Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 132
Filter
1.
J Immunol Methods ; 531: 113710, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38871279

ABSTRACT

When the membrane protein CD40 ligand (CD40L) on activated T cells binds the receptor CD40 on B-cells, it provides a co-stimulatory signal for B cell activation. Dysregulation of the CD40L:CD40 axis is associated with inflammatory and autoimmune diseases. The presence of soluble CD40L (sCD40L) in plasma is implicated in several diseases, from cardiovascular and autoimmune diseases to different types of cancer, and sCD40L has been suggested as a valuable marker of disease. If sCD40L is to be used as a biomarker, being able to precisely measure and quantify the levels of sCD40L in human blood samples is of utmost importance. We demonstrate the development of a sandwich-type time-resolved immunofluorometric assay for quantification of sCD40L in plasma or serum samples. For this, we generate 29 monoclonal anti-CD40L antibodies, and from these, we select the optimal combination of capture antibody and detection antibody. A number of variables were tested: the influence of the type of sample (comparing 3 different blood collection tubes for serum sampling and 4 different types of tubes for plasma sampling), the influence of freeze-thaw cycles, the influence of sampling time during night and day, and the influence of centrifugation of the samples. We found a very similar level of sCD40L in paired EDTA plasma and serum samples. Out of 100 healthy blood donor samples 61 had a level of sCD40L below the detection level of the assay, whereas the remaining 39 samples had ranging levels of sCD40L from 1.14 to 33.14 ng/mL. In summary, we present a time-resolved immunofluorometric assay based on paired monoclonal antibodies, ensuring high specificity, sensitivity, and homogeneity. The Eu3+-based assay additionally provides consistent assay readouts due to the extended decay time not seen in standard enzyme-linked immunosorbent assays. The assay paves the way for specific and consistent quantification of sCD40L in human plasma and serum samples.


Subject(s)
CD40 Ligand , Humans , CD40 Ligand/blood , Biomarkers/blood , Antibodies, Monoclonal/immunology , Fluoroimmunoassay/methods , Reproducibility of Results
3.
Am J Transplant ; 2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38552961

ABSTRACT

Recently published studies in both murine models and a meta-analysis of non-human primate renal transplant studies showed that anti-CD154 reagents conferred a significant survival advantage over CD40 blockers in both animal models and across multiple organs. Here we sought to compare the induction of donor-reactive forkhead box P3+-induced regulatory T cells (Foxp3+ iTreg) in mice treated with anti-CD154 versus anti-CD40 monoclonal antibodies (mAbs). Results indicated that while treatment with anti-CD154 mAb resulted in a significant increase in the frequency of donor-reactive CD4+ Foxp3+ iTreg following transplantation, treatment with anti-CD40 or Cd40 deficiency failed to recapitulate this result. Because we recently identified CD11b as an alternate receptor for CD154 during alloimmunity, we interrogated the role of CD154:CD11b interactions in the generation of Foxp3+ iTreg and found that blockade of CD11b in Cd40-/- recipients resulted in increased donor-reactive Foxp3+ iTreg as compared with CD40 deficiency alone. Mechanistically, CD154:CD11b inhibition decreased interleukin (IL)-1ß from CD11b+ and CD11c+ dendritic cells, and blockade of IL-1ß synergized with CD40 deficiency to promote Foxp3+ iTreg induction and prolong allograft survival. Taken together, these data provide a mechanistic basis for the observed inferiority of anti-CD40 blockers as compared with anti-CD154 mAb and illuminate an IL-1ß-dependent mechanism by which CD154:CD11b interactions prevent the generation of donor-reactive Foxp3+ iTreg during transplantation.

