Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 50
Filter
Add more filters










Publication year range
1.
J Appl Biomed ; 22(1): 40-48, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38505969

ABSTRACT

BACKGROUND: Endoplasmic reticulum (ER) stress has been shown to play an important role in osteoarthritis (OA). OBJECTIVE: This study was aimed at assessing the relationship of endoplasmic reticulum (ER) stress-related glucose-regulated protein 78 (GRP78) and CCAAT/enhancer-binding protein homologous protein (CHOP) concentrations in the serum/synovial fluid (SF) with disease severity of primary knee osteoarthritis (pkOA). METHODS: Patients with pkOA together with healthy individuals were consecutively recruited from our hospital. The levels of GRP78 and CHOP in serum / SF were detected using enzyme-linked immunosorbent assay. The levels of IL-6 and MMP-3 were also examined. Radiographic progression of pkOA was evaluated based on Kellgren-Lawrence (K-L) grades. Receiver Operating Characteristic (ROC) curves were used to assess the diagnostic value of GRP78/CHOP levels with regard to K-L grades. The assessment of clinical severity was conducted using the visual analogue scale (VAS), Oxford knee score (OKS), and Lequesne algofunctional index (LAI). RESULTS: A total of 140 pkOA patients and 140 healthy individuals were included. Serum GRP78 and CHOP levels in pkOA patients were not significantly different from those in healthy individuals. The SF GRP78 and CHOP levels in healthy controls were not detected due to ethical reasons. Compared to those with K-L grade 2 and 3, the pkOA patients with K-L grade 4 had higher GRP78 and CHOP levels in the SF with statistical significance. In addition, the pkOA patients with K-L grade 3 exhibited drastically upregulated GRP78 and CHOP concentrations in the SF compared to those with K-L grade 2. Positive correlations of GRP78 and CHOP levels with K-L grades, IL-6, and MMP-3 levels in the SF were observed. ROC curve analysis indicated that both GRP78 and CHOP levels may act as decent indicators with regard to OA. GRP78 and CHOP concentrations in the SF were positively correlated with VAS/LAI score and negatively associated with OKS score. CONCLUSION: The study indicated that GRP78 and CHOP levels in the SF but not the serum were positively correlated with disease severity of pkOA.


Subject(s)
Osteoarthritis, Knee , Humans , Osteoarthritis, Knee/diagnostic imaging , Synovial Fluid/chemistry , Synovial Fluid/metabolism , Matrix Metalloproteinase 3/metabolism , Cross-Sectional Studies , Endoplasmic Reticulum Chaperone BiP , Interleukin-6/metabolism , Biomarkers/analysis , Biomarkers/metabolism , Disease Progression
2.
Eur J Pharmacol ; 961: 176193, 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-37981257

ABSTRACT

Bile acid (BA)-induced apoptosis is a common pathologic feature of cholestatic liver injury. Glycyrrhetinic acid (GA) is the hepatoprotective constituent of licorice. In the present study, the anti-apoptotic potential of GA was investigated in wild type and macrophage-depleted C57BL/6 mice challenged with alpha-naphthyl isothiocyanate (ANIT), and hepatocytes stimulated with Taurocholic acid (TCA) or Tumor necrosis factor-alpha (TNF-α). Apoptosis was determined by TUNEL positive cells and expression of executioner caspases. Firstly, we found that GA markedly alleviated liver injury, accompanied with reduced positive TUNEL-staining cells, and expression of caspases 3, 8 and 9 in mice modeled with ANIT. Secondly, GA mitigated apoptosis in macrophage-depleted mice with exacerbated liver injury and augmented cell apoptosis. In vitro study, pre-treatment with GA reduced the expression of activated caspases 3 and 8 in hepatocytes stimulated with TCA, but not TNF-α. The ability of GA to ameliorate apoptosis was abolished in the presence of Tauroursodeoxycholic Acid (TUDCA), a chemical chaperon against Endoplasmic reticulum stress (ER stress). Furthermore, GA attenuated the over-expression of Glucose regulated protein 78 (GRP78), and blocked all three branches of Unfolded protein reaction (UPR) in cholestatic livers of mice induced by ANIT. GA also downregulated C/EBP homologous protein (CHOP) expression, accompanied with reduced expression of Death receptor 5 (DR5) and activation of caspase 8 in both ANIT-modeled mice and TCA-stimulated hepatocytes. The results indicate that GA inhibits ER stress-induced hepatocyte apoptosis in cholestasis, which correlates with blocking CHOP/DR5/Caspase 8 pathway.


Subject(s)
Cholestasis , Glycyrrhetinic Acid , Mice , Animals , Glycyrrhetinic Acid/pharmacology , Glycyrrhetinic Acid/therapeutic use , Caspase 8/metabolism , Mice, Inbred C57BL , Cholestasis/metabolism , Apoptosis , Endoplasmic Reticulum Stress , Hepatocytes/metabolism , Transcription Factor CHOP/metabolism , Caspases/metabolism , Tumor Necrosis Factor-alpha/metabolism
3.
J Vet Res ; 67(3): 447-458, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37818142

ABSTRACT

Introduction: New and more effective therapies for canine cancer patients are urgently required and this necessitates advanced experimental research. Dogs are good models for studies in comparative oncology; however, canine cancer cell biology research is currently limited by low availability of validated antibody reagents and techniques. This study characterises the expression of key components of the unfolded protein response (UPR) in a panel of haematopoietic canine cancer cell lines using commercially available antibodies, and validates the methods used to study this pathway. Material and Methods: The CLBL-1 canine lymphoma cell line and the GL-1 canine leukaemia cell line sourced externally and two counterparts established in house (CNK-89 and CLB70) were used as models of different lymphoma and leukaemia canine cell lines for the study. The human U2OS cell line served as the control. Antibodies were selected for identifying UPR proteins according to known canine cell reactivity and canine-murine and canine-human homology. Endoplasmic reticulum stress was induced with thapsigargin and MG132 in the cell lines. Etoposide was used to induce DNA damage in the cells. The techniques used for this validation analysis were RNA sequencing to observe the expression of UPR components in canine cell lines, Western blot to observe changes of protein expression levels after inducing ER stress in the cells, and flow cytometry in order to study cell death. Results: Substantial variations in both the basic expression and agonist-induced activation of the UPR pathway were observed in canine cancer cell lines, although the biological significance of these differences requires further investigation. Conclusion: These findings will be a starting point for future studies on cancer biology in dogs. They will also contribute to developing novel anticancer therapies for canine patients and may provide new insights into human oncology.

