Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 206
Filter
1.
Metabolites ; 14(6)2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38921465

ABSTRACT

Cannabichromene (CBC) is a minor cannabinoid within the array of over 120 cannabinoids identified in the Cannabis sativa plant. While CBC does not comprise a significant portion of whole plant material, it is available to the public in a purified and highly concentrated form. As minor cannabinoids become more popular due to their potential therapeutic properties, it becomes crucial to elucidate their metabolism in humans. Therefore, the goal of this was study to identify the major CBC phase I-oxidized metabolite generated in vitro following incubation with human liver microsomes. The novel metabolite structure was identified as 2'-hydroxycannabicitran using gas chromatography-mass spectrometry and nuclear magnetic resonance spectroscopy. Following the identification, in silico molecular modeling experiments were conducted and predicted 2'-hydroxycannabicitran to fit in the orthosteric site of both the CB1 and CB2 receptors. When tested in vitro utilizing a competitive binding assay, the metabolite did not show significant binding to either the CB1 or CB2 receptors. Further work necessitates the determination of potential activity of CBC and the here-identified phase I metabolite in other non-cannabinoid receptors.

2.
Mult Scler Relat Disord ; 87: 105659, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38704874

ABSTRACT

BACKGROUND/AIM: The roles of endocannabinoids are described in immune modulation and neuroprotection. HTLV-1-associated myelopathy (HAM/TSP) is an inflammatory neurodegenerative disease. Therefore, in this study, the interactions of HTLV-1 regulatory factors and host cannabinoid receptors (CBRs) were evaluated in HAM/TSP. METHODS: Nineteen HAM/TSPs, 22 asymptomatic carriers (ACs), and 18 healthy controls (HCs) were enrolled. RNA was extracted from PBMCs and then reverse-transcribed to cDNA. The gene expression of CB1R and CB2R, as well as HTLV-1 proviral load (PVL), Tax and HTLV-1 basic leucine zipper factor (HBZ) were assessed by RT-qPCR. RESULTS: The mean expression of CB1R in ACs (8.51 ± 2.76) was significantly higher than HAMTSPs (1.593 ± 0.74, p = 0.05) and also HCs (0.10 ± 0.039, p = 0.001). The CB2R gene expression level in ACs (2.62±0.44) was significantly higher than HAM/TSPs (0.59 ± 0.15, p = 0.001) and HCs (1.00 ± 0.2, p = 0.006). Meanwhile there was a strong correlation between CB1R and CB2R gene expression levels in the HCs and HAM/TSPs (p = 0.001). HTLV-1-Tax expression in HAM/TSPs (386 ± 104) was higher than ACs (75 ± 32) and statistically significant (p = 0.003). While HTLV-1-HBZ was only expressed in three AC subjects and five HAM/TSPs, thus it cannot be analyzed. CONCLUSION: The up-regulation of CB2R has immunomodulatory effects in inflammatory reactions. While CB1R as a neuroprotective agent may suppress inflammatory reactions in ACs, preventing HAM/TSP. It seems that, like multiple sclerosis (MS), cannabinoid medications are beneficial in HAM/TSP.


Subject(s)
Human T-lymphotropic virus 1 , Paraparesis, Tropical Spastic , Receptor, Cannabinoid, CB1 , Receptor, Cannabinoid, CB2 , Humans , Male , Female , Receptor, Cannabinoid, CB1/metabolism , Adult , Receptor, Cannabinoid, CB2/metabolism , Middle Aged , Gene Products, tax/metabolism , Basic-Leucine Zipper Transcription Factors/metabolism , Viral Load , Retroviridae Proteins/metabolism
3.
Biomed Pharmacother ; 174: 116473, 2024 May.
Article in English | MEDLINE | ID: mdl-38522237

ABSTRACT

BACKGROUND: The elevation of endocannabinoid levels through inhibiting their degradation afforded neuroprotection in CaMKIIα-TDP-43 mice, a conditional transgenic model of frontotemporal dementia. However, which cannabinoid receptors are mediating these benefits is still pending to be elucidated. METHODS: We have investigated the involvement of the CB1 and the CB2 receptor using chronic treatments with selective ligands in CaMKIIα-TDP-43 mice, analysis of their cognitive deterioration with the Novel Object Recognition test, and immunostaining for neuronal and glial markers in two areas of interest in frontotemporal dementia. RESULTS: Our results confirmed the therapeutic value of activating either the CB1 or the CB2 receptor, with improvements in the animal performance in the Novel Object Recognition test, preservation of pyramidal neurons, in particular in the medial prefrontal cortex, and attenuation of glial reactivity, in particular in the hippocampus. In addition, the activation of both CB1 and CB2 receptors reduced the elevated levels of TDP-43 in the medial prefrontal cortex of CaMKIIα-TDP-43 mice, an effect exerted by mechanisms that are currently under investigation. CONCLUSIONS: These data reinforce the notion that the activation of CB1 and CB2 receptors may represent a promising therapy against TDP-43-induced neuropathology in frontotemporal dementia. Future studies will have to confirm these benefits, in particular with one of the selective CB2 agonists used here, which has been thoroughly characterized for clinical development.