4.
Cell Rep Methods ; 4(1): 100690, 2024 Jan 22.
Article in English | MEDLINE | ID: mdl-38228152

ABSTRACT

Broadly applicable methods to identify and characterize antigen-specific CD4+ and CD8+ T cells are key to immunology research, including studies of vaccine responses and immunity to infectious diseases. We developed a multiplexed activation-induced marker (AIM) assay that presents several advantages compared to single pairs of AIMs. The simultaneous measurement of four AIMs (CD69, 4-1BB, OX40, and CD40L) creates six AIM pairs that define CD4+ T cell populations with partial and variable overlap. When combined in an AND/OR Boolean gating strategy for analysis, this approach enhances CD4+ T cell detection compared to any single AIM pair, while CD8+ T cells are dominated by CD69/4-1BB co-expression. Supervised and unsupervised clustering analyses show differential expression of the AIMs in defined T helper lineages and that multiplexing mitigates phenotypic biases. Paired and unpaired comparisons of responses to infections (HIV and cytomegalovirus [CMV]) and vaccination (severe acute respiratory syndrome coronavirus 2 [SARS-CoV-2]) validate the robustness and versatility of the method.


Subject(s)
CD4-Positive T-Lymphocytes , CD8-Positive T-Lymphocytes , Tumor Necrosis Factor Receptor Superfamily, Member 9 , Antigens/metabolism , Cytomegalovirus
5.
Clin Exp Allergy ; 53(9): 930-940, 2023 09.
Article in English | MEDLINE | ID: mdl-37437951

ABSTRACT

BACKGROUND: Indoor dust (ID) is a source of peanut proteins and immunostimulatory adjuvants (e.g. LPS) that can promote airway sensitization to peanut. We aimed to determine whether a single airway exposure to peanut plus adjuvant is sufficient to prevent oral tolerance. METHODS: To determine the effect of a single priming event, C57BL/6J mice were exposed once to peanut plus adjuvant through the airway, followed by either airway or low-dose oral exposure to peanut, and assessed for peanut allergy. Oral tolerance was investigated by feeding high-dose peanut followed by airway sensitization. To determine whether a single priming could prevent oral tolerance, the high-dose peanut regimen was applied after a single airway exposure to peanut plus adjuvant. Peanut-specific IgE and IgG1 were quantified, and mice were challenged to peanut to assess allergy. Peanut-specific CD4+ memory T cells (CD4+ TCRß+ CD44hi CD154+ ) were quantified in mediastinal lymph nodes following airway priming. RESULTS: Mice co-exposed to peanut with LPS or ID through the airway were primed to develop peanut allergy after subsequent low-dose oral or airway exposures to peanut. Oral tolerance was induced in mice fed high-dose peanut prior to airway sensitization. In contrast, mice fed high-dose peanut following a single airway exposure to peanut plus adjuvant led to allergy. Peanut-specific CD4+ memory T cells were detected as early as 7 days after the single airway priming with peanut plus adjuvant, however, delaying peanut feeding even 1 day following priming led to allergy, whereas peanut feeding the same day as priming led to tolerance. CONCLUSIONS: A single airway exposure to peanut plus adjuvant is sufficient to prime the immune system to develop allergy following subsequent high-dose oral exposure. These results highlight the importance of introducing peanut as early as possible to prevent sensitization through a non-oral priming event.


Subject(s)
Arachis , Peanut Hypersensitivity , Mice , Animals , Cytokines/metabolism , Lipopolysaccharides , Mice, Inbred C57BL , Adjuvants, Immunologic , Dust , Immune Tolerance , Allergens
6.
Viruses ; 15(6)2023 06 12.
Article in English | MEDLINE | ID: mdl-37376652

ABSTRACT

Macrophages are critical in the pathogenesis of a diverse group of viral pathogens, both as targets of infection and for eliciting primary defense mechanisms. Our prior in vitro work identified that CD40 signaling in murine peritoneal macrophages protects against several RNA viruses by eliciting IL-12, which stimulates the production of interferon gamma (IFN-γ). Here, we examine the role of CD40 signaling in vivo. We show that CD40 signaling is a critical, but currently poorly appreciated, component of the innate immune response using two distinct infectious agents: mouse-adapted influenza A virus (IAV, PR8) and recombinant VSV encoding the Ebola virus glycoprotein (rVSV-EBOV GP). We find that stimulation of CD40 signaling decreases early IAV titers, whereas loss of CD40 elevated early titers and compromised lung function by day 3 of infection. Protection conferred by CD40 signaling against IAV is dependent on IFN-γ production, consistent with our in vitro studies. Using rVSV-EBOV GP that serves as a low-biocontainment model of filovirus infection, we demonstrate that macrophages are a CD40-expressing population critical for protection within the peritoneum and T-cells are the key source of CD40L (CD154). These experiments reveal the in vivo mechanisms by which CD40 signaling in macrophages regulates the early host responses to RNA virus infection and highlight how CD40 agonists currently under investigation for clinical use may function as a novel class of broad antiviral treatments.