4.
Biomed Rep ; 19(3): 60, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37614985

ABSTRACT

Suppression of the antitumor cytokine interleukin-24 (IL-24) is critical for the survival of myxoid liposarcoma (MLS) cells. It has been previously demonstrated by the authors that an MLS-specific chimeric oncoprotein, translocated in liposarcoma-CCAAT/enhancer-binding protein homologous protein (TLS-CHOP), supresses IL24 mRNA expression via induction of proteoglycan 4 (PRG4) to sustain MLS cell proliferation. However, IL-24 has also been revealed to be suppressed by the ubiquitin-proteasome system in human ovarian and lung cancer cells. Therefore, the aim of the present study was to elucidate the mechanism of IL-24 suppression in MLS cells. The results revealed that the proteasome inhibitor, MG-132, induced cell death in MLS cells in vitro; this effect was reduced following IL-24 knockdown. This indicated that proteasomal degradation of IL-24 may be an important process for MLS cell survival. In addition, it was also previously revealed by the authors that knockdown of plasminogen activator inhibitor-1 (PAI-1), a TLS-CHOP downstream molecule, suppressed the growth of MLS cells, thus instigating the investigation of the effect of PAI-1 on IL-24 expression in MLS cells. Double knockdown of PAI-1 and IL-24 negated the growth-suppressive effect of PAI-1 single knockdown in MLS cells. Interestingly, PAI-1 single knockdown did not increase the mRNA expression of IL24, but it did increase the protein abundance of IL-24, indicating that PAI-1 suppressed IL-24 expression by promoting its proteasomal degradation. Moreover, treatment of MLS cells with a PAI-1 inhibitor, TM5275, induced IL-24 protein expression and apoptosis. Collectively, the results of the present as well as previous studies indicated that IL-24 expression may be suppressed at the transcriptional level by PRG4 and at the protein level by PAI-1 in MLS cells. Accordingly, PAI-1 may represent an effective therapeutic target for MLS treatment.

5.
Clin Sci (Lond) ; 137(7): 561-577, 2023 04 13.
Article in English | MEDLINE | ID: mdl-36795945

ABSTRACT

Cholestasis is a pathophysiologic syndrome with limited therapeutic options. Tauroursodeoxycholic acid (TUDCA) has been employed to treat hepatobiliary disorders and is as effective as UDCA in alleviating cholestatic liver disease in clinical trials. Until now, TUDCA's mechanism of action toward cholestasis remains unclear. In the present study, cholestasis was induced with a cholic acid (CA)-supplemented diet or α-naphthyl isothiocyanate (ANIT) gavage in wild-type and Farnesoid X Receptor (FXR) deficient mice, using obeticholic acid (OCA) as control. The effects of TUDCA on liver histological changes, transaminase level, bile acid composition, hepatocyte death, expression of Fxr and nuclear factor erythroid 2-related factor 2 (Nrf2) and target genes, as well as apoptotic signaling pathways, were investigated. Treating CA-fed mice with TUDCA markedly alleviated liver injury, attenuated bile acids retention in liver and plasma, increased Fxr and Nrf2 nuclear levels and modulated the expression of targets regulating synthesis and transportation of bile acids, including BSEP, MRP2, NTCP and CYP7A1. TUDCA, but not OCA, activated Nrf2 signaling and exerted protective effects against cholestatic liver injury in Fxr-/- mice fed with CA. Furthermore, in both mice with CA- and ANIT-induced cholestasis, TUDCA decreased expression of GRP78 and CCAAT/enhancer-binding protein homologous protein (CHOP), reduced death receptor 5 (DR5) transcription, caspase-8 activation, and BID cleavage, and subsequently inhibited activation of executioner caspases and apoptosis in liver. We confirmed that TUDCA protected against cholestatic liver injury by alleviating BAs burden of dually activating hepatic Fxr and Nrf2. Moreover, inhibiting CHOP-DR5-caspase-8 pathway contributed to the anti-apoptotic effect of TUDCA in cholestasis.


Subject(s)
Cholestasis , NF-E2-Related Factor 2 , Mice , Animals , NF-E2-Related Factor 2/metabolism , Caspase 8/metabolism , Liver/metabolism , Cholestasis/drug therapy , Bile Acids and Salts/metabolism , Bile Acids and Salts/pharmacology
6.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-978449

