declining, surgery. Approved somatostatin receptor ligands (SRLs) have been limited to injectable options, until recently. Oral octreotide capsules (OOC) are the first approved oral SRL for patients with acromegaly. AREAS COVERED: We review published reports and provide case study examples demonstrating practical considerations on the use of OOC. Using two hypothetical case scenarios, we discuss current treatment patterns, breakthrough symptoms and quality of life (QoL), efficacy of SRLs, OOC dose titration, evaluation of OOC treatment response, and incidence and management of adverse events. EXPERT OPINION: OOC are an option for patients with acromegaly including those who experience breakthrough symptoms, who have preference for oral therapies, or other reasons for declining injectable SRLs. OOC have been associated with improved patient-reported QoL measures compared with those reported for lanreotide and octreotide. Continued real-world experience will determine whether OOC, alone or in combination with other therapies, provides further advantages over current injectable acromegaly treatments.


Subject(s)
Acromegaly , Antineoplastic Agents, Hormonal , Octreotide , Quality of Life , Humans , Acromegaly/drug therapy , Octreotide/administration & dosage , Octreotide/therapeutic use , Octreotide/adverse effects , Administration, Oral , Antineoplastic Agents, Hormonal/administration & dosage , Antineoplastic Agents, Hormonal/therapeutic use , Antineoplastic Agents, Hormonal/adverse effects , Capsules , Adenoma/drug therapy , Growth Hormone-Secreting Pituitary Adenoma/drug therapy , Clinical Trials as Topic , Treatment Outcome
7.
Phytomedicine ; 132: 155806, 2024 06 04.
Article in English | MEDLINE | ID: mdl-38876009

ABSTRACT

BACKGROUND: The plant Smilax china L., also known as Jingangteng, is suspected of regulating glucose and lipid metabolism. Jingangteng capsules (JGTCs) are commonly used to treat gynecological inflammation in clinical practice. However, it is not clear whether JGTCs can regulate glucose and lipid metabolism, and the mechanism is unclear. PURPOSE: To investigate the impact and mechanism of action of JGTCs on diabetes and liver lipid disorders in rats. METHODS: The chemical constituents of JGTCs were examined using ultra-high-performance liquid chromatography with quadrupole time-of-flight mass spectrometry. A high-fat diet and streptozotocin-induced diabetes model was used to evaluate anti-diabetic effects by assessing blood glucose and lipid levels and liver function. The mechanism was explored using fecal 16S rRNA gene sequencing and metabolomics profiling, reverse transcription-quantiative polymerase chain reaction (RT-qPCR), and Western blot analysis. RESULTS: Thirty-three components were identified in JGTCs. The serological and histomorphological assays revealed that JGTC treatment reduced levels of blood glucose and lipids, aspartate aminotransferase, alanine aminotransferase, and lipid accumulation in the liver of diabetic rats. According to 16S rDNA sequencing, JGTCs improved species richness and diversity in diabetic rats' intestinal flora and restored 22 dysregulated bacteria to control levels. Fecal metabolomics analysis showed that the altered fecal metabolites were rich in metabolites, such as histidine, taurine, low taurine, tryptophan, glycerophospholipid, and arginine. Serum metabolomics analysis indicated that serum metabolites were enriched in the metabolism of glycerophospholipids, fructose and mannose, galactose, linoleic acid, sphingolipids, histidine, valine, leucine and isoleucine biosynthesis, and tryptophan metabolism. Heatmaps revealed a strong correlation between metabolic parameters and gut microbial phylotypes. Molecular biology assays showed that JGTC treatment reversed the decreased expression of farnesoid X receptor (FXR) in the liver of diabetic rats and inhibited the expression of lipogenic genes (Srebp1c and FAS) as well as inflammation-related genes (interleukin (IL)-ß, tumor necrosis factor (TNF)-α, and IL-6). Liver metabolomics analysis indicated that JGTC could significantly regulate a significant number of bile acid metabolites associated with FXR, such as glyco-beta-muricholic acid, glycocholic acid, tauro-beta-muricholic acid, and tauro-gamma-muricholic acid. CONCLUSIONS: This was the first study to investigate the mechanisms of JGTCs' effects on liver lipid disorders in diabetic rats. JGTCs inhibited liver lipid accumulation and inflammatory responses in diabetic rats by affecting intestinal flora and metabolic disorders and regulating FXR-fat synthesis-related pathways to alleviate diabetic lipid disorders.

