Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 264
Filter
1.
Vet Pathol ; : 3009858241252409, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38757523

ABSTRACT

The Cd40l-/- mouse is a well-established model of X-linked hyper-immunoglobulin M (IgM) syndrome, an immunodeficiency disorder of human beings characterized by the lack of expression of the CD40 ligand (CD40L) on activated T-cells, predisposing to infections with opportunistic pathogens like Pneumocystis jirovecii. The aim of our study was to describe the pulmonary lesions in Cd40l-/- mice experimentally infected with Pneumocystis murina, in comparison with naturally infected severe combined immunodeficient (SCID) mice. Formalin-fixed paraffin-embedded lungs from 26 Cd40l-/-, 11 SCID, and 5 uninfected Cd40l-/- mice were examined by histology and immunohistochemistry for the presence of the pathogen and for leukocyte populations (CD3, CD4, CD45R/B220, CD8a, Iba-1, Ly-6G, CD206, MHC II, and NKp46/NCR1). Infection was confirmed by immunohistochemistry in 18/26 (69%) Cd40l-/- mice and in 11/11 (100%) SCID mice. Fourteen out of 26 (54%) Cd40l-/- mice had interstitial pneumonia. Twenty-three out of 26 (88%) Cd40l-/- mice had peribronchiolar/perivascular lymphoplasmacytic infiltrates, rich in B-cells and Mott cells. Acidophilic macrophage pneumonia was additionally found in 20/26 (77%) Cd40l-/- mice. Only 4/11 (36%) SCID mice had interstitial pneumonia, but no peribronchiolar/perivascular infiltrates or acidophilic macrophage pneumonia were observed in this strain. This study represents the first description of pulmonary histopathological lesions in Cd40l-/- mice infected with P. murina. We speculate that the singular characteristics of the inflammatory infiltrates observed in Cd40l-/- mice could be explained by the specific immune phenotype of the model.

2.
World Allergy Organ J ; 17(3): 100880, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38390554

ABSTRACT

Chronic rhinosinusitis (CRS) is a disease highly associated with abnormal regulation of T and B cells. The underlying pathophysiology of inflammatory pathways has critical implications for the diagnosis and management of CRS. Soluble CD40-ligand (sCD40L) is a cleaved form of CD40L present in plasma which functions the same way as CD40L, which has been observed as an inflammatory biomarker in many diseases. CD40L-positive cells control B-cell maturation, proliferation, apoptosis, and antibody production by binding to its receptor CD40 on B-cells. And our results show for the first time that patients with CRS have lower serum sCD40L levels compared to healthy subjects and that decreased sCD40L levels in patients correlate with increased CD40L-positive cell counts in the sinonasal mucosa. In addition, eosinophilic chronic rhinosinusitis (eCRS) patients tend to exhibit more CD40L-positive cells in the sinonasal mucosa compared to non-eCRS patients. This supports the notion that local blockade of CD40/CD40L may suppress pathogenic T/B cell responses and reduce tissue inflammation. Significantly, sCD40L and CD40L may be involved in the development and progression of CRS by impairing peripheral blood B-cell function and enhancing the local inflammatory response in the sinonasal mucosa.

3.
Microvasc Res ; 153: 104669, 2024 05.
Article in English | MEDLINE | ID: mdl-38360131

ABSTRACT

BACKGROUND: Coronary artery bypass grafting (CABG) is considered the choice treatment for patients suffering from coronary artery disease (CAD). In the inflammatory milieu of cardiopulmonary bypass (CPB), systemic inflammatory response syndrome (SIRS) can induce a platelet pro-inflammatory state which could exacerbate post-CABG inflammatory status while affecting hemostatic function in patients. Therefore, focusing on platelets, the study presented here attempted to evaluate the pro-inflammatory and immunomodulatory profile of platelets as well as pro-aggregatory status during CABG. METHODS: Platelets from patients undergoing CABG were subjected to flowcytometry analysis to evaluate P-selectin and CD40L expressions and PAC-1 binding in five intervals of 24 h before surgery, immediately, 2 h, 24 h, and one week after surgery. Moreover, intra-platelet TGF-ß1 was also examined with western blotting. RESULTS: Data showed increases of P-selectin and CD40L expressions in patients, with the meaningful loss of platelet contents of TGF-ß1 after CABG (p < 0.001), where the changes tended to recover by day 7 of surgery while remaining above baseline (p < 0.001). Meanwhile, no significant change in PAC-1 binding capacity was shown. CONCLUSION: The study presented here suggests that although the release of pro-inflammatory substances from platelets during CABG supports the post-operative inflammatory state, platelets are not pro-aggregatory enough to enhance thrombotic events after surgery. Whilst these observations could be due to successful medical interventions to optimize hemostasis during and after surgery, post-CABG reversal of anticoagulant by protamine is considered as another factor that may also have contributed to preventing pro-aggregatory but not pro-inflammatory and immunomodulatory functions of platelets.