ABSTRACT

ObjectiveTo investigate the protective effect of modified Huangqi Guizhi Wuwutang (MHGW) on endoplasmic reticulum stress in the sciatic nerve of diabetes rats based on the pathways of inositol-requiring enzyme 1α (IRE1α) and CCAAT/enhancer-binding protein homologous protein (CHOP). MethodSixty rats were fed on a high-sugar and high-fat diet for six weeks, followed by intraperitoneal injection of streptozotocin at a dose of 35 mg·kg-1. Random blood glucose levels were measured three days later and rats with a sustained blood glucose level ≥ 16.7 mmol·L-1 were included in study (n=48). The rats were randomly divided into a model group, an α-lipoic acid group (0.026 8 g·kg-1·d-1), a high-dose MHGW group (2.5 g·kg-1·d-1), and a low-dose MHGW group (1.25 g·kg-1·d-1). Another 10 rats were assigned to the normal group. The intervention lasted for 16 weeks. After 16 weeks, the sciatic nerve structure of the rats in each group was observed under light microscopy using Luxol fast blue (LFB) staining. Transmission electron microscopy was used to observe the ultrastructure of the sciatic nerve. Chemiluminescence method was employed to measure the serum reactive oxygen species (ROS) levels. Western blot and real-time fluorescence quantitative polymerase chain reaction (Real-time PCR) were used to evaluate the expression of p-IRE1α protein, IRE1α mRNA, CHOP protein, and CHOP mRNA in the sciatic nerve of the rats. ResultCompared with the normal group, the model group showed elevated serum ROS levels (P<0.01). In contrast, the serum ROS levels were significantly reduced in the treatment groups compared with those in the model group (P<0.01). The sciatic nerve of the model group showed pathological changes compared with that in the normal group, while the treatment groups exhibited improvement in sciatic nerve pathology compared with the model group. The protein expression of p-IRE1α and CHOP in the sciatic nerve significantly increased in the model group as compared with that in the normal group (P<0.01). However, the treatment groups showed a significant decrease in the protein expression of p-IRE1α and CHOP in the sciatic nerve compared with the model group (P<0.05, P<0.01). Furthermore, compared with the normal group, the model group showed upregulated mRNA expression of IRE1α and CHOP in the sciatic nerve (P<0.01), while the treatment groups exhibited a significant decrease in the mRNA expression of IRE1α and CHOP compared with the model group (P<0.01). ConclusionMHGW can alleviate endoplasmic reticulum stress-induced cell apoptosis and improve the structure and function of the sciatic nerve in diabetes rats by inhibiting the expression of IRE1α/CHOP pathway-related proteins and mRNA, thereby preventing and treating peripheral neuropathy in diabetes.

7.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-961149

ABSTRACT

Objective @#To investigate the role and mechanism of bone formation caused by the ratio of advanced platelet-rich fibrin (A-PRF) and β-tricalcium phosphate (β-TCP) in rabbit femur defect model, which provides a new idea for clinical treatment of bone defect.@*Methods @#Twenty-four New Zealand white rabbits were divided into model group, 1∶1 complex group (A-PRF∶β-TCP=1∶1), 2∶1 complex group (A-PRF∶β- TCP=2∶1) and 4∶1 complex group (A-PRF∶β- TCP=4∶1), with 6 rabbits in each group. Femoral defect models were constructed in each group. In the composite group, the bone defect was filled with composite material, while in the model group, no material was filled. After 8 weeks, the animals were euthanized and specimens were collected. Bone mineral density (BMD), bone volume fraction (BV/TV), trabecular thickness (Tb.Th), trabecular separation (Tb.SP) and trabecular number (Tb.N) in femoral defect tissue were measured by micro-CT and photographed. Hematoxylin - eosin staining was used to detect the pathological changes of new bone tissue. The morphological changes of the new bone tissue were observed by scanning electron microscopy. Determination of phospho-mitogen activated protein kinase p38 (p-p38MAPK), CCAAT/enhancer binding protein homologous protein (CHOP) and phospho-cysteine aspartic protease-3 (p-Caspase3) in newborn femur by ELISA. The mRNA expressions of osteoprotegerin (OPG), bone morphogenetic protein-2 (BMP-2), receptor activator of nuclear factor kappa-B ligand (RANKL) and p38MAPK were detected by real-time quantitative PCR. The expression of OPG, BMP-2, RANKL, p-p38MAPK and p-Caspase3 protein in the new bone tissue was observed by immunohistochemistry. @*Results @#In the model group, bone formation in the femoral defect area was slow and osteogenic quality was poor. Compared with the model group, the bone formation and neocapillaries of femoral defect area in the complex group was good, BMD, BV.TV, Tb.Th, Tb.N were increased, and Tb.Sp were decreased, the expressions of p-p38MAPK, CHOP and p-Caspase3 were decreased, and the mRNA and protein expressions of OPG and BMP-2 were increased. The mRNA expression of RANKL and p38MAPK was decreased. Apoptosis in new bone tissue of each group showed the lowest apoptosis rate in samples of the 2∶1 complex group (P<0.05); A-PRF: β-TCP=2∶1 ratio has the best osteogenic effect. @*Conclusion@#The complex composed of A-PRF and β-TCP can promote the expression of OPG, inhibit the expression of RANKL and phosphorylation of p38MAPK, reduce the apoptosis of new bone tissue cells, and promote osteogenic differentiation.

8.
J Microbiol Biotechnol ; 32(5): 645-656, 2022 May 28.
Article in English | MEDLINE | ID: mdl-35283426

ABSTRACT

Gossypol, a natural phenolic aldehyde present in cotton plants, was originally used as a means of contraception, but is currently being studied for its anti-proliferative and anti-metastatic effects on various cancers. However, the intracellular mechanism of action regarding the effects of gossypol on pancreatic cancer cells remains unclear. Here, we investigated the anti-cancer effects of gossypol on human pancreatic cancer cells (BxPC-3 and MIA PaCa-2). Cell counting kit-8 assays, annexin V/propidium iodide staining assays, and transmission electron microscopy showed that gossypol induced apoptotic cell death and apoptotic body formation in both cell lines. RNA sequencing analysis also showed that gossypol increased the mRNA levels of CCAAT/enhancer-binding protein homologous protein (CHOP) and activating transcription factor 3 (ATF3) in pancreatic cancer cell lines. In addition, gossypol facilitated the cleavage of caspase-3 via protein kinase RNA-like ER kinase (PERK), CHOP, and Bax/Bcl-2 upregulation in both cells, whereas the upregulation of ATF was limited to BxPC-3 cells. Finally, a three-dimensional culture experiment confirmed the successful suppression of cancer cell spheroids via gossypol treatment. Taken together, our data suggest that gossypol may trigger apoptosis in pancreatic cancer cells via the PERK-CHOP signaling pathway. These findings propose a promising therapeutic approach to pancreatic cancer treatment using gossypol.