8.
Small ; : e2403465, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38940376

ABSTRACT

In pursuit of sustainable agricultural production, the development of environmentally friendly and effective biopesticides is essential to improve food security and environmental sustainability. Bacteriophages, as emerging biocontrol agents, offer an alternative to conventional antibiotics and synthetic chemical pesticides. The primary challenges in applying phage-based biopesticides in agricultural settings are their inherent fragility and low biocidal efficacy, particularly the susceptibility to sunlight exposure. This study addresses the aforementioned challenges by innovatively encapsulating phages in sporopollenin exine capsules (SECs), which are derived from plant pollen grains. The size of the apertures on SECs could be controlled through a non-thermal and rapid process, combining reinflation and vacuum infusion techniques. This unique feature facilitates the high-efficiency encapsulation and controlled release of phages under various conditions. The proposed SECs could encapsulate over 9 log PFU g-1 of phages and significantly enhance the ultraviolet (UV) resistance of phages, thereby ensuring their enhanced survivability and antimicrobial efficacy. The effectiveness of SECs encapsulated phages (T7@SECs) in preventing and treating bacterial contamination on lettuce leaves is further demonstrated, highlighting the practical applicability of this novel biopesticide in field applications. Overall, this study exploits the potential of SECs in the development of phage-based biopesticides, presenting a promising strategy to enhancing agricultural sustainability.

9.
Int J Pharm ; 661: 124373, 2024 Jun 22.
Article in English | MEDLINE | ID: mdl-38909921

ABSTRACT

In this work, feasibility of injection molding was demonstrated for manufacturing capsule shells. 600 µm-thick prototypes were successfully molded with pharmaceutical-grade low-viscosity polyvinyl alcohols (PVAs), possibly added with a range of different fillers. They showed reproducible weight and thickness (CV < 2 and 5, respectively), compliant behavior upon piercing (holes diameter analogous to the reference), tunable release performance (immediate and pulsatile), and moisture protection capability. To assess the latter, an on-line method relying on near infrared spectroscopy measurements was set-up and validated. Based on the data collected and considering the versatility IM would provide for product shape/thickness/composition, PVA-based molded shells could help widening the portfolio of ready-to-use capsules, representing an interesting alternative to those commercially available. Indeed, these capsules could be filled with various formulations, even those with stability issues, and intended either for oral administration or for pulmonary delivery via single-dose dry powder inhalers.

10.
Oncol Lett ; 28(2): 366, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38933812

ABSTRACT

Early breast cancer (EBC) is cancer that has not spread beyond the breast or the axillary lymph nodes. The present retrospective cohort study investigated the efficacy and safety of the Pingxiao capsule (PXC), which contains a formula of traditional Chinese herbs, as adjuvant therapy in patients with EBC in a single Chinese academic medical center. Patients with EBC who had received surgery and chemotherapy were analyzed and divided into the PXC and non-PXC groups. Disease-free survival (DFS) time, overall survival (OS) time, demographic characteristics and adverse events were examined. Kaplan-Meier survival curves were used to compare the differences in DFS and OS. A total of 371 participants with a median age of 54 years were included in this study. The median DFS time of all patients was 101 months. The overall DFS rate was 72.1% in the PXC group compared with 63.6% in the non-PXC group. For women with hormone receptor-negative tumors, the DFS rate in the PXC group was significantly higher than that in the non-PXC group, irrespective of node status. Adjuvant treatment with PXC for ≥3 months was associated with significantly longer median DFS time compared with that in the non-PXC group. In addition, the incidence of neutropenia rated to be grade 2 or higher was significantly lower in the PXC group compared with that in the control group, and a markedly, but non-significantly, lower prevalence of nausea was observed in PXC group (0 vs. 4.1%). In conclusion, PXC as an adjuvant therapy along with chemotherapy is associated with prolonged DFS times in patients with EBC when compared with chemotherapy alone. The therapeutic value of combined PXC and systemic chemotherapy should be further elucidated by rigorous prospective clinical trials.