Subject(s)
CD40 Antigens , RNA Virus Infections , RNA Viruses , Animals , Mice , CD40 Antigens/metabolism , Interferon-gamma , Macrophages , RNA Virus Infections/immunology
7.
Cell Biol Int ; 47(8): 1441-1452, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37132435

ABSTRACT

An elevation of pathologic intraocular pressure (IOP) is the greatest risk factor for glaucoma. CD154 has been reported to bind to CD40 expressed by orbital fibroblasts and be involved in immune and inflammatory responses. However, the function and mechanism of CD154 in ocular hypertensive glaucoma (OHG) are not fully understood. We isolated and characterized Müller cells and subsequently examined the effect of CD154 on ATP release from those cells. After being cocultured with CD154-pretreated Müller cells, retinal ganglion cells (RGCs) were treated with P2X7 siRNAs or a P2X7 inhibitor. Furthermore, mouse models of glaucoma (GC) were injected with P2X7 shRNA. p21, p53, and P2X7 expression were examined, and cellular senescence and apoptosis were detected by ß-Gal and TUNEL staining, retinal pathology was examined by H&E staining, and CD154 and ß-Gal expression were detected by ELISA. CD154 induced ATP release from Müller cells and accelerated the senescence and apoptosis of RGCs that had been cocultured with Müller cells. We also found that treatment with P2X7 could attenuate the senescence and apoptosis of RGCs mediated by Müller cells pretreated with CD154. In vivo studies in GC model mice verified that P2X7 silencing attenuated pathological damage and prevented the senescence and apoptosis of retinal tissue. The study demonstrates how CD154 accelerates the aging and apoptosis of RGCs by co-cultivating Müller cells pretreated with CD154 in OHG. The research implies that CD154 has the potential to become a new therapeutic target for ocular hypertension glaucoma, providing a new research direction for its treatment.


Subject(s)
Glaucoma , Neuroprotection , Mice , Animals , Ependymoglial Cells/metabolism , Ependymoglial Cells/pathology , Retina/metabolism , Glaucoma/drug therapy , Glaucoma/metabolism , Glaucoma/pathology , Disease Models, Animal , CD40 Ligand/metabolism , Adenosine Triphosphate/metabolism
8.
Clin Immunol ; 252: 109649, 2023 07.
Article in English | MEDLINE | ID: mdl-37209805

ABSTRACT

The number of regulatory T cells (Tregs) and how they behave in the pathogenesis of atopic dermatitis (AD) are still controversial. We identified and quantified Tregs, mite-specific Tregs, and mite-specific effector T cells (Teffs) in patients with AD and healthy controls (HCs). We collected peripheral blood and analyzed the cells using flow cytometry after stimulation with mite antigens. Mite-specific Tregs and mite-specific Teffs were recognized by the expression of CD137 and CD154, respectively. Patients with AD had more Tregs than HCs; however, when focusing on a single antigen, the ratio of mite-specific Tregs/Teffs was lower in patients with AD than in HCs. Furthermore, the mite-specific Teffs in patients with AD were more likely to produce proinflammatory cytokines interleukin (IL)-4 and IL-13. This Teff-dominant imbalance is thought to be the cause of development of atopic status in patients with AD without immune tolerance.