Subject(s)
Gossypol , Pancreatic Neoplasms , Apoptosis , Endoplasmic Reticulum Stress , Gossypol/pharmacology , Humans , Pancreatic Neoplasms/drug therapy , Signal Transduction , Transcription Factor CHOP/genetics , Transcription Factor CHOP/metabolism , Transcription Factor CHOP/pharmacology
9.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-906113

ABSTRACT

Objective:To investigate the effect of Ziziphi Spinosae Semen (ZSS) and Albiziae Flos (AF) on behavior and endoplasmic reticulum stress endoplasmic reticulum stress protein kinase R-like endoplasmic reticulum kinase (PERK)/activated transcription factor 4 (ATF4)/CCAAT enhancer binding protein (CHOP) pathway in depression model rats, and to explore its antidepressant mechanism. Method:The male SD rats were divided into normal group, model group, ZSS-AF high dose, middle dose and low dose groups (16, 8, 4 g·kg<sup>-1</sup>) and Venlafaxine group (0.008 g·kg<sup>-1</sup>), <italic>n</italic>=15 in each group. Except the normal group, the depression model was established in the rats of other 5 groups by the method of chronic unpredictable mild stress (CUMS) combined with isolated feeding. The normal group and model group were given with distilled water by gavage when modeling, while other groups received corresponding drug by intragastric administration for 21 days. Behavior changes of rats in each group were observed by the open field test and sugar water consumption test on 1<sup>th </sup>and 21<sup>th</sup>day of the experiment. The protein expressions of PERK, CHOP, B-cell lymphoma-2 associated X protein (Bax) and cysteine-containing aspartate-specific proteases-3(Caspase-3) were detected by Western blot(WB), the ultrastructural changes of the hippocampus were observed by transmission electron microscope, the apoptosis of hippocampal neurons was observed by terminal-deoxynucleoitidyl transferase mediated nick end labeling (TUNEL) method. Result:Compared with the normal group, the scores of open field test and sugar water consumption rate in model group rats decreased (<italic>P</italic><0.01). Compared with the model group, the scores of open field test and water consumption rate increased (<italic>P</italic><0.01) in ZSS-AF groups and Venlafaxine group. Transmission electron microscope showed that the changes of neuronal damage in hippocampal were revealed in the model group, whereas those neuronal damages were relieved in ZSS-AF groups and Venlafaxine group. TUNEL method showed that the number of apoptotic neurons in hippocampal increased in the model group (<italic>P</italic><0.01), but decreased in ZSS-AFgroups and Venlafaxine group (<italic>P</italic><0.01). WB results showed that as compared with the normal group, protein expressions of PERK, CHOP, Bax and Caspase-3 were up-regulated significantly in the model group (<italic>P</italic><0.01), whereas those were down-regulated in ZSS-AF groups and Venlafaxine group (<italic>P</italic><0.05, <italic>P</italic><0.01). Conclusion:The antidepressant effect of ZSS-AF herbal pair may be correlated with the regulation of endoplasmic reticulum stress PERK/ATF4/-CHOP pathway.

10.
Antioxidants (Basel) ; 9(10)2020 Oct 09.
Article in English | MEDLINE | ID: mdl-33050213

ABSTRACT

An overdose of acetaminophen (APAP), the most common cause of acute liver injury, induces oxidative stress that subsequently causes mitochondrial impairment and hepatic necroptosis. N-acetyl-L-cysteine (NAC), the only recognized drug against APAP hepatotoxicity, is less effective the later it is administered. This study evaluated the protective effect of mitochondria-specific Mito-TEMPO (Mito-T) on APAP-induced acute liver injury in C57BL/6J male mice, and a three dimensional (3D)-cell culture model containing the human hepatoblastoma cell line HepG2. The administration of Mito-T (20 mg/kg, i.p.) 1 h after APAP (400 mg/kg, i.p.) injection markedly attenuated the APAP-induced elevated serum transaminase activity and hepatic necrosis. However, Mito-T treatment did not affect key factors in the development of APAP liver injury including the activation of c-jun N-terminal kinases (JNK), and expression of the transcription factor C/EBP homologous protein (CHOP) in the liver. However, Mito-T significantly reduced the APAP-induced increase in the hepatic oxidative stress marker, nitrotyrosine, and DNA fragmentation. Mito-T markedly attenuated cytotoxicity induced by APAP in the HepG2 3D-cell culture model. Moreover, liver regeneration after APAP hepatotoxicity was not affected by Mito-T, demonstrated by no changes in proliferating cell nuclear antigen formation. Therefore, Mito-T was hepatoprotective at the late-stage of APAP overdose in mice.