Subject(s)
P-Selectin , Transforming Growth Factor beta1 , Humans , Transforming Growth Factor beta1/metabolism , P-Selectin/metabolism , CD40 Ligand , Coronary Artery Bypass/adverse effects , Phenotype , Blood Platelets/metabolism
4.
Drug Discov Today ; 29(3): 103893, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38272173

ABSTRACT

CD40, a novel immunomodulatory cancer therapy target, is expressed by B cells, macrophages, and dendritic cells (DCs) and mediates cytotoxic T cell priming through the CD40 ligand. Some tumors show promising responses to monotherapy or combination therapy with agonistic anti-CD40 antibodies. The development of improved anti-CD40 antibodies makes CD40 activation an innovative strategy in cancer immunotherapy. In this review, we trace the history of CD40 research and summarize preclinical and clinical findings. We emphasize the ongoing development of improved anti-CD40 antibodies and explore strategies for effective combination therapies. Guided by predictive biomarkers, future research should identify patient populations benefiting the most from CD40 activation.


Subject(s)
CD40 Antigens , Neoplasms , Humans , Neoplasms/drug therapy , T-Lymphocytes, Cytotoxic , Macrophages , Immunotherapy , Dendritic Cells
5.
J Clin Immunol ; 44(1): 17, 2023 12 22.
Article in English | MEDLINE | ID: mdl-38129705

ABSTRACT

PURPOSE: Inherited deficiencies of CD40 and CD40 ligand (CD40L) reflect the crucial immunological functions of CD40-CD40L interaction/signaling. Although numerous studies have provided a detailed description of CD40L deficiency, reports of CD40 deficiency are scarce. Herein, we describe the characteristics of all reported patients with CD40 deficiency. METHODS: The PubMed, Embase and Web of Science databases were searched for relevant literature published till 7th August 2023. Study deduplication and identification of relevant reports was performed using the online PICO Portal. The data were extracted using a pre-designed data extraction form and the SPSS software was used for analysis. RESULTS: Systematic literature review revealed 40 unique patients with CD40 deficiency. Respiratory tract and gastrointestinal infections were the predominant clinical manifestations (observed in 93% and 57% patients, respectively). Sclerosing cholangitis has been reported in nearly one-third of patients. Cryptosporidium sp. (29%) and Pneumocystis jirovecii (21%) were the most common microbes identified. Very low to undetectable IgG levels and severely reduced/absent switch memory B cells were observed in all patients tested/reported. Elevated IgM levels were observed in 69% patients. Overall, splice-site and missense variants were the most common (36% and 32%, respectively) molecular defects identified. All patients were managed with immunoglobulin replacement therapy and antimicrobial prophylaxis was utilized in a subset. Hematopoietic stem cell transplantation (HSCT) has been performed in 45% patients (curative outcome observed in 73% of these patients). Overall, a fatal outcome was reported in 21% patients. CONCLUSIONS: We provide a comprehensive description of all important aspects of CD40 deficiency. HSCT is a promising curative treatment option for CD40 deficiency.


Subject(s)
Cryptosporidiosis , Cryptosporidium , Hyper-IgM Immunodeficiency Syndrome , Immunologic Deficiency Syndromes , Lymphopenia , Humans , CD40 Ligand/genetics , Hyper-IgM Immunodeficiency Syndrome/genetics , Immunologic Deficiency Syndromes/genetics , CD40 Antigens/genetics , Immunoglobulin M
6.
Int J Mol Sci ; 24(21)2023 Oct 25.
Article in English | MEDLINE | ID: mdl-37958563