Subject(s)
Cannabinoids , Disease Models, Animal , Frontotemporal Dementia , Mice, Transgenic , Neuroprotective Agents , Receptor, Cannabinoid, CB1 , Receptor, Cannabinoid, CB2 , Animals , Receptor, Cannabinoid, CB2/agonists , Receptor, Cannabinoid, CB2/metabolism , Male , Neuroprotective Agents/pharmacology , Receptor, Cannabinoid, CB1/metabolism , Receptor, Cannabinoid, CB1/agonists , Frontotemporal Dementia/drug therapy , Frontotemporal Dementia/metabolism , Frontotemporal Dementia/pathology , Mice , Cannabinoids/pharmacology , Prefrontal Cortex/drug effects , Prefrontal Cortex/metabolism , Prefrontal Cortex/pathology , Calcium-Calmodulin-Dependent Protein Kinase Type 2/metabolism , DNA-Binding Proteins/metabolism , Mice, Inbred C57BL , Hippocampus/drug effects , Hippocampus/metabolism , Hippocampus/pathology
4.
Article in English | MEDLINE | ID: mdl-38502208

ABSTRACT

Determining peripheral modulation of the endocannabinoid system (ECS) may be important for differentiating individuals with schizophrenia. Such differentiation can also be extended to subgroups of individuals, those who use cannabis and antipsychotic medications, particularly those who are treatment resistant. Patients and controls were recruited from the outpatient clinic of the Psychosis Group of the University of São Paulo, Brazil. A final sample of 93 individuals was divided into 3 groups: patients with schizophrenia using clozapine (treatment-resistant) (n = 29), patients with schizophrenia using another antipsychotic (n = 31), and controls (n = 33). By measuring the proteins and metabolites involved in the ECS pathways in the peripheral blood, AEA (anandamide), 2-AG (2-arachidonoyl ethanolamine), and CB2 receptor (peripheral) were quantified. Individuals reporting lifetime cannabis use had lower 2-AG plasma levels (p = 0.011). Regarding the CB2 receptor, the values of patients with schizophrenia and controls were similar, but those of patients using antipsychotics other than clozapine differed (p = 0.022). In generalized linear models to control for confounders, the use of cannabis remained the only factor that significantly influenced 2-AG levels. The relationship for non-clozapine antipsychotics as the only factor related to CB2 changes was marginally significant. We found for the first time that cannabis use and non-clozapine antipsychotic medication are potentially involved in the modulation of the ECS, specifically influencing 2-AG endocannabinoid and CB2 receptor levels. More studies regarding the ECS are needed since it has been increasingly related to the physiopathology of schizophrenia.

5.
Chembiochem ; 25(7): e202300785, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38372466

ABSTRACT

The cannabinoid receptor type 2 (CB2R) is a G protein-coupled receptor with therapeutic potential for the treatment of inflammatory disorders. Fluorescent probes are desirable to study its receptor localization, expression and occupancy. Previously, we have reported a photoaffinity probe LEI-121 that stabilized the inactive conformation of the CB2R. Here, we report the structure-based design of a novel bifunctional probe that captures the active conformation of the CB2R upon irradiation with light. An alkyne handle was incorporated to visualize the receptor using click-chemistry with fluorophore-azides. These probes may hold promise to study different receptor conformations in relation to their cellular localization and function.


Subject(s)
Cannabinoids , Fluorescent Dyes , Receptors, Cannabinoid , Fluorescent Dyes/chemistry , Molecular Conformation , Receptors, G-Protein-Coupled
6.
Cureus ; 16(2): e55121, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38420293