11.
World J Gastroenterol ; 26(28): 4094-4107, 2020 Jul 28.
Article in English | MEDLINE | ID: mdl-32821072

ABSTRACT

BACKGROUND: Endoplasmic reticulum (ER) stress is an important mechanism in the progression of chronic and acute liver diseases, especially in the progression and recovery of liver fibrosis. Excessive and long-term ER stress induces apoptosis. ER stress-induced apoptosis is considered to be an important pathway in the development of liver fibrosis. Cyclooxygenase-2 (COX-2) induction is also closely related to ER stress. In our previous studies, we showed that celecoxib, a COX-2 inhibitor, improves liver fibrosis and portal hypertension. However, the role and mechanism of celecoxib in alleviating liver fibrosis remain unclear. AIM: To investigate whether celecoxib alleviates liver fibrosis by inhibiting hepatocyte apoptosis via the ER stress response. METHODS: Cirrhosis was induced by intraperitoneal injections of thioacetamide (TAA) for 16 wk (injection dose is 200 mg/kg per 3 d for the first 8 wk and 100 mg /kg per 3 d after 8 wk). Thirty-six male Sprague-Dawley rats were randomly divided into three groups, namely, control group, TAA group, and TAA + celecoxib group. In the last 8 wk, TAA-induced cirrhotic rats received celecoxib (20 mg/kg/day) or the vehicle by gastric gavage. After 16 wk, the rats were sacrificed, and serum alanine aminotransferase (ALT), aspartate aminotransferase (AST), and albumin (ALB) were detected. The hepatic fibrosis areas were evaluated by Sirius red staining and the degree of fibrosis was assessed by measuring the level of hydroxyproline. ER stress levels were evaluated by detecting the marker proteins glucose-regulated protein 78 (GRP78), CCAAT/enhancer binding protein homologous protein (CHOP), PKR-like ER protein kinase (PERK), activating transcription factor 6 (ATF6), and inositol-requiring enzyme 1 alpha (IRE1α). Apoptosis levels were evaluated by detecting caspase-12 and caspase-3. RESULTS: The serum ALT and AST levels in the liver were significantly reduced by celecoxib; however, the serum ALB had no significant changes. Celecoxib significantly reduced the degree of liver fibrosis and the levels of hydroxyproline (-38% and -25.7%, respectively, P < 0.01). Celecoxib ameliorated ER stress by reducing the level of GRP78 compared to the TAA group (P < 0.05). Consistently, after celecoxib administration, the upregulation of TAA-induced hepatic apoptosis markers (caspase-12 and caspase-3) and CHOP were significantly inhibited. In addition, after celecoxib treatment, the expression of key molecules associated with ER stress (PERK, ATF6, and IRE1) was decreased (P < 0.05). CONCLUSION: Therapeutic administration of celecoxib effectively reduces hepatic apoptosis in TAA-induced cirrhotic rats. The mechanism of action may be attributed to the suppression of CHOP expression, which subsequently inhibits ER stress.


Subject(s)
Endoplasmic Reticulum Stress , Thioacetamide , Animals , Apoptosis , Celecoxib/pharmacology , Endoribonucleases , Hepatocytes/pathology , Liver Cirrhosis/chemically induced , Liver Cirrhosis/drug therapy , Liver Cirrhosis/pathology , Male , Protein Serine-Threonine Kinases , Rats , Rats, Sprague-Dawley , Thioacetamide/toxicity
12.
Saudi J Biol Sci ; 27(8): 2174-2184, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32714044

ABSTRACT

Testicular torsion and detorsion (TTD) is a serious urological condition affecting young males that is underlined by an ischemia reperfusion injury (tIRI) to the testis as the pathophysiological mechanism. During tIRI, uncontrolled production of oxygen reactive species (ROS) causes DNA damage leading to germ cell apoptosis (GCA). The aim of the study is to explore whether inhibition of NADPH oxidase (NOX), a major source of intracellular ROS, will prevent tIRI-induced GCA and its association with endoplasmic reticulum (ER) stress. Sprague-Dawley rats (n = 36) were divided into three groups: sham, tIRI only and tIRI treated with apocynin (a NOX inhibitor). Rats undergoing tIRI endured an ischemic injury for 1 h followed by 4 h of reperfusion. Spermatogenic damage was evaluated histologically, while cellular damages were assessed using real time PCR, immunofluorescence staining, Western blot and biochemical assays. Disrupted spermatogenesis was associated with increased lipid and protein peroxidation and decreased antioxidant activity of the enzyme superoxide dismutase (SOD) as a result of tIRI. In addition, increased DNA double strand breaks and formation of 8-OHdG adducts associated with increased phosphorylation of the DNA damage response (DDR) protein H2AX. The ASK1/JNK apoptosis signaling pathway was also activated in response to tIRI. Finally, increased immuno-expression of the unfolded protein response (UPR) downstream targets: GRP78, eIF2-α1, CHOP and caspase 12 supported the presence of ER stress. Inhibition of NOX by apocynin protected against tIRI-induced GCA and ER stress. In conclusion, NOX inhibition minimized tIRI-induced intracellular oxidative damages leading to GCA and ER stress.

13.
Mol Med Rep ; 22(2): 1647-1655, 2020 08.
Article in English | MEDLINE | ID: mdl-32627032

ABSTRACT

Melatonin, which is mainly secreted by the pineal gland, appears to have anti­inflammatory activities. Acute pancreatitis (AP) is characterized by inflammation and acinar cell death, and is associated with a high mortality rate. It has been reported that melatonin can alleviate cerulein (Cer) or Cer + lipopolysaccharide (LPS)­induced inflammatory responses in AR42J rat pancreatic acinar cells (AR42J cells). CCAAT/enhancer binding protein homologous protein (CHOP) is a specific transcription factor involved in endoplasmic reticulum (ER) stress­induced apoptosis, and regulates ER stress responses. However, the mechanisms of the anti­inflammatory effects of melatonin' are unknown, particularly the relationship between melatonin and ER stress. Therefore, the present study aimed to investigate the anti­inflammatory activity of melatonin in AR42J cells and analyze its molecular mechanisms during ER stress. The RNA interference method was used to determine the potential role of CHOP in AR42J cells during AP. In vitro models of AP were induced by treating AR42J cells with Cer + LPS, and pre­treatment with melatonin was used to identify the potential anti­inflammatory mechanisms. The cells also underwent Cell Counting Kit­8, western blotting and reverse transcription­quantitative PCR analyses. The expression levels of ER stress­related molecules were rapidly activated in the early stage and increased over time in the AR42J AP models, with significant pancreatic inflammation and apoptosis. However, knockdown of CHOP expression significantly reduced apoptosis, the activation of NF­κB and the downstream signal pathway. Moreover, cells treated with melatonin exhibited attenuated inflammation, decreased expression levels of ER stress­associated proteins and inhibition of apoptosis. Thus, the present results suggested that melatonin may attenuate the inflammatory response by inhibiting the activation of the CHOP­mediated pathway in AR42J cells.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Endoplasmic Reticulum Stress/drug effects , Inflammation/drug therapy , Melatonin/pharmacology , Pancreatitis/drug therapy , Transcription Factor CHOP/metabolism , Animals , Apoptosis/drug effects , Cell Line, Tumor , NF-kappa B/metabolism , Rats
14.
JACC Basic Transl Sci ; 5(3): 245-263, 2020 Mar.
Article in English | MEDLINE | ID: mdl-32215348

ABSTRACT

Developing endothelial-protective, nonthrombogenic antirestenotic treatments has been a challenge. A major hurdle to this has been the identification of a common molecular target in both smooth muscle cells and endothelial cells, inhibition of which blocks dysfunction of both cell types. The authors' findings suggest that the PERK kinase could be such a target. Importantly, PERK inhibition mitigated both restenosis and thrombosis in preclinical models, implicating a low-thrombogenic antirestenotic paradigm.