Subject(s)
Dermatitis, Atopic , Humans , T-Lymphocytes, Regulatory , Antigens , Immune Tolerance , Cytokines/metabolism
9.
Am J Transplant ; 23(8): 1182-1193, 2023 08.
Article in English | MEDLINE | ID: mdl-37030662

ABSTRACT

Blockade of the CD40/CD154 T cell costimulation pathway is a promising approach to supplement or replace current clinical immunosuppression in solid organ transplantation. We evaluated the tolerability and activity of a novel humanized anti-CD154 monoclonal antibody, TNX-1500 (TNX), in a nonhuman primate heterotopic cardiac allogeneic (allo) transplant model. TNX-1500 contains a rupluzimab fragment antigen-binding region and an immunoglobin G4 crystallizable fragment region engineered to reduce binding to the crystallizable fragment gamma receptor IIa and associated risks of thrombosis. Recipients were treated for 6 months with standard-dose TNX (sTNX) monotherapy, low-dose TNX monotherapy (loTNX), or loTNX with mycophenolate mofetil (MMF) (loTNX + MMF). Results were compared with historical data using chimeric humanized 5c8 monotherapy dosed as for loTNX but discontinued at 3 months. Median survival time was similar for humanized 5c8 and both loTNX groups, but significantly longer with sTNX (>265 days) than with loTNX (99 days) or loTNX + MMF (88 days) (P < 0.05 for both comparisons against sTNX). Standard-dose TNX prevented antidonor alloantibody elaboration, inhibited chronic rejection, and was associated with a significantly reduced effector T cells/regulatory T cells ratio relative to loTNX with MMF. No thrombotic complications were observed. This study demonstrated that TNX was well tolerated, prolongs allograft survival, and prevents alloantibody production and cardiac allograft vasculopathy in a stringent preclinical nonhuman primate heart allotransplant model.


Subject(s)
Antibodies, Monoclonal , Graft Rejection , Animals , Antibodies, Monoclonal/pharmacology , Antibodies, Monoclonal/therapeutic use , Graft Rejection/etiology , Graft Rejection/prevention & control , CD40 Ligand , Antibodies, Monoclonal, Humanized , Isoantibodies , Allografts , Primates , Graft Survival
11.
Front Oncol ; 13: 1107484, 2023.
Article in English | MEDLINE | ID: mdl-36776340

ABSTRACT

Introduction: The discovery of immune checkpoints and the development of their specific inhibitors was acclaimed as a major breakthrough in cancer therapy. However, only a limited patient cohort shows sufficient response to therapy. Hence, there is a need for identifying new checkpoints and predictive biomarkers with the objective of overcoming immune escape and resistance to treatment. Having been associated with both, treatment response and failure, LDL seems to be a double-edged sword in anti-PD1 immunotherapy. Being embedded into complex metabolic conditions, the impact of LDL on distinct immune cells has not been sufficiently addressed. Revealing the effects of LDL on T cell performance in tumor immunity may enable individual treatment adjustments in order to enhance the response to routinely administered immunotherapies in different patient populations. The object of this work was to investigate the effect of LDL on T cell activation and tumor immunity in-vitro. Methods: Experiments were performed with different LDL dosages (LDLlow = 50 µg/ml and LDLhigh = 200 µg/ml) referring to medium control. T cell phenotype, cytokines and metabolism were analyzed. The functional relevance of our findings was studied in a HCT116 spheroid model in the context of anti-PD-1 blockade. Results: The key points of our findings showed that LDLhigh skewed the CD4+ T cell subset into a central memory-like phenotype, enhanced the expression of the co-stimulatory marker CD154 (CD40L) and significantly reduced secretion of IL-10. The exhaustion markers PD-1 and LAG-3 were downregulated on both T cell subsets and phenotypical changes were associated with a balanced T cell metabolism, in particular with a significant decrease of reactive oxygen species (ROS). T cell transfer into a HCT116 spheroid model resulted in a significant reduction of the spheroid viability in presence of an anti-PD-1 antibody combined with LDLhigh. Discussion: Further research needs to be conducted to fully understand the impact of LDL on T cells in tumor immunity and moreover, to also unravel LDL effects on other lymphocytes and myeloid cells for improving anti-PD-1 immunotherapy. The reason for improved response might be a resilient, less exhausted phenotype with balanced ROS levels.