ABSTRACT

Background and objective The purpose of our study was to assess the expression of cannabinoid type 1 receptor (CB1R) and cannabinoid type 2 receptor (CB2R), including positivity, intensity, percentage, site of distribution, and immunohistochemical score, in renal cell carcinomas (RCCs) and explore their correlation with various clinicopathological aspects. Methodology We retrospectively obtained data and specimens from 87 patients diagnosed with RCC after partial or radical nephrectomy, and the CB1R and CB2R expression was assessed immunohistochemically on paraffin-embedded tissues. The results were statistically analyzed uni- and multi-factorial along with clinicopathological parameters. Results CB1R was not expressed at all, and CB2R was highly expressed in 78 (89.7%) patients with RCC. In unifactorial analysis, no statistical significance was found in any of the analyzed parameters. However, in the multifactorial analysis, we found that patients with a papillary histologic type (P < 0.0005) were associated with a lower likelihood of expression of the CB2R in the membranous compared with those with clear-cell and were also associated with a higher likelihood of moderate or strong expression of CB2R immunohistochemical score compared with those with clear-cell (P = 0.03). Patients with stage T2 (P = 0.010) had more enhanced expression (grade 3 CB2R intensity) compared with those with stage T1. Males (beta coefficient ± standard error [SE] 13.70 ± 7.04; P = 0.056) and patients with chromophobe histologic type (beta coefficient ± SE 23.45 ± 9.86; P = 0.020) were associated with a higher percentage of CB2R expression. Conclusions Our data suggest that although the CB1R was not expressed in RCCs, CB2R was expressed in almost every patient and enhanced expression was noted in correlation with specific clinicopathological aspects of the patients. Thus, following well-designed studies, especially CB2R could be used as a prognostic marker or even as a potential therapeutic target in RCC.

7.
J Allergy Clin Immunol ; 153(4): 998-1009.e9, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38061443

ABSTRACT

BACKGROUND: Oleoylethanolamide (OEA), an endogenously generated cannabinoid-like compound, has been reported to be increased in patients with severe asthma and aspirin-exacerbated respiratory disease. Recruitment of activated eosinophils in the airways is a hallmark of bronchial asthma. OBJECTIVE: We explored the direct contribution of cannabinoid receptor 2 (CB2), a cognate receptor of OEA, which induces eosinophil activation in vitro and in vivo. METHODS: We investigated OEA signaling in the eosinophilic cell line dEol-1 in peripheral blood eosinophils from people with asthma. In order to confirm whether eosinophil activation by OEA is CB2 dependent or not, CB2 small interfering RNA and the CB2 antagonist SR144528 were used. The numbers of airway inflammatory cells and the levels of cytokines were measured in bronchoalveolar lavage fluid, and airway hyperresponsiveness was examined in the BALB/c mice. RESULTS: CB2 expression was increased after OEA treatment in both peripheral blood eosinophils and dEol-1 cells. It was also elevated after OEA-induced recruitment of eosinophils to the lungs in vivo. However, SR144528 treatment reduced the activation of peripheral blood eosinophils from asthmatic patients. Furthermore, CB2 knockdown decreased the activation of dEol-1 cells and the levels of inflammatory and type 2 cytokines. SR144528 treatment alleviated airway hyperresponsiveness and eosinophil recruitment to the lungs in vivo. CONCLUSION: CB2 may contribute to the pathogenesis of eosinophilic asthma. Our results provide new insight into the molecular mechanism of signal transduction by OEA in eosinophilic asthma.


Subject(s)
Asthma , Camphanes , Endocannabinoids , Oleic Acids , Pulmonary Eosinophilia , Pyrazoles , Receptor, Cannabinoid, CB2 , Animals , Humans , Mice , Asthma/metabolism , Cytokines , Inflammation/pathology , Lung/pathology , Oleic Acids/metabolism , Pulmonary Eosinophilia/metabolism , Receptors, Cannabinoid , Receptor, Cannabinoid, CB2/metabolism
8.
Article in English | MEDLINE | ID: mdl-38135096

ABSTRACT

The human cannabinoid receptor 2 (CB2R) gene CNR2 has been associated with schizophrenia development. Inbred mice treated with the CB2R inverse agonist AM630 and challenged with methamphetamine (MAP) showed reduced prepulse inhibition (%PPI) response and locomotor hyperactivity, both behavioral measures in rodents that correlate with psychosis. Mice lacking CB2R on striatal dopaminergic neurons exhibit a hyperdopaminergic tone and a hyperactivity phenotype. Hyperdopaminergia plays a role in the etiology of schizophrenia. This study aimed to determine the direct role of CB2R, heterozygous Cnr2 gene knockout (Het) mice treated with MAP to induce behavioral sensitivity mimicking a schizophrenia-like human phenotype. Additionally, the study aims to explore the unique modulation of dopamine activity by neuronal CB2R. Conditional knockout DAT-Cnr2-/- mice were evaluated in response to MAP treatments for this purpose. Sensorimotor gating deficits in DAT-Cnr2-/- mice were also evaluated. Het mice developed reverse tolerance (RT) to MAP-enhanced locomotor activity, and RT reduced the %PPI compared to wild-type (WT) mice. DAT-Cnr2-/- mice showed an increased sensitivity to stereotypical behavior induced by MAP and developed RT to MAP. DAT-Cnr2-/- mice exhibit a reduction in %PPI and alter social interaction, another core symptom of schizophrenia. These results demonstrate that there is an interaction between neuronal CB2R and MAP treatment, which increases the risk of schizophrenia-like behavior in this mouse model. This finding provides evidence for further studies targeting CB2R as a potential schizophrenia therapy.