15.
Metab Brain Dis ; 35(4): 637-647, 2020 04.
Article in English | MEDLINE | ID: mdl-32172517

ABSTRACT

Diabetes mellitus (DM) is associated with the increased risk of the central nervous system complications as cerebrovascular disease, impaired cognition, dementia and neurodegeneration. Curcumin is a polyphenol with anti-oxidant, anti-inflammatory, anti-hyperlipidemic, and anti-cancer effects. Therefore, the present study was aimed to focus on the mechanistic insights of diabetes-induced hippocampal neurodegeneration in addition to shedding the light on the modulatory effect of curcumin. Twenty-eight male Wistar rats were randomly divided into four groups. Type I DM was induced by a single intra-peritoneal injection of streptozotocin (STZ) (65 mg/kg b.w.). Curcumin (100 mg/kg b.w.) was given to the diabetic group after the induction and for eight weeks. Hippocampal glucose-regulated protein 78 (GRP78), activating transcription factor 4 (ATF-4), Bcl2 and choline acetyl transferase (ChAT) genes expression were assessed. Heat shock protein 70 (HSP70), Bcl-2-Associated X protein (Bax), Interferon-γ (INF-γ) and CCAAT-enhancer-binding protein homologous protein (CHOP) levels in the hippocampus were immunoassayed, in addition to the assessment of glycemic and redox status. Curcumin significantly improved blood glucose level, redox status, cellular stress, and decreased INF-γ and Bax levels, down-regulated GRP78 and ATF-4 expression, meanwhile, up-regulated Bcl2 and ChAT expression in hippocampus. Histological findings proved the biochemical and molecular findings. Our results support curcumin as a potential neuro-protective agent against diabetes induced hippocampal neurodegeneration.


Subject(s)
Apoptosis/drug effects , Blood Glucose/metabolism , Curcumin/pharmacology , Diabetes Mellitus, Experimental/metabolism , Endoplasmic Reticulum Stress/drug effects , Hippocampus/drug effects , Protective Agents/pharmacology , Activating Transcription Factor 4/genetics , Activating Transcription Factor 4/metabolism , Animals , Choline O-Acetyltransferase/genetics , Choline O-Acetyltransferase/metabolism , Diabetes Mellitus, Experimental/genetics , HSP70 Heat-Shock Proteins/metabolism , Heat-Shock Proteins/genetics , Heat-Shock Proteins/metabolism , Hippocampus/metabolism , Interferon-gamma/metabolism , Male , Proto-Oncogene Proteins c-bcl-2/genetics , Proto-Oncogene Proteins c-bcl-2/metabolism , Rats , Rats, Wistar , Transcription Factor CHOP/metabolism , bcl-2-Associated X Protein/metabolism
16.
World J Gastroenterol ; 25(41): 6205-6221, 2019 Nov 07.
Article in English | MEDLINE | ID: mdl-31749592

ABSTRACT

BACKGROUND: Chronic biliary obstruction results in ischemia and hypoxia of hepatocytes, and leads to apoptosis. Apoptosis is very important in regulating the homeostasis of the hepatobiliary system. Endoplasmic reticulum (ER) stress is one of the signaling pathways that induce apoptosis. Moreover, the protein kinase RNA-like endoplasmic reticulum kinase (PERK)-induced apoptotic pathway is the main way; but its role in liver injury remains unclear. Yinchenhao decoction (YCHD) is a traditional Chinese medicine formula that alleviates liver injury and apoptosis, yet its mechanism is unknown. We undertook this study to investigate the effects of YCHD on the expression of ER stress proteins and hepatocyte apoptosis in rats with obstructive jaundice (OJ). AIM: To investigate whether YCHD can attenuate OJ-induced liver injury and hepatocyte apoptosis by inhibiting the PERK-CCAAT/enhancer-binding protein homologous protein (CHOP)-growth arrest and DNA damage-inducible protein 34 (GADD34) pathway and B cell lymphoma/leukemia-2 related X protein (Bax)/B cell lymphoma/leukemia-2 (Bcl-2) ratio. METHODS: For in vivo experiments, 30 rats were divided into three groups: control group, OJ model group, and YCHD-treated group. Blood was collected to detect the indicators of liver function, and liver tissues were used for histological analysis. For in vitro experiments, 30 rats were divided into three groups: G1, G2, and G3. The rats in group G1 had their bile duct exposed without ligation, the rats in group G2 underwent total bile duct ligation, and the rats in group G3 were given a gavage of YCHD. According to the serum pharmacology, serum was extracted and centrifuged from the rat blood to cultivate the BRL-3A cells. Terminal deoxynucleotidyl transferase mediated dUTP nick end-labelling (TUNEL) assay was used to detect BRL-3A hepatocyte apoptosis. Alanine aminotransferase (ALT) and aspartate transaminase (AST) levels in the medium were detected. Western blot and quantitative real-time polymerase chain reaction (qRT-PCR) analyses were used to detect protein and gene expression levels of PERK, CHOP, GADD34, Bax, and Bcl-2 in the liver tissues and BRL-3A cells. RESULTS: Biochemical assays and haematoxylin and eosin staining suggested severe liver function injury and liver tissue structure damage in the OJ model group. The TUNEL assay showed that massive BRL-3A rat hepatocyte apoptosis was induced by OJ. Elevated ALT and AST levels in the medium also demonstrated that hepatocytes could be destroyed by OJ. Western blot or qRT-PCR analyses showed that the protein and mRNA expression levels of PERK, CHOP, and GADD34 were significantly increased both in the rat liver tissue and BRL-3A rat hepatocytes by OJ. The Bax and Bcl-2 levels were increased, and the Bax/Bcl-2 ratio was also increased. When YCHD was used, the PERK, CHOP, GADD34, and Bax levels quickly decreased, while the Bcl-2 levels increased, and the Bax/Bcl-2 ratio decreased. CONCLUSION: OJ-induced liver injury and hepatocyte apoptosis are associated with the activation of the PERK-CHOP-GADD34 pathway and increased Bax/Bcl-2 ratio. YCHD can attenuate these changes.