ABSTRACT

We aimed to investigate the role of the CD40-CD40 ligand (CD40L) pathway in inflammation-mediated angiogenesis in proliferative diabetic retinopathy (PDR). We analyzed vitreous fluids and epiretinal fibrovascular membranes from PDR and nondiabetic patients, cultures of human retinal microvascular endothelial cells (HRMECs) and Müller glial cells and rat retinas with ELISA, immunohistochemistry, flow cytometry and Western blot analysis. Functional tests included measurement of blood-retinal barrier breakdown, in vitro angiogenesis and assessment of monocyte-HRMEC adherence. CD40L and CD40 levels were significantly increased in PDR vitreous samples. We demonstrated CD40L and CD40 expression in vascular endothelial cells, leukocytes and myofibroblasts in epiretinal membranes. Intravitreal administration of soluble (s)CD40L in normal rats significantly increased retinal vascular permeability and induced significant upregulation of phospho-ERK1/2, VEGF, intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1). sCD40L induced upregulation of VEGF, MMP-9, MCP-1 and HMGB1 in cultured Müller cells and phospo-ERK1/2, p65 subunit of NF-ĸB, VCAM-1 and VEGF in cultured HRMECS. TNF-α induced significant upregulation of CD40 in HRMECs and Müller cells and VEGF induced significant upregulation of CD40 in HRMECs. sCD40L induced proliferation and migration of HRMECs. We provide experimental evidence supporting the involvement of the CD40L-CD40 pathway and how it regulates inflammatory angiogenesis in PDR.


Subject(s)
Diabetes Mellitus , Diabetic Retinopathy , Humans , Rats , Animals , Diabetic Retinopathy/metabolism , CD40 Ligand/metabolism , Endothelial Cells/metabolism , Vascular Cell Adhesion Molecule-1/metabolism , Vascular Endothelial Growth Factor A/metabolism , Rats, Sprague-Dawley , Inflammation/metabolism , Diabetes Mellitus/metabolism
7.
FASEB J ; 37(11): e23228, 2023 11.
Article in English | MEDLINE | ID: mdl-37815518

ABSTRACT

The tumor microenvironment (TME) strongly affects the clinical outcomes of immunotherapy. This study aimed to activate the antitumor immune response by manipulating the TME by transfecting genes encoding relevant cytokines into tumor cells using a synthetic vehicle, which is designed to target tumor cells and promote the expression of transfected genes. Lung tumors were formed by injecting CT26.WT intravenously into BALB/c mice. Upon intravenous injection of the green fluorescent protein-coding plasmid encapsulated in the vehicle, 14.2% tumor-specific expression was observed. Transfection of the granulocyte-macrophage colony-stimulating factor (GM-CSF) and CD40 ligand (L)-plasmid combination and interferon gamma (IFNγ) and CD40L-plasmid combination showed 45.5% and 54.5% complete remission (CR), respectively, on day 60; alternate treatments with both the plasmid combinations elicited 66.7% CR, while the control animals died within 48 days. Immune status analysis revealed that the density of dendritic cells significantly increased in tumors, particularly after GM-CSF- and CD40L-gene transfection, while that of regulatory T cells significantly decreased. The proportion of activated killer cells and antitumoral macrophages significantly increased, specifically after IFNγ and CD40L transfection. Furthermore, the level of the immune escape molecule programmed death ligand-1 decreased in tumors after transfecting these cytokine genes. As a result, tumor cell-specific transfection of these cytokine genes by the synthetic vehicle significantly promotes antitumor immune responses in the TME, a key aim for visceral tumor therapy.


Subject(s)
CD40 Ligand , Granulocyte-Macrophage Colony-Stimulating Factor , Animals , Mice , Granulocyte-Macrophage Colony-Stimulating Factor/genetics , CD40 Ligand/genetics , Interferon-gamma/genetics , Cytokines/genetics , Mice, Inbred BALB C , Immunity
8.
Nutrients ; 15(20)2023 Oct 13.
Article in English | MEDLINE | ID: mdl-37892436

ABSTRACT

Although elevated serum levels of soluble CD40 ligand (sCD40L) were reported in patients with cancer, the importance of high sCD40L levels in clinical oncology remains unknown. We conducted a post hoc analysis of the AMATERASU randomized clinical trial of vitamin D3 supplementation (2000 IU/day) in patients with digestive tract cancer to assess its significance. Serum sCD40L levels were measured by ELISA in 294 residual samples, and were divided into tertiles. In patients with colorectal cancer (CRC), 5-year relapse-free survival (RFS) rates in the middle and highest tertiles were 61.6% and 61.2%, respectively, which was significantly lower than 83.8% in the lowest tertile. A Cox proportional hazard analysis showed that the lowest tertile had a significantly lower risk of relapse or death than the highest tertile even with multivariate adjustment (hazard ratio (HR), 0.30; 95% confidence interval (CI), 0.11-0.80; p = 0.016). In the subgroup of CRC patients with the highest tertile of sCD40L, the 5-year RFS rate in the vitamin D group was 77.9%, which was significantly higher than 33.2% in the placebo group (HR, 0.30; 95% CI, 0.11-0.81; p = 0.018 [Pinteraction = 0.04]). In conclusion, elevated sCD40L might be a biomarker of poor prognosis in patients with CRC, but vitamin D supplementation might improve RFS in patients with high sCD40L.