Subject(s)
Cannabinoids , Methamphetamine , Schizophrenia , Humans , Mice , Animals , Schizophrenia/genetics , Receptors, Cannabinoid , Drug Inverse Agonism , Methamphetamine/pharmacology , Cannabinoids/pharmacology , Receptor, Cannabinoid, CB2/genetics , Mice, Knockout , Mice, Inbred C57BL
9.
J Vet Res ; 67(4): 611-618, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38130452

ABSTRACT

Introduction: Mast cell tumours (MCTs) arise in the dermis and subcutaneous tissues in animals and humans and are one of the most common neoplasms of the skin in dogs. Cannabinoid type 2 receptor (CB2R), cyclin-dependent kinase inhibitor (p21) and matrix metalloproteinase 1 (MMP-1) are potential targets for novel anti-tumour therapeutic strategies. This study evaluated by immunohistochemical means the reactivity of p21, MMP-1 and CB2R proteins in association with a three-tier grading system in cutaneous canine MCTs. Material and Methods: Formalin-fixed, paraffin-embedded canine MCTs were processed for histochemical analysis and immunohistochemical staining using antibodies against p21, MMP-1 and CB2R. The results were analysed statistically. Results: The strongest p21 immunolabelling was detected in grade 3 MCTs, while grade 1 tumours showed mild or no detectable p21 immunoreactivity (P-value < 0.001). Strong immunolabelling of MMP-1 was the most common in grade 1 tumours (P-value < 0.001) and CB2R was significantly less frequent in grade 3 tumours than in grade 1 (P-value < 0.001) and grade 2 (P-value < 0.001). Conclusion: High immunoreactivity of MMP-1 can be a marker of grade 1 MCTs in dogs, whereas p21 protein overexpression can be a marker of grade 3 canine MCTs. Strong CB2R immunoreactivity with simultaneous underexpression of p21 and high immunoreactivity of MMP-1 proteins may indicate that the use of cannabinoids in grade 1 MCTs in dogs is practicable.

10.
Biochem Pharmacol ; 218: 115924, 2023 12.
Article in English | MEDLINE | ID: mdl-37972874

ABSTRACT

Cannabinoid CB2 receptor (CB2R) is a class A G protein-coupled receptor (GPCR) involved in a broad spectrum of physiological processes and pathological conditions. For that reason, targeting CB2R might provide therapeutic opportunities in neurodegenerative disorders, neuropathic pain, inflammatory diseases, and cancer. The main components from Cannabis sativa, such as Δ9-tetrahydrocannabinol (Δ9-THC) and cannabidiol (CBD), have been therapeutically exploited and synthetically-derived analogs have been generated. One example is cannabidiol-dimethylheptyl (CBD-DMH), which exhibits anti-inflammatory effects. Nevertheless, its pharmacological mechanism of action is not yet fully understood and is hypothesized for multiple targets, including CB2R. The aim of this study was to further investigate the molecular pharmacology of CBD-DMH on CB2R while CBD was taken along as control. These compounds were screened in equilibrium and kinetic radioligand binding studies and various functional assays, including G protein activation, inhibition of cAMP production and ß-arrestin-2 recruitment. In dissociation studies, CBD-DMH allosterically modulated the radioligand binding. Furthermore, CBD-DMH negatively modulated the G protein activation of reference agonists CP55,940, AEA and 2-AG, but not the agonist-induced ß-arrestin-2 recruitment. Nevertheless, CBD-DMH also displayed competitive binding to CB2R and partial agonism on G protein activation, inhibition of cAMP production and ß-arrestin-2 recruitment. CBD did not exhibit such allosteric behavior and only very weakly bound CB2R without activation. This study shows a dual binding mode of CBD-DMH, but not CBD, to CB2R with the suggestion of two different binding sites. Altogether, it encourages further research into this dual mechanism which might provide a new class of molecules targeting CB2R.