Subject(s)
Apoptosis , Drugs, Chinese Herbal/therapeutic use , Endoplasmic Reticulum Stress , Hepatocytes/pathology , Jaundice, Obstructive/complications , Jaundice, Obstructive/therapy , eIF-2 Kinase/metabolism , Animals , Antigens, Differentiation/metabolism , Cell Line , Culture Media , Hepatocytes/drug effects , Liver/metabolism , Liver Function Tests , Male , Proto-Oncogene Proteins/metabolism , Proto-Oncogene Proteins c-bcl-2/metabolism , Rats , Rats, Wistar , Transcription Factor CHOP/metabolism , bcl-2-Associated X Protein/metabolism
17.
Chin J Integr Med ; 25(8): 604-612, 2019 Aug.
Article in English | MEDLINE | ID: mdl-30707413

ABSTRACT

OBJECTIVE: To test the hypothesis that the inhibition of endoplasmic reticulum (ER) stress-induced apoptosis in oxidized low-density lipoproteins (ox-LDL)-induced human aortic-vascular smooth muscle cells (HA-VSMCs) was associated with suppression of the protein kinase RNA-like ER kinase (PERK)-eukaryotic translation initiation factor 2α (eIF2α)-activating transcription factor 4 (ATF4)-CCAAT/enhancer binding protein homologous protein (CHOP) signaling pathway by Pollen Typhae total flavone (PTF). METHODS: Primary HA-VSMCs were cultured and identified. The cultured HA-VSMCs were randomized into 5 groups, including a normal control group, an ox-LDL group (70 µg/mL high ox-LDL), an HPTF group (70 µg/mL high ox-LDL+500 µg/mL PTF), an MPTF group (70 µg/mL high ox-LDL+250 µg/mL PTF), and a LPTF group (70 µg/mL high ox-LDL+100 µg/mL PTF) in the first part; and a normal control group, an ox-LDL group (70 µg/mL high ox-LDL), an MPTF group (70 µg/mL high ox-LDL+250 µg/mL PTF), a shRNA group (transducted with PERK shRNA lentiviral particles), a scramble shRNA group (transducted with control shRNA lentiviral particles), an MPTF+ox-LDL+shRNA group (250 µg/mL PTF+70 µg/mL high ox-LDL+PERK shRNA lentiviral particles) and an ox-LDL+shRNA group (70 µg/mL high ox-LDL+PERK shRNA lentiviral particles) in the second part. The protein expression levels of ER-associated apoptosis proteins were detected by Western blot, and their mRNA expression levels were detected by quantitative real-time reverse transcription-polymerase chain reaction. The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay was applied to test cell viability, and the level of apoptosis was monitored by flow cytometry. RESULTS: The MTT assay and flow cytometry showed that the ox-LDL group had a significant increase in apoptosis, which was attenuated in PTF treatment groups and shRNA groups. Moreover, the ox-LDL group had increased protein and mRNA levels of binding immunoglobulin protein and ER-associated apoptosis proteins, such as PERK, eIF2α, ATF4 and CHOP, which were attenuated in PTF treatment groups and shRNA groups. CONCLUSIONS: The apoptosis induced by ox-LDL had a strong relation to ER stress. The protective effect of PTF on ER stressinduced apoptosis was associated with inhibition of the PERK-eIF2α-ATF4-CHOP pathway, which might be a potential therapeutic strategy for enhancing the stability of atherosclerotic plaques.


Subject(s)
Apoptosis/drug effects , Down-Regulation , Drugs, Chinese Herbal/pharmacology , Endoplasmic Reticulum Stress/drug effects , Flavones/pharmacology , Muscle, Smooth, Vascular/pathology , Myocytes, Smooth Muscle/pathology , Signal Transduction , Activating Transcription Factor 4/metabolism , Aorta/pathology , Cell Proliferation/drug effects , Eukaryotic Initiation Factor-2/metabolism , Humans , Myocytes, Smooth Muscle/drug effects , RNA, Messenger/genetics , RNA, Messenger/metabolism , Signal Transduction/drug effects , Transcription Factor CHOP/metabolism , eIF-2 Kinase/metabolism
18.
Phytomedicine ; 52: 60-69, 2019 Jan.
Article in English | MEDLINE | ID: mdl-30599913

ABSTRACT

BACKGROUND: Licochalconce (LC) H is an artificial compound in the course of synthesizing LCC in 2013. So far, few studies on the effects of LCH have been found in the literature. Despite progress in treatment modalities for oral cancer, the cure from cancer has still limitations. PURPOSE: The effects of LCH were investigated on human oral squamous cell carcinoma (OSCC) cells to elucidate its mechanisms. STUDY DESIGN: We explored the mechanism of action of LCH by which it could have effects on JAK2/STAT3 signaling pathway. METHODS: To confirm LCH anti-cancer effect, analyzed were MTT assay, DAPI staining, soft agar, kinase assay, molecular docking simulation, flow cytometry and Western blotting analysis. RESULTS: According to docking and molecular dynamics simulations, the predicted pose of the complex LCH and JAK2 seems reasonable and LCH is strongly bound to active JAK2 with opened activation loop. The LCH inhibitor is surrounded by specific ATP-binding pocket in which it is stabilized by forming hydrogen bonds and hydrophobic interactions. It is shown that LCH plays as a competitive inhibitor in an active state of JAK2. LCH caused a dose-dependent decrease in phosphorylation of JAK2 and STAT3. More interestingly, LCH suppressed JAK2 kinase activity in vitro by its direct binding to the JAK2. LCH significantly inhibited the JAK2/STAT3 signaling pathway, causing the down-regulation of target genes such as Bcl-2, survivin, cyclin D1, p21 and p27. In addition, LCH inhibited cell proliferation and colony formation of OSCC cells in a dose- and time-dependent manner, as well as induction of cell apoptosis through extrinsic and intrinsic pathway. The induction of apoptosis in OSCC cells by LCH was evident in the increased production of ROS, loss of mitochondrial membrane potential, release of cyto c, variation of apoptotic proteins and activation of caspase cascade. CONCLUSION: LCH not only induces apoptosis in OSCC cells through the JAK/STAT3 signaling pathway but also inhibits cell growth. It is proposed that LCH has a promising use for the chemotherapeutic agent of oral cancer.