12.
Immunogenetics ; 75(2): 191-194, 2023 04.
Article in English | MEDLINE | ID: mdl-36478253

ABSTRACT

The X-linked hyper-IgM syndrome (X-HIGM1) is a rare primary immunodeficiency disorder (PID) caused by mutations in the gene encoding the CD154 protein, also known as CD40 ligand (CD40LG). X-HIGM1 is characterized by normal or elevated serum levels of IgM in association with decreased levels of IgG, IgA, and IgE. The CD40LG protein expressed on activated T cells interacts with its receptor protein, CD40, on B lymphocytes and dendritic cells. Mutations in the CD40LG gene lead to the production of an abnormal CD40L protein that fails to attach to its receptor, CD40 on B cells resulting in failure to produce IgG, IgA, and IgE antibodies. In the present study, we investigated the molecular defects underlying such a PID in a patient presenting with clinical history of pneumonia and acute respiratory distress syndrome (ARDS) at 7 months of age and diagnosed as transient hypogammaglobulinemia with decreased levels of IgG and increased levels of IgM. We have identified a novel and yet to be reported frame shift deletion of a single base pair (c.229delA) in exon 2 (p.Arg77AspfsTer6) of the CD40L gene ensuing the premature truncation of the protein by 6 amino acids by targeted gene sequencing. This frame shift mutation identified as a CD40L variant was found to be pathogenic which was also validated by Sanger sequencing. The in-silico analysis of c.229 del A mutation also predicted the change to be pathological affecting the structure and function of the CD40L (CD40L, CD154) protein and its protein-protein interaction properties.


Subject(s)
Hyper-IgM Immunodeficiency Syndrome, Type 1 , Humans , Hyper-IgM Immunodeficiency Syndrome, Type 1/genetics , Hyper-IgM Immunodeficiency Syndrome, Type 1/diagnosis , CD40 Ligand/genetics , CD40 Ligand/chemistry , Ligands , Mutation , Immunoglobulin M/genetics , Immunoglobulin A/genetics , Immunoglobulin E , Immunoglobulin G/genetics
13.
Allergy ; 78(1): 270-282, 2023 01.
Article in English | MEDLINE | ID: mdl-36005389

ABSTRACT

BACKGROUND: Apart from Ni2+ , Co2+ , and Pd2+ ions commonly trigger T cell-mediated allergic contact dermatitis. However, in vitro frequencies of metal-specific T cells and the mechanisms of antigen recognition remain unclear. METHODS: Here, we utilized a CD154 upregulation assay to quantify Ni2+ -, Co2+ -, and Pd2+ -specific CD4+ T cells in peripheral blood mononuclear cells (PBMC). Involved αß T cell receptor (TCR) repertoires were analyzed by high-throughput sequencing. RESULTS: Peripheral blood mononuclear cells incubation with NiSO4 , CoCl2 , and PdCl2 increased frequencies of CD154 + CD4+ memory T cells that peaked at ~400 µM. Activation was TCR-mediated as shown by the metal-specific restimulation of T cell clones. Most abundant were Pd2+ -specific T cells (mean 3.5%, n = 19), followed by Co2+ - and Ni2+ -specific cells (0.6%, n = 18 and 0.3%, n = 20) in both allergic and non-allergic individuals. A strong overrepresentation of the gene segment TRAV9-2 was unique for Ni2+ -specific TCR (28% of TCR) while Co2+ and Pd2+ -specific TCR favorably expressed TRAV2 (8%) and the TRBV4 gene segment family (21%), respectively. As a second, independent mechanism of metal ion recognition, all analyzed metal-specific TCR showed a common overrepresentation of a histidine in the complementarity determining region 3 (CDR3; 15% of α-chains, 34% of ß-chains). The positions of the CDR3 histidine among metal-specific TCR mirrored those in random repertoires and were conserved among cross-reactive clonotypes. CONCLUSIONS: Induced CD154 expression allows a fast and comprehensive detection of Ni2+ -, Co2+ -, and Pd2+ -specific CD4+ T cells. Distinct TCR repertoire features underlie the frequent activation and cross-reactivity of human metal-specific T cells.