Subject(s)
Cannabidiol , Cannabidiol/pharmacology , Receptors, Cannabinoid/metabolism , beta-Arrestin 1/metabolism , GTP-Binding Proteins/metabolism , Receptor, Cannabinoid, CB2/metabolism , Dronabinol , Receptor, Cannabinoid, CB1/metabolism , Cannabinoid Receptor Agonists
11.
Pharmacol Res Perspect ; 11(6): e01157, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38018694

ABSTRACT

The rapid structural evolution and emergence of novel synthetic cannabinoid receptor agonists (SCRAs) in the recreational market remains a key public health concern. Despite representing one of the largest classes of new psychoactive substances, pharmacological data on new SCRAs is limited, particularly at the cannabinoid CB2 receptor (CB2 ). Hence, the current study aimed to characterize the molecular pharmacology of a structurally diverse panel of SCRAs at CB2 , including 4-cyano MPP-BUT7AICA, 4F-MDMB-BUTINACA, AMB-FUBINACA, JWH-018, MDMB-4en-PINACA, and XLR-11. The activity of SCRAs was assessed in a battery of in vitro assays in CB2 -expressing HEK 293 cells: G protein activation (Gαi3 and GαoB ), phosphorylation of ERK1/2, and ß-arrestin 1/2 translocation. The activity profiles of the ligands were further evaluated using the operational analysis to identify ligand bias. All SCRAs activated the CB2 signaling pathways in a concentration-dependent manner, although with varying potencies and efficacies. Despite the detection of numerous instances of statistically significant bias, compound activities generally appeared only subtly distinct in comparison with the reference ligand, CP55940. In contrast, the phytocannabinoid THC exhibited an activity profile distinct from the SCRAs; most notably in the translocation of ß-arrestins. These findings demonstrate that CB2 is able to accommodate a structurally diverse array of SCRAs to generate canonical agonist activity. Further research is required to elucidate whether the activation of CB2 contributes to the toxicity of these compounds.


Subject(s)
Cannabinoid Receptor Agonists , Cannabinoids , Humans , Cannabinoid Receptor Agonists/pharmacology , Cannabinoid Receptor Agonists/chemistry , Receptors, Cannabinoid , Ligands , HEK293 Cells , Cannabinoids/pharmacology
12.
Anal Chim Acta ; 1279: 341768, 2023 Oct 23.
Article in English | MEDLINE | ID: mdl-37827668

ABSTRACT

Cannabis is a plant that is harmful and beneficial because it contains more than 400 bioactive compounds, and the main compounds are Δ9 tetrahydrocannabinol (THC) and cannabidiol (CBD). Currently, cannabis extracts are used in medicine, but the amount of THC as a main psychoactive component is strictly regulated. Therefore, the ability to rapidly and accurately detect THC is important. Herein, we developed a sensitive electrochemical method combining a rapid lateral flow assay (LFA) to detect THC rapidly. An electrochemical LFA device was constructed by attaching a screen-printed electrode inside a lateral-flow device to exploit the remarkable binding of THC to the cannabinoid type 2 (CB2) receptor in the test zone. The ferrocene carboxylic acid attached to the monoclonal THC antibody acts as an electroactive species when it binds to the THC in the sample before it flows continuously to the CB2 receptor region on the electrode. Under optimal conditions, the detection time is within 6 min and the devise shows excellent performance with a detection limit of 1.30 ng/mL. Additionally, the device could be applied to detect THC in hemp extract samples. The results obtained from this sensor are similar to the standard method (HPLC) for detecting THC. Therefore, this proposed device is useful as an alternative device for the on-site determination of THC because it is inexpensive, portable, and exhibits high sensitivity.


Subject(s)
Cannabidiol , Cannabis , Dronabinol/analysis , Cannabis/chemistry , Cannabidiol/analysis , Cannabidiol/metabolism , Chromatography, High Pressure Liquid , Plant Extracts
13.
Rep Biochem Mol Biol ; 12(1): 59-73, 2023 Apr.
Article in English | MEDLINE | ID: mdl-37724148

ABSTRACT

Background: Chronic kidney disease (CKD) ends mostly with renal fibrosis. The effect of CB2 receptor on renal fibrosis has been unclear. The aim of this study was to investigate the effect of CB2 receptor on renal fibrosis and the mechanisms behind it. Methods: 50 adult male Sprague-Dawley rats were divided into 5 groups; normal, sham; rats had their ureters only manipulated, UUO; rats had their left ureters ligated, and JWH post; rats had their left ureters ligated and they received JWH 133 for 14 days, JWH pre+post; rats received JWH 133 for 14 days before and after UUO procedure. Serum creatinine and BUN were assessed together with tissue MDA, GSH, and catalase. Histopathological evaluation of the renal tissue by H&E and Masson's trichrome was done. Immunohistochemical staining for TGF-ß1, AQP1, Caspase-3, LC3B and p62 was performed. AQP1 and CB2 receptors genes expression was detected by quantitative RT-PCR. Results: UUO had caused severe damage in the renal tissue with reduction of the renal function parameter accompanied by increase in the collagen deposition with increase TGF-ß1 and decrease AQP1 expression. Conclusions: The improvement of these parameters with JWH-133 suggests an anti-fibrotic role of CB2 receptor activation through reduction of oxidative stress, apoptosis, and autophagy.