Subject(s)
Apoptosis/drug effects , Carcinoma, Squamous Cell/pathology , Chalcones/pharmacology , Janus Kinase 2/metabolism , Mouth Neoplasms/pathology , Carcinoma, Squamous Cell/drug therapy , Caspases/metabolism , Cell Cycle , Cell Line, Tumor , Cell Proliferation/drug effects , Chalcones/chemistry , Cyclin D1/metabolism , Cyclin-Dependent Kinase Inhibitor p21/metabolism , Cyclin-Dependent Kinase Inhibitor p27/metabolism , Humans , Membrane Potential, Mitochondrial/drug effects , Molecular Docking Simulation , Mouth Neoplasms/drug therapy , Phosphorylation/drug effects , Proto-Oncogene Proteins c-bcl-2/metabolism , STAT3 Transcription Factor/metabolism , Signal Transduction/drug effects , Survivin/metabolism
19.
Article in English | WPRIM (Western Pacific) | ID: wpr-777129

ABSTRACT

OBJECTIVE@#To test the hypothesis that the inhibition of endoplasmic reticulum (ER) stress-induced apoptosis in oxidized low-density lipoproteins (ox-LDL)-induced human aortic-vascular smooth muscle cells (HA-VSMCs) was associated with suppression of the protein kinase RNA-like ER kinase (PERK)-eukaryotic translation initiation factor 2α (eIF2α)-activating transcription factor 4 (ATF4)-CCAAT/enhancer binding protein homologous protein (CHOP) signaling pathway by Pollen Typhae total flavone (PTF).@*METHODS@#Primary HA-VSMCs were cultured and identified. The cultured HA-VSMCs were randomized into 5 groups, including a normal control group, an ox-LDL group (70 μg/mL high ox-LDL), an HPTF group (70 μg/mL high ox-LDL+500 μg/mL PTF), an MPTF group (70 μg/mL high ox-LDL+250 μg/mL PTF), and a LPTF group (70 μg/mL high ox-LDL+100 μg/mL PTF) in the first part; and a normal control group, an ox-LDL group (70 μg/mL high ox-LDL), an MPTF group (70 μg/mL high ox-LDL+250 μg/mL PTF), a shRNA group (transducted with PERK shRNA lentiviral particles), a scramble shRNA group (transducted with control shRNA lentiviral particles), an MPTF+ox-LDL+shRNA group (250 μg/mL PTF+70 μg/mL high ox-LDL+PERK shRNA lentiviral particles) and an ox-LDL+shRNA group (70 μg/mL high ox-LDL+PERK shRNA lentiviral particles) in the second part. The protein expression levels of ER-associated apoptosis proteins were detected by Western blot, and their mRNA expression levels were detected by quantitative real-time reverse transcription-polymerase chain reaction. The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay was applied to test cell viability, and the level of apoptosis was monitored by flow cytometry.@*RESULTS@#The MTT assay and flow cytometry showed that the ox-LDL group had a significant increase in apoptosis, which was attenuated in PTF treatment groups and shRNA groups. Moreover, the ox-LDL group had increased protein and mRNA levels of binding immunoglobulin protein and ER-associated apoptosis proteins, such as PERK, eIF2α, ATF4 and CHOP, which were attenuated in PTF treatment groups and shRNA groups.@*CONCLUSIONS@#The apoptosis induced by ox-LDL had a strong relation to ER stress. The protective effect of PTF on ER stressinduced apoptosis was associated with inhibition of the PERK-eIF2α-ATF4-CHOP pathway, which might be a potential therapeutic strategy for enhancing the stability of atherosclerotic plaques.

20.
Oncol Lett ; 16(5): 6735-6741, 2018 Nov.
Article in English | MEDLINE | ID: mdl-30405816

ABSTRACT

The aim of the present study was to investigate the effects of acidosis on the apoptosis of renal epithelial and endothelial cells, and the molecular pathways responsible for this. A human proximal tubular cell line, HK-2, and human umbilical vein endothelial cells (HUVECs), were transfected with control or G protein-coupled receptor 4 siRNA for 36 h. Cells were exposed to normal (pH 7.4) or acidic (pH 6.4) media. Western blot analysis was used to assess the protein expression levels of G protein-coupled receptor 4 (GPR4), CCAAT/enhancer-binding protein homologous protein (CHOP) and cleaved caspase-3. Cell apoptosis was examined using the TUNEL assay and the lactate dehydrogenase (LDH) release assay. Using these techniques, it was demonstrated that acidosis increased the protein expression levels of GPR4, CHOP, cleaved caspase-3 and intracellular cyclic adenosine monophosphate levels in hypoxia/reoxygenation (HR)-treated cell lines. Knockdown of GPR4 in HK-2 cells and HUVECs markedly reduced the protein expression levels of acidosis-mediated GPR4, CHOP and cleaved caspase-3, as well as the rate of cell apoptosis. Therefore, the results of the present study suggested that acidosis promotes the apoptosis of HK-2 cells and HUVECs by regulating the GPR4/CHOP pathway.

SELECTION OF CITATIONS
SEARCH DETAIL
...