11.
Biomed Chromatogr ; : e5900, 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38937935

ABSTRACT

Bailing capsule (BLC), a drug that is clinically administered to modulate the autoimmune system, exhibits promising therapeutic potential in the treatment of thyroiditis. This study elucidates the chemical profile of BLC and its potential therapeutic mechanism in thyroiditis, leveraging network pharmacology and molecular docking techniques. Utilizing ultra-high-performance liquid chromatography coupled with linear trap-Orbitrap mass spectrometry (UHPLC-LTQ-Orbitrap MS), 58 compounds were identified, the majority of which were nucleosides and amino acids. Utilizing the ultra-high-performance liquid chromatography coupled with triple quadrupole tandem mass spectrometry (UHPLC QqQ MS/MS) strategy, 16 representative active components from six batches of BLCs were simultaneously determined. Network pharmacology analysis further revealed that the active components included 5'-adenylate, guanosine, adenosine, cordycepin, inosine, 5'-guanylic acid, and l-lysine. Targets with higher connectivity included AKT1, MAPK3, RAC1, and PIK3CA. The signaling pathways primarily focused on thyroid hormone regulation and the Ras, PI3K/AKT, and MAPK pathways, all of which were intricately linked to inflammatory immunity and hormonal regulation. Molecular docking analysis corroborated the findings from network pharmacology, revealing that adenosine, guanosine, and cordycepin exhibited strong affinity toward AKT1, MAPK3, PIK3CA, and RAC1. Overall, this study successfully elucidated the material basis and preliminary mechanism underlying BLC's intervention in thyroiditis, thus laying a solid basis for further exploration of its in-depth mechanisms.

12.
Article in English | MEDLINE | ID: mdl-38889492

ABSTRACT

Chuanwang xiaoyan capsules (CWXYC) have anti-inflammatory and detoxification effect, are used in the treatment of acute and chronic tonsillitis, pharyngitis and other inflammation-related diseases clinically. However, the anti-inflammatory mechanisms have not been elucidated. This study aimed to investigate the anti-inflammatory mechanisms of CWXYC using cell metabolomics and network pharmacology strategy. Specifically, CWXYC could efficiently reduce the content of nitric oxide (NO), the cytokines Interleukin-6 (IL-6) and tumor necrosis factor alpha (TNF-α) in LPS-induced RAW264.7 cells. Furthermore, metabolomics was performed to achieve 23 differential metabolites and 9 metabolic pathways containing glutamate metabolism, glutathione metabolism, arginine and proline metabolism, urea cycle, malate-aspartate shuttle, phosphatidylcholine biosynthesis, transfer of acetyl groups into mitochondria, cysteine metabolism and ammonia recycling. The results of network pharmacology showed that CWXYC could treat inflammation through 10 active components, 10 key targets and 55 pathways. Then the results of molecular docking also approved that there existed strong binding energy between the active components and the key targets. Finally, metabolomics and network pharmacology were integrated to get core targets AKT1, SRC and EGFR. Western blot experiments verified that CWXYC could exert anti-inflammatory effect by down-regulating the activated Akt1 and Src proteins. This study demonstrated that CWXYC exerted effects against inflammation, and the potential mechanisms were elucidated. These novel findings will provide an important basis for further mechanism investigations.