14.
Molecules ; 28(17)2023 Sep 04.
Article in English | MEDLINE | ID: mdl-37687263

ABSTRACT

Natural and non-natural hexahydrocannabinols (HHC) were first described in 1940 by Adam and in late 2021 arose on the drug market in the United States and in some European countries. A background on the discovery, synthesis, and pharmacology studies of hydrogenated and saturated cannabinoids is described. This is harmonized with a summary and comparison of the cannabinoid receptor affinities of various classical, hybrid, and non-classical saturated cannabinoids. A discussion of structure-activity relationships with the four different pharmacophores found in the cannabinoid scaffold is added to this review. According to laboratory studies in vitro, and in several animal species in vivo, HHC is reported to have broadly similar effects to Δ9-tetrahydrocannabinol (Δ9-THC), the main psychoactive substance in cannabis, as demonstrated both in vitro and in several animal species in vivo. However, the effects of HHC treatment have not been studied in humans, and thus a biological profile has not been established.


Subject(s)
Cannabinoids , Cannabis , Hallucinogens , Animals , Humans , Cannabinoids/pharmacology , Cannabinoid Receptor Agonists/pharmacology , Chemical Phenomena
15.
BMC Pharmacol Toxicol ; 24(1): 45, 2023 09 22.
Article in English | MEDLINE | ID: mdl-37740231

ABSTRACT

PURPOSE: The study aims to investigate the apoptotic effects of combining LBH589 and AM1241 (a selective CB2 receptor agonist) on cervical cancer cells and elucidating the mechanism of this combined therapy, which may provide innovative strategies for treating this disease. METHODS: The viability of the cervical cancer cells was measured by cell counting kit-8 (CCK-8) assay, and the synergistic effect was analyzed using SynergyFinder. Cell proliferation was tested by cell cloning. The apoptosis and reactive oxygen species (ROS) production in cervical cancer cells were analyzed by flow cytometry. Western blot and quantitative real-time PCR (qRT-PCR) were employed to determine changes in protein and gene levels of pathway-related factors. RESULTS: By the results of cytotoxicity assay, SiHa cells were selected and treated with 0.1 µM LBH589 and 4 µM AM1241 for 24 h for subsequent experiments. The combination of both was synergistic as determined by bliss, ZIP, HSA and LOEWE synergy score. Plate cloning results showed that LBH589 combined with AM1241 inhibited the proliferation of cervical cancer cells compared to individual drug. Additionally, compared with LBH589 alone, the combination of LBH589 and AM1241 induced autophagy by increasing LC3II/LC3I and decreasing P62/GAPDH, leading to a significantly higher rate of apoptosis. Pharmacological inhibition of also inhibited apoptosis. Consistently, we found that the endoplasmic reticulum, DNA damage repair pathway were induced after co-administration. Furthermore, cellular ROS increased after co-administration, and apoptosis was inhibited by the addition of ROS scavenger. CONCLUSION: LBH589 combined with AM1241 activated the endoplasmic reticulum emergency pathway, DNA damage repair signaling pathway, oxidative stress and autophagy pathway, ultimately promoting the apoptosis of cervical cancer cells. These findings suggest that the co-administration of LBH589 and AM1241 may be a new treatment plan for the treatment of cervical cancer.


Subject(s)
Uterine Cervical Neoplasms , Female , Humans , Uterine Cervical Neoplasms/drug therapy , Uterine Cervical Neoplasms/genetics , Panobinostat/pharmacology , Reactive Oxygen Species , Apoptosis , Autophagy
16.
Asian J Pharm Sci ; 18(4): 100835, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37645682

ABSTRACT

Alzheimer's disease (AD) is a typical neurodegenerative disease that leads to irreversible neuronal degeneration, and effective treatment remains elusive due to the unclear mechanism. We utilized biocompatible mesenchymal stem cell-derived extracellular vesicles as carriers loaded with the CB2 target medicine AM1241 (EVs-AM1241) to protect against neurodegenerative progression and neuronal function in AD model mice. According to the results, EVs-AM1241 were successfully constructed and exhibited better bioavailability and therapeutic effects than bare AM1241. The Morris water maze (MWM) and fear conditioning tests revealed that the learning and memory of EVs-AM1241-treated model mice were significantly improved. In vivo electrophysiological recording of CA1 neurons indicated enhanced response to an auditory conditioned stimulus following fear learning. Immunostaining and Western blot analysis showed that amyloid plaque deposition and amyloid ß (Aß)-induced neuronal apoptosis were significantly suppressed by EVs-AM1241. Moreover, EVs-AM1241 increased the number of neurons and restored the neuronal cytoskeleton, indicating that they enhanced neuronal regeneration. RNA sequencing revealed that EVs-AM1241 facilitated Aß phagocytosis, promoted neurogenesis and ultimately improved learning and memory through the calcium-Erk signaling pathway. Our study showed that EVs-AM1241 efficiently reversed neurodegenerative pathology and enhanced neurogenesis in model mice, indicating that they are very promising particles for treating AD.