Subject(s)
CD4-Positive T-Lymphocytes , Receptors, Antigen, T-Cell, alpha-beta , Humans , Receptors, Antigen, T-Cell, alpha-beta/genetics , Receptors, Antigen, T-Cell, alpha-beta/metabolism , Leukocytes, Mononuclear/metabolism , Histidine/metabolism , Complementarity Determining Regions/genetics , Complementarity Determining Regions/metabolism
14.
Front Immunol ; 13: 1043375, 2022.
Article in English | MEDLINE | ID: mdl-36426360

ABSTRACT

A single birth-dose of Hepatitis B vaccine (HepB) can protect newborns from acquiring Hepatitis B infection through vertical transmission, though several follow-up doses are required to induce long-lived protection. In addition to stimulating antibodies, a birth-dose of HepB might also induce polyfunctional CD4+ T-cells, which may contribute to initial protection. We investigated whether vaccination with HepB in the first week of life induced detectable antigen-specific CD4+ T-cells after only a single dose and following completion of the entire HepB vaccine schedule (3 doses). Using HBsAg- stimulated peripheral blood mononuclear cells from 344 infants, we detected increased populations of antigen-specific polyfunctional CD154+IL-2+TNFα+ CD4+ T-cells following a single birth-dose of HepB in a proportion of infants. Frequencies of polyfunctional T-cells increased following the completion of the HepB schedule but increases in the proportion of responders as compared to following only one dose was marginal. Polyfunctional T-cells correlated positively with serum antibody titres following the birth dose (day30) and completion of the 3-dose primary HepB vaccine series (day 128). These data indicate that a single birth dose of HepB provides immune priming for both antigen-specific B- and T cells.


Subject(s)
Hepatitis B Vaccines , Leukocytes, Mononuclear , Infant , Infant, Newborn , Humans , T-Lymphocytes, Helper-Inducer , CD4-Positive T-Lymphocytes
15.
Front Immunol ; 13: 979277, 2022.
Article in English | MEDLINE | ID: mdl-36203615

ABSTRACT

Analysis of T lymphocyte proliferation and activation after antigenic or mitogenic stimulation is a vital parameter used in the diagnosis of various immuno-deficiencies and during the monitoring of treatment responses. Most applied techniques are based on the incorporation of tritiated thymidine (3H-TdR) or ELISPOT analysis, both rely on rather time-consuming/-intensive ex vivo protocols or encompass inherent drawbacks such as the inability to distinguish specific cell populations (3H-TdR, ELISPOT) or focus on a single cytokine (ELISPOT). Here we aimed at characterizing the rapid expression of intracellular CD154 (CD40L) as a marker for rare antigen-specific CD4+ T cells in pemphigus vulgaris (PV). Upon stimulation with human desmoglein (Dsg) 3, the major autoantigen in PV, the expression of CD154 was significantly increased in PV patients compared to healthy controls (HC) and correlated with anti-Dsg3 IgG titers. Patients with active disease showed higher numbers of Dsg3-reactive CD4+ T cells in CXCR5+ T follicular helper cells. In remittent PV and HC, CXCR5+CD4+ T cells remained largely unaffected by Dsg3. IL-17 and IL-21 expression were significantly induced only in CD154+CD4+ T cells from PV patients, lending themselves as potential novel treatment targets. Additionally, stimulation with immunodominant Dsg3-derived epitopes strongly induced a CD4+ T cell response via CD40-CD154 interaction similar to the human Dsg3 protein. We here established a rapid ex vivo assay allowing the detection of Dsg3-reactive CD4+ T cells from activated systemically available PBMCs, which further supports the crucial concept of antigen-specific T cells in the pathogenesis of PV.