Subject(s)
Anti-Inflammatory Agents , Drugs, Chinese Herbal , Metabolomics , Network Pharmacology , Mice , Animals , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/chemistry , Metabolomics/methods , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/chemistry , RAW 264.7 Cells , Molecular Docking Simulation , Metabolome/drug effects , Nitric Oxide/metabolism , Capsules , Interleukin-6/metabolism
13.
Int J Gen Med ; 17: 2557-2574, 2024.
Article in English | MEDLINE | ID: mdl-38855423

ABSTRACT

Objective: To explore the active substances and targets of Danbie Capsules in Endometriosis therapy. Methods: This study was conducted through TCMSP and published literature screened and obtained 183 active substances of Danbie Capsules, combined and intersected with Endometriosis target genes collected and screened in the GEO database, obtained 24 target genes for Endometriosis treatment, and mapped the target network map of Danbie Capsules active substances against Endometriosis. The network was analyzed with the aid of Cytoscape version 3.9.1. With the aid of the platform of the STRING data analysis, PPI network analysis was conducted on 24 anti-Endometriosis targets of the Danbie Capsules. Results: The research results obtained three critical active substances, namely, Quercetin, ß-sitosterol, and Luteolin. Seven critical targets were identified, and two representative genes (TP53 and AKT1) have been verified in Macromolecular docking and immunohistochemical verification. Conclusion: The active substances of Danbie Capsules in the treatment of Endometriosis are Quercetin, ß-sitosterol and Luteolin, and the main targets are TP53 and AKT1.

14.
Beilstein J Nanotechnol ; 15: 465-474, 2024.
Article in English | MEDLINE | ID: mdl-38711579

ABSTRACT

ᴅ-cycloserine (DCS), an FDA-approved medicine for the treatment of tuberculosis, is also a partial agonist at the glycine recognition site of N-methyl-ᴅ-aspartate (NMDA) receptor and has shown significant treatment efficacy for central nervous system (CNS) disorders including depression, schizophrenia, Alzheimer's disease, and post-traumatic stress disorder. The physicochemical properties of DCS, however, limit the options of formulation and medicinal applications of DCS, and warrants further investigation for the development of CNS therapeutics. Nanocrystals play an important role in pharmaceutic design and development. The properties of nanocrystals are remarkably different from their bulk material counterpart, attributed to the large surface-area-to-volume ratio which can improve the bioavailability. In this study, for the first time, DCS, a highly water-soluble compound, has formed nanocrystals and this was confirmed by scanning electronic microscopy and X-ray powder diffraction. Furthermore, DCS nanocrystals were applied to several formulations to test their stability and then to the in vitro Franz diffusion test with reservoir patch formulation as well as in vivo pharmacokinetics study with enteric capsules. We tested these formulations regarding their nanocrystal physical properties, size effect, and dissolution rate, respectively. We found that DCS nanocrystals showed good performance in the Franz diffusion test and rodent pharmacokinetic studies due to the nanoparticle size and faster dissolution as compared with the commercial DCS powder. These DCS nanocrystal formulations could offer a new approach for the development of an advanced drug delivery system for the treatment of CNS disorders.

15.
Int J Nanomedicine ; 19: 3991-4005, 2024.
Article in English | MEDLINE | ID: mdl-38720939

ABSTRACT

Purpose: Surgical site infections pose a significant challenge for medical services. Systemic antibiotics may be insufficient in preventing bacterial biofilm development. With the local administration of antibiotics, it is easier to minimize possible complications, achieve drugs' higher concentration at the injured site, as well as provide their more sustained release. Therefore, the main objective of the proposed herein studies was the fabrication and characterization of innovative hydrogel-based composites for local vancomycin (VAN) therapy. Methods: Presented systems are composed of ionically gelled chitosan particles loaded with vancomycin, embedded into biomimetic collagen/chitosan/hyaluronic acid-based hydrogels crosslinked with genipin and freeze-dried to serve in a flake/disc-like form. VAN-loaded carriers were characterized for their size, stability, and encapsulation efficiency (EE) using dynamic light scattering technique, zeta potential measurements, and UV-Vis spectroscopy, respectively. The synthesized composites were tested in terms of their physicochemical and biological features. Results: Spherical structures with sizes of about 200 nm and encapsulation efficiencies reaching values of approximately 60% were obtained. It was found that the resulting particles exhibit stability over time. The antibacterial activity of the developed materials against Staphylococcus aureus was established. Moreover, in vitro cell culture study revealed that the surfaces of all prepared systems are biocompatible as they supported the proliferation and adhesion of the model MG-63 cells. In addition, we have demonstrated significantly prolonged VAN release while minimizing the initial burst effect for the composites compared to bare nanoparticles and verified their desired physicochemical features during swellability, and degradation experiments. Conclusion: It is expected that the developed herein system will enable direct delivery of the antibiotic at an exposed to infections surgical site, providing drugs sustained release and thus will reduce the risk of systemic toxicity. This strategy would both inhibit biofilm formation and accelerate the healing process.