17.
Neuropharmacology ; 237: 109601, 2023 10 01.
Article in English | MEDLINE | ID: mdl-37286073

ABSTRACT

CB2 cannabinoid receptor agonists suppress pathological pain in animal models and lack unwanted side effects commonly associated with direct activation of CB1 receptors. However, the types of pain most responsive to CB2 agonists are incompletely understood and cell types which underlie CB2-mediated therapeutic efficacy remain largely unknown. We previously reported that the CB2 receptor agonist LY2828360 reduced neuropathic nociception induced by toxic challenge with chemotherapeutic and anti-retroviral agents in mice. Whether these findings generalize to models of inflammatory pain is not known. Here we show that LY2828360 (10 mg/kg i.p.) reversed the maintenance of carrageenan-induced mechanical allodynia in female mice. Anti-allodynic efficacy was fully preserved in global CB1 knock out (KO) mice but absent in CB2 KO mice. The anti-allodynic efficacy of LY2828360 was absent in conditional KO (cKO) mice lacking CB2 receptors in peripheral sensory neurons (AdvillinCRE/+; CB2f/f) and preserved in cKO mice lacking CB2 receptors in microglia/macrophages expressing C-X3-C Motif Chemokine Receptor 1 (CX3CR1CRE/+; CB2f/f). Intraplantar administration of LY2828360 (30 µg i.pl.) reversed carrageenan-induced mechanical allodynia in CB2f/f but not AdvillinCRE/+; CB2f/f mice of both sexes. Thus, CB2 receptors in peripheral sensory neurons likely underlie the therapeutic effects of LY2828360 injection in the paw. Lastly, qRT-PCR analyses revealed that LY2828360 reduced carrageenan-induced increases in IL-1ß and IL-10 mRNA in paw skin. Our results suggest that LY2828360 suppresses inflammatory nociception in mice through a neuronal CB2-dependent mechanism that requires peripheral sensory neuron CB2 receptors and suggest that the clinical applications of LY2828360 as an anti-hyperalgesic agent should be re-evaluated.


Subject(s)
Hyperalgesia , Pain , Animals , Female , Male , Mice , Analgesics/pharmacology , Analgesics/therapeutic use , Carrageenan/adverse effects , Hyperalgesia/chemically induced , Hyperalgesia/drug therapy , Hyperalgesia/metabolism , Pain/drug therapy , Receptor, Cannabinoid, CB1 , Receptor, Cannabinoid, CB2/genetics , Receptors, Cannabinoid , Sensory Receptor Cells
18.
Biomedicines ; 11(6)2023 May 26.
Article in English | MEDLINE | ID: mdl-37371642

ABSTRACT

Neuropathic pain is a chronic disabling condition with a 7-10% of prevalence in the general population that is largely undertreated. Available analgesic therapies are poorly effective and are often accompanied by numerous side effects. Growing evidence indicates cannabinoids are a valuable treatment opportunity for neuropathic pain. The endocannabinoid system is an important regulator of pain perception through the CB1 receptors, but CB1 agonists, while largely effective, are not always satisfactory pain-relieving agents in clinics because of their serious adverse effects. Recently, several CB2 agonists have shown analgesic, anti-hyperalgesic, and anti-allodynic activity in the absence of CB1-induced psychostimulant effects, offering promise in neuropathic pain management. The aim of this study was to evaluate the anti-neuropathic activity of a novel selective CB2 agonist, COR167, in a preclinical model of peripheral neuropathy, the spared nerve injury (SNI). Oral COR167, in a dose-dependent manner, attenuated mechanical allodynia and thermal hyperalgesia after acute and repeated administration, showing the absence of tolerance induction. At anti-neuropathic doses, COR167 did not show any alteration in the locomotor behavior. SNI mice showed increased microglial levels of HDAC1 protein in the ipsilateral side of the spinal cord, along with NF-kB activation. COR167 treatment prevented the HDAC1 overexpression and the NF-kB activation and increased the levels of the anti-inflammatory cytokine IL-10 through a CB2-mediated mechanism. Oral administration of COR167 shows promising therapeutic potential in the management of neuropathic pain conditions.