Subject(s)
Pemphigus , Autoantigens , CD40 Ligand/metabolism , Cytokines/metabolism , Epitopes , Humans , Immunoglobulin G/metabolism , Interleukin-17/metabolism , T-Lymphocyte Subsets , Thymidine/metabolism
16.
Immunity ; 55(10): 1924-1939.e5, 2022 10 11.
Article in English | MEDLINE | ID: mdl-35985324

ABSTRACT

SARS-CoV-2 infection and vaccination generates enormous host-response heterogeneity and an age-dependent loss of immune-response quality. How the pre-exposure T cell repertoire contributes to this heterogeneity is poorly understood. We combined analysis of SARS-CoV-2-specific CD4+ T cells pre- and post-vaccination with longitudinal T cell receptor tracking. We identified strong pre-exposure T cell variability that correlated with subsequent immune-response quality and age. High-quality responses, defined by strong expansion of high-avidity spike-specific T cells, high interleukin-21 production, and specific immunoglobulin G, depended on an intact naive repertoire and exclusion of pre-existing memory T cells. In the elderly, T cell expansion from both compartments was severely compromised. Our results reveal that an intrinsic defect of the CD4+ T cell repertoire causes the age-dependent decline of immune-response quality against SARS-CoV-2 and highlight the need for alternative strategies to induce high-quality T cell responses against newly arising pathogens in the elderly.


Subject(s)
COVID-19 , SARS-CoV-2 , Aged , Antibodies, Viral , Humans , Immunity , Immunoglobulin G , Receptors, Antigen, T-Cell , Vaccination
17.
Cells ; 11(11)2022 05 25.
Article in English | MEDLINE | ID: mdl-35681441

ABSTRACT

CD154, an inflammatory mediator also known as CD40 ligand, has been identified as a novel binding partner for some members of the integrin family. The αIIbß3, specifically expressed on platelets, was the first integrin to be described as a receptor for CD154 after CD40. Its interaction with soluble CD154 (sCD154) highly contributes to thrombus formation and stability. Identifying αIIbß3 opened the door for investigating other integrins as partners of CD154. The αMß2 expressed on myeloid cells was shown capable of binding CD154 and contributing as such to cell activation, adhesion, and release of proinflammatory mediators. In parallel, α5ß1 communicates with sCD154, inducing pro-inflammatory responses. Additional pathogenic effects involving apoptosis-preventing functions were exhibited by the CD154-α5ß1 dyad in T cells, conferring a role for such interaction in the survival of malignant cells, as well as the persistence of autoreactive T cells. More recently, CD154 receptors integrated two new integrin members, αvß3 and α4ß1, with little known as to their biological significance in this context. This article provides an overview of the novel role of integrins as receptors of CD154 and as critical players in pro-inflammatory and apoptotic responses.


Subject(s)
Apoptosis , CD40 Antigens , CD40 Ligand , Inflammation , CD40 Antigens/metabolism , CD40 Ligand/metabolism , Humans , Inflammation/metabolism , Platelet Glycoprotein GPIIb-IIIa Complex/metabolism
18.
Dev Comp Immunol ; 134: 104460, 2022 09.
Article in English | MEDLINE | ID: mdl-35667467

ABSTRACT

CD40 and CD154 are well-characterized costimulatory molecules involved in adaptive humoral immunity in humans and other mammals. These two costimulatory molecules were found to be originated from teleost fish during vertebrate evolution. However, the functionality of fish CD40 and CD154 remains to be explored. In this study, we identified the CD40 and CD154 homologs (LcCD40 and LcCD154) from large yellow croaker (Larimichthys crocea), a marine species of the perciform fish family. The LcCD40 and LcCD154 share conserved structural features to their mammalian counterparts, and are widely expressed in immune-relevant tissues and leukocytes at different transcriptional levels. Immunofluorescence staining and FCM analysis showed that LcCD40 and LcCD154 proteins are distributed on MHC-II+ APCs and CD4-2+ T cells, and are significantly upregulated in response to antigen stimulation. Co-IP assay exhibited strong association between LcCD40 and LcCD154 proteins. Blockade of LcCD154 with anti-LcCD154 antibody (Ab) or recombinant soluble LcCD40-Ig fusion protein remarkably decreased the MHC-II+ APC-initiated CD4+ T cell response upon Aeromonas hydrophila stimulation, and alloreactive T cell activation as examined by mixed lymphocyte reaction (MLR). These findings highlight the costimulatory role of LcCD40 and LcCD154 in T cell activities in Larimichthys crocea. Thus, the CD40 and CD154 costimulators may extensively participate in the regulation of multiple T cell-mediated immune responses in teleost fish. It is anticipated that this study would provide a cross-species understanding of the evolutionary history of CD40 and CD154 costimulatory signals from fish to mammals.