Subject(s)
Anti-Bacterial Agents , Chitosan , Hydrogels , Staphylococcus aureus , Vancomycin , Vancomycin/chemistry , Vancomycin/pharmacology , Vancomycin/administration & dosage , Vancomycin/pharmacokinetics , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/administration & dosage , Hydrogels/chemistry , Hydrogels/pharmacology , Staphylococcus aureus/drug effects , Humans , Chitosan/chemistry , Hyaluronic Acid/chemistry , Hyaluronic Acid/pharmacology , Drug Carriers/chemistry , Collagen/chemistry , Collagen/pharmacology , Particle Size , Drug Liberation , Surgical Wound Infection/prevention & control , Surgical Wound Infection/drug therapy , Microbial Sensitivity Tests , Biofilms/drug effects
16.
Zhongguo Zhong Yao Za Zhi ; 49(8): 2262-2272, 2024 Apr.
Article in Chinese | MEDLINE | ID: mdl-38812240

ABSTRACT

To investigate the effect of epimedium total flavone capsules on post-stroke cognitive impairment(PSCI) in rats. The transient middle cerebral artery occlusion(tMCAO) model was constructed on selected rats, and rats with impaired neurological function were randomly divided into the model group, low, middle, and high dose groups of epimedium total flavone capsules, and nimodipine tablet group. The cognitive function of rats was measured after administration. Pathological changes in brain tissue were observed after hematoxylin-eosin staining(HE). Neuronal nuclei(NeuN) and glial fibrillary acidic protein(GFAP) distribution in brain tissue were tested by immunofluorescent staining. The level of amyloid beta 1-42(Aß_(1-42)), neuron specific enolase(NSE), acetylcholine(ACH), dopamine(DA), 5-hydroxytryptamine(5-HT), norepinephrine(NE), interleukin-1ß(IL-1ß), tumor necrosis factor-α(TNF-α), and hypersensitive C-reactive protein(hs-CRP) in rat serum was tested. Moreover, Western blot was utilized to test the expression of nuclear factor-kappaB(NF-κB), p-NF-κB, alpha inhibitor of NF-κB(IκBα) protein, and p-IκBα protein in the hippocampus. The experimental results showed that epimedium total flavone capsules can improve the cognitive function of model rats, and the mechanism may be related to the regulation of the expression of p-IκBα and p-NF-κB proteins, so as to inhibit inflammatory response induced by ischemia-reperfusion.


Subject(s)
Capsules , Cognitive Dysfunction , Drugs, Chinese Herbal , Epimedium , Flavones , Rats, Sprague-Dawley , Stroke , Animals , Rats , Epimedium/chemistry , Male , Flavones/administration & dosage , Flavones/pharmacology , Flavones/chemistry , Drugs, Chinese Herbal/administration & dosage , Drugs, Chinese Herbal/pharmacology , Stroke/drug therapy , Stroke/complications , Cognitive Dysfunction/drug therapy , Cognitive Dysfunction/etiology , Humans , Amyloid beta-Peptides/metabolism , NF-kappa B/metabolism , NF-kappa B/genetics , Interleukin-1beta/genetics , Interleukin-1beta/metabolism , Cognition/drug effects
17.
J Pharm Biomed Anal ; 246: 116198, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38754154