19.
Brain Res ; 1815: 148425, 2023 09 15.
Article in English | MEDLINE | ID: mdl-37244603

ABSTRACT

Perioperative neurocognitive disorders (PND) are a constellation of cognitive impairments that arise following surgical procedures and anesthesia, with a higher incidence in elderly patients. PND is deeply entwined with microglia-mediated neuroinflammation and disrupted autophagy. ß-caryophyllene (BCP) is a natural terpene that occurs widely in dietary plants, and possesses robust anti-inflammatory properties by selectively activating CB2 receptors (CB2R). Accordingly, the present study endeavors to investigate the potential of BCP in ameliorating PND in aged mice, by mitigating hippocampal neuroinflammation and improving autophagy. In this study, an abdominal surgery was utilized to induce perioperative neurocognitive disorders (PND) in aged mice. BCP was administered orally at a dosage of 200 mg/kg for seven consecutive days prior to the scheduled surgery. In order to explore the relationship between BCP and CB2 receptors (CB2R), a co-administration of intraperitoneal injections of the CB2R antagonist AM630 was implemented, 30 min preceding the oral gavage of BCP. Postoperative cognitive functions were assessed using Morris water maze (MWM) tests. The extent of hippocampal inflammation was examined by measuring the microglial marker Iba-1 protein levels, Iba-1 and GFAP immunoactivity, as well as IL-1ß and IL-6 concentrations. Evaluation of autophagy activity was conducted based on the ratio of LC3B2/LC3B1 and protein levels of Beclin-1, p62, and phospho-mTOR (p-mTOR). After being orally administered BCP, the compromised behavioral performance of abdominal surgical interventions on aged mice was alleviated. This was evident by the extended escape latency, reduced time spent in the target quadrant, and fewer platform crossings observed through MWM testing. While hippocampal CB2R mRNA or protein expression remained unaffected by the abdominal surgical procedure, their levels were significantly upregulated in mice that were administered BCP. Moreover, the oral administration of BCP was able to reduce neuroinflammation in response to microglia activation, as evidenced by the decreased levels of Iba-1 protein and immunoactivity, as well as the reduction of IL-1ß and IL-6 concentrations. Additionally, BCP intensified autophagic activity, as detected by increased LC3B2/LC3B1 ratio and Beclin-1 protein levels, coupled with decreased levels of p62 and p-mTOR in the hippocampus of aged mice. Conversely, the treatment of AM630 ameliorated the suppressive effect of BCP triggered by the neuroinflammation caused by microglial activation post-surgery in aged mice (increased Iba-1 protein levels and immunoactivity, accompanied by higher IL-1ß and IL-6 concentrations). Furthermore, the pro-autophagy effect of BCP on aged mice following surgery was partially blocked by AM630, culminating in decreased LC3B2/LC3B1 ratio and Beclin-1 protein levels. However, the levels of p62 and p-mTOR remained unchanged by AM630. Our investigation unveils the remarkable therapeutic benefits of oral BCP administration for managing PND in aged mice through the attenuation of neuroinflammation associated with microglial activation and the fortification of autophagy activity. Hence, BCP holds great promise as a formidable candidate englobing various potential physiological mechanisms that would mitigate cognitive decline associated with aging.


Subject(s)
Microglia , Neuroinflammatory Diseases , Mice , Animals , Microglia/metabolism , Beclin-1/metabolism , Interleukin-6/metabolism , Autophagy , TOR Serine-Threonine Kinases/metabolism , Neurocognitive Disorders/metabolism
20.
Int J Mol Sci ; 24(4)2023 Feb 07.
Article in English | MEDLINE | ID: mdl-36834757

ABSTRACT

Duchenne Muscular Dystrophy (DMD) is a very severe X-linked dystrophinopathy. It is due to a mutation in the DMD gene and causes muscular degeneration in conjunction with several secondary co-morbidities, such cardiomyopathy and respiratory failure. DMD is characterized by a chronic inflammatory state, and corticosteroids represent the main therapy for these patients. To contradict drug-related side effects, there is need for novel and more safe therapeutic strategies. Macrophages are immune cells stringently involved in both physiological and pathological inflammatory processes. They express the CB2 receptor, one of the main elements of the endocannabinoid system, and have been proposed as an anti-inflammatory target in several inflammatory and immune diseases. We observed a lower expression of the CB2 receptor in DMD-associated macrophages, hypothesizing its involvement in the pathogenesis of this pathology. Therefore, we analyzed the effect of JWH-133, a CB2 receptor selective agonist, on DMD-associated primary macrophages. Our study describes the beneficial effect of JWH-133 in counteracting inflammation by inhibiting pro-inflammatory cytokines release and by directing macrophages' phenotype toward the M2 anti-inflammatory one.


Subject(s)
Cardiomyopathies , Muscular Dystrophy, Duchenne , Humans , Anti-Inflammatory Agents , Cardiomyopathies/complications , Inflammation/metabolism , Muscular Dystrophy, Duchenne/genetics , Receptor, Cannabinoid, CB2
SELECTION OF CITATIONS
SEARCH DETAIL
...