Subject(s)
Perciformes , T-Lymphocytes , Animals , CD40 Antigens/genetics , CD40 Ligand/genetics , Interleukin-2 , Lymphocyte Activation , Mammals
19.
Toxicol Pathol ; 50(5): 712-724, 2022 07.
Article in English | MEDLINE | ID: mdl-35730205

ABSTRACT

CFZ533 (iscalimab) is a nondepleting anti-CD40 antibody intended for inhibition of transplant organ rejection and treatment of autoimmune diseases. In a safety assessment in rhesus monkeys, CFZ533 was administered for 13 weeks up to 150 mg/kg/week subcutaneously. CFZ533 was shown previously to completely inhibit primary and secondary T-cell-dependent antibody responses. CD40 is expressed on B cells, antigen-presenting cells, and endothelial and epithelial cells, but is not expressed on T cells. Here, we demonstrate the complete suppression of germinal center formation in lymphoid organs. CFZ533 was well tolerated and did not cause any dose-limiting toxicity. However, the histological evaluation revealed increased numbers of CD4+ and CD8+ T cells in the T-cell-rich areas of lymph nodes enlarged in response to observed adenovirus and Cryptosporidium infections which suggest that T-cell immune function was unaffected. Background infections appear as the condition leading to unraveling the differential immunosuppressive effects by CFZ533. The presence of T cells at lymph nodes draining sites of infections corroborates the immunosuppressive mechanism, which is different from calcineurin-inhibiting drugs. Furthermore, CFZ533 did not show any hematological or microscopic evidence of thromboembolic events in rhesus monkeys, which were previously shown to respond with thromboembolism to treatment with anti-CD154 antibodies.


Subject(s)
Cryptosporidiosis , Cryptosporidium , Opportunistic Infections , Animals , Antibodies, Monoclonal , CD40 Antigens , CD8-Positive T-Lymphocytes , Immunosuppression Therapy , Macaca mulatta
20.
Front Immunol ; 13: 861471, 2022.
Article in English | MEDLINE | ID: mdl-35464470

ABSTRACT

The prevention of allograft transplant rejection by inhibition of the CD40/CD40L costimulatory pathway has been described in several species. We searched pubmed for studies reporting the prevention of kidney transplant rejection in nonhuman primates utilizing either anti CD40 or anti CD40L (CD154) treatment. Inclusion of data required treatment with anti CD40 or anti CD154 as monotherapy treatment arms, full text available, studies conducted in nonhuman primate species, the transplant was renal transplantation, sufficient duration of treatment to assess long term rejection, and the reporting of individual graft survival or survival duration. Eleven publications were included in the study. Rejection free survival was calculated using the Kaplan-Meier (KM) life test methods to estimate the survival functions. The 95% CI for the medians was also calculated. A log-rank test was used to test the equality of the survival curves between control and treatment arms (CD40 and CD154). The hazard ratio for CD154 compared to CD40 and 95% CI was calculated using a Cox proportional-hazards model including treatment as the covariate to assess the magnitude of the treatment effect. Both anti CD40 and anti CD154 treatments prevented acute and long term graft rejection. The median (95% CI) rejection free survival was 131 days (84,169 days) in the anti CD40 treated animals and 352 days (173,710 days) in the anti CD154 treated animals. Median survival in the untreated animals was 6 days. The inhibition of transplant rejection was more durable in the anti CD154 group compared to the anti CD40 group after cessation of treatment. The median (95% CI) rejection free survival after cessation of treatment was 60 days (21,80 days) in the anti CD40 treated animals and 230 days (84,552 days) in the anti CD154 treated animals.


Subject(s)
CD40 Ligand , Kidney Transplantation , Animals , CD40 Antigens , Graft Rejection/prevention & control , Graft Survival , Kidney Transplantation/adverse effects , Primates
SELECTION OF CITATIONS
SEARCH DETAIL
...