ABSTRACT

With the aging of the population, the prevalence of osteoporosis (OP) is rising rapidly, making it an important public health concern. Early screening and effective treatment of OP are the primary challenges facing the management of OP today. Quanduzhong capsule (QDZ) is a single preparation composed of Eucommia ulmoides Oliv., which is included in the Pharmacopoeia of the People's Republic of China. It is used to treat OP in clinical practice, but its mechanisms are unclear. This study involved 30 patients with OP, 30 healthy controls (HC), and 28 OP patients treated with QDZ to identify potential biomarkers for the early diagnosis of OP and to investigate the potential mechanism of QDZ in treating OP. The serum samples were analyzed using targeted amino acid metabolomics. Significant differences in amino acid metabolism were identified between the OP cohort and the HC group, as well as between OP patients before and after QDZ treatment. Compared with HC, the serum levels of 14 amino acids in OP patients changed significantly. Kynurenine, arginine, citrulline, methionine, and their combinations are expected to be potential biomarkers for OP diagnosis. Notably, QDZ reversed the changes in levels of 10 amino acids in the serum of OP patients and significantly impacted numerous metabolic pathways during the treatment of OP. This study focuses on screening potential biomarkers for the early detection of OP, which offers a new insight into the mechanism study of QDZ in treating OP.


Subject(s)
Amino Acids , Biomarkers , Drugs, Chinese Herbal , Metabolomics , Osteoporosis , Humans , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/therapeutic use , Biomarkers/blood , Metabolomics/methods , Osteoporosis/blood , Osteoporosis/drug therapy , Female , Middle Aged , Male , Amino Acids/blood , Aged , Capsules , Eucommiaceae , Case-Control Studies , Adult
18.
Polymers (Basel) ; 16(10)2024 May 17.
Article in English | MEDLINE | ID: mdl-38794616

ABSTRACT

Efforts to tap into the broad antimicrobial, insecticidal, and antioxidant activities of essential oils (EOs) are limited due to their strong odor and susceptibility to light and oxidation. Encapsulation of EOs and subsequent drying overcome these limitations and extend their applications. This study characterized freeze-dried (lyophilized) emulsions of eugenol (EU) and thymol (TY) EOs, encapsulated by chemically unmodified cellulose, a sustainable and low-cost resource. High-resolution scanning electron microscopy showed successful lyophilization. While the observed "flake-like" structure of the powders differed significantly from that of the emulsified microcapsules, useful properties were retained. Fourier transform infrared spectroscopy confirmed the presence of EOs in their corresponding powders and thermo-gravimetric analysis demonstrated high encapsulation efficiency (87-88%), improved thermal stability and resistance to evaporation, and slow EO release rates in comparison to their free forms. The lightweight and low-cost cellulose encapsulation, together with the results showing retained properties of the dried powder, enable the use of EOs in applications requiring high temperatures, such as EO incorporation into polymer films, that can be used to protect agricultural crops from microbial infections.

19.
Heliyon ; 10(10): e30983, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38770346

ABSTRACT

Recent clinical studies have confirmed the effectiveness of Qianhua Gout Capsules (QGC) in the treatment of gouty arthritis (GA). However, the specific regulatory targets and mechanisms of action of QGC are still unclear. To address this gap, we utilized network pharmacology, molecular docking, and pharmacodynamic approaches to investigate the bioactive components and associated mechanisms of QGC in the treatment of GA. By employing UPLC-Q Exactive-MS, we identified the compounds present in QGC, with active ingredients defined as those with oral bioavailability ≥30 % and drug similarity ≥0.18. Subsequently, the targets of these active compounds were determined using the TCMSP database, while GA-related targets were identified from DisGeNET, GeneCards, TTD, OMIM, and DrugBank databases. Further analysis including PPI analysis, GO analysis, and KEGG pathway enrichment was conducted on the targets. Validation of the predicted results was performed using a GA rat model, evaluating pathological changes, inflammatory markers, and pathway protein expression. Our results revealed a total of 130 components, 44 active components, 16 potential shared targets, GO-enriched terms, and 47 signaling pathways related to disease targets. Key active ingredients included quercetin, kaempferol, ß-sitosterol, luteolin, and wogonin. The PPI analysis highlighted five targets (PPARG, IL-6, MMP-9, IL-1ß, CXCL-8) with the highest connectivity, predominantly enriched in the IL-17 signaling pathway. Molecular docking experiments demonstrated strong binding of CXCL8, IL-1ß, IL-6, MMP9, and PPARG targets with the top five active compounds. Furthermore, animal experiments confirmed the efficacy of QGC in treating GA in rats, showing reductions in TNF-α, IL-6, and MDA levels, and increases in SOD levels in serum. In synovial tissues, QGC treatment upregulated CXCL8 and PPARG expression, while downregulating IL-1ß, MMP9, and IL-6 expression. In conclusion, this study applied a network pharmacology approach to uncover the composition of QGC, predict its pharmacological interactions, and demonstrate its in vivo efficacy, providing insights into the anti-GA mechanisms of QGC. These findings pave the way for future investigations into the therapeutic mechanisms underlying QGC's effectiveness in the treatment of GA.

20.
BMC Infect Dis ; 24(1): 519, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38783176

ABSTRACT

BACKGROUND: Targeting mucosal immunity of the gut, which is known to provide antigen processing, while avoiding excessive or unnecessary inflammation, was tested as a way to modulate COVID-19 severity. METHODS: Randomized open-label trial in 204 adults hospitalized with non-critical COVID-19 who received for 14 days in addition to standard of care (SOC) degalactosylated bovine glycoproteins formulations of either MAF capsules (MAF group) or M capsules (M group) or SOC only (control group). RESULTS: Median recovery time when patients did not require supplemental oxygen was 6 days in both study groups compared to 9 days in the control (MAF vs. control; P = 0.020 and M vs. control; P = 0.004). A greater reduction in mortality was seen in the MAF group compared to the control by day 14 (8.3% vs. 1.6%; P = 0.121) and by day 29 (15.3% vs. 3.2%; P = 0.020), and similarly in the M group by day 14 (8.3% vs. 2.9%; P = 0.276) and by day 29 (15.3% vs. 2.9%; P = 0.017). The proportion of those who had baseline absolute lymphocyte count (ALC) lower than 0.8 × 109/L was 13/63 (20.6%), 17/69 (24.6%), and 18/72 (25.0%) of patients in MAF, M, and control group respectively. Day 29 mortality among these lymphopenic patients was three times higher than for the intent-to-treat population (21% vs. 7%) and consisted in above subgroups: 2/13 (15%), 2/17 (12%), and 6/18 (33%) of patients. The decreased mortality in both study subgroups correlated with greater ALC restoration above 0.8 × 109/L level seen on day 14 in 91% (11/12) and 87.5% (14/16) of survivors in MAF and M subgroups respectively compared to 53.3% (8/15) of survivors in control subgroup. Incidences of any ALC decrease below the baseline level on day 14 occurred in 25.4% of patients in the MAF group and 29.0% of patients in the M group compared to 45.8% in control and ALC depletion by ≥ 50% from the baseline level consisted of 7.9%, 5.8%, and 15.3% of cases in these groups respectively. CONCLUSION: This study showed that both study agents prevented ALC depletion and accelerated its restoration, which is believed to be one of the mechanisms of improved crucial clinical outcomes in hospitalized COVID-19 patients. TRIAL REGISTRATION: The trial was registered after the trial start in ClinicalTrials.gov NCT04762628, registered 21/02/2021, https://www. CLINICALTRIALS: gov/ct2/show/NCT04762628 .


Subject(s)
COVID-19 , Glycoproteins , Lymphopenia , SARS-CoV-2 , Humans , Male , Female , Middle Aged , COVID-19/mortality , COVID-19/immunology , COVID-19/therapy , SARS-CoV-2/immunology , Aged , Glycoproteins/immunology , Glycoproteins/therapeutic use , Treatment Outcome , COVID-19 Drug Treatment , Cattle , Animals , Adult , Hospitalization/statistics & numerical data , Capsules
SELECTION OF CITATIONS
SEARCH DETAIL
...