Subject(s)
CD40 Ligand , Colorectal Neoplasms , Humans , Neoplasm Recurrence, Local , Cholecalciferol/therapeutic use , Dietary Supplements , Colorectal Neoplasms/drug therapy
9.
J Int Med Res ; 51(8): 3000605231194457, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37656969

ABSTRACT

OBJECTIVE: To reveal the significance of plasma galectin-3 and soluble CD40 ligand (sCD40L) levels in patients with ischemic cardiomyopathy (ICM) combined with atrial fibrillation. METHODS: In this case-control study, the case group comprised 60 patients with ICM combined with atrial fibrillation and the control group comprised patients with ICM without atrial fibrillation. Plasma galectin-3 and sCD40L levels, left atrial diameter (LAD), left ventricular ejection fraction (LVEF), and left ventricular diameter (LVD) were compared. RESULTS: The plasma galectin-3 and sCD40L levels, LAD, and LVD were higher and the LVEF was lower in the case than control group. In the case group, the plasma galectin-3 and sCD40L levels were positively correlated with the LAD and LVD but negatively correlated with the LVEF. The area under the receiver operating characteristic curve of the plasma galectin-3 and sCD40L levels in the diagnosis of ICM combined with atrial fibrillation was 0.857 (95% confidence interval, 0.792-0.923) and 0.724 (95% confidence interval, 0.634-0.814), respectively. CONCLUSION: The plasma galectin-3 and sCD40L levels are significantly elevated in patients with ICM combined with atrial fibrillation. Although both may have predictive value in the diagnosis of ICM combined with atrial fibrillation, galectin-3 may have the higher predictive value.


Subject(s)
Atrial Fibrillation , Cardiomyopathies , Myocardial Ischemia , Humans , Galectin 3 , CD40 Ligand , Stroke Volume , Case-Control Studies , Ventricular Function, Left , Myocardial Ischemia/complications , Cardiomyopathies/complications
10.
J Periodontal Res ; 58(6): 1261-1271, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37723604

ABSTRACT

OBJECTIVE: We analyzed the localization and expression of Cluster of differentiation 40 ligand (CD40L) in murine periodontal tissue applied with the orthodontic force to determine the CD40L-expressing cells under mechanical stress. Furthermore, we investigated whether CD40-CD40L interaction played an important role in transducing mechanical stress between periodontal ligament (PDL) cells and cementoblasts and remodeling the periodontal tissue for its homeostasis. BACKGROUND: PDL is a complex tissue that contains heterogeneous cell populations and is constantly exposed to mechanical stress, such as occlusal force. CD40 is expressed on PDL cells and upregulated under mechanical stress. However, whether its ligand, CD40L, is upregulated in periodontal tissue in response to mechanical stress, and which functions the CD40-CD40L interaction induces by converting the force to biological functions between the cement-PDL complex, are not fully understood. METHODS: The orthodontic treatment was applied to the first molars at the left side of the upper maxillae of mice using a nickel-titanium closed-coil spring. Immunohistochemistry was performed to analyze the localization of CD40L in the periodontal tissue under the orthodontic force. Human cementoblasts (HCEM) and human PDL cells were stretched in vitro and analyzed CD40L and CD40 protein expression using flow cytometry. A GFP-expressing CD40L plasmid vector was transfected into HCEM (CD40L-HCEM). CD40L-HCEM was co-cultured with human PDL cells with higher alkaline phosphatase (ALP) activity (hPDS) or lower ALP (hPDF). After co-culturing, cell viability and proliferation were analyzed by propidium iodide (PI) staining and bromodeoxyuridine (BrdU) assay. Furthermore, the mRNA expression of cytodifferentiation- and extracellular matrix (ECM)-related genes was analyzed by real-time PCR. RESULTS: Immunohistochemistry demonstrated that CD40L was induced on the cells present at the cementum surface in periodontal tissue at the tension side under the orthodontic treatment in mice. The flow cytometry showed that the in vitro-stretching force upregulated CD40L protein expression on HCEM and CD40 protein expression on human PDL cells. Co-culturing CD40L-HCEM with hPDF enhanced cell viability and proliferation but did not alter the gene expression related to cytodifferentiation and ECM. In contrast, co-culturing CD40L-HCEM with hPDS upregulated cytodifferentiation- and ECM-related genes but did not affect cell viability and proliferation. CONCLUSION: We revealed that in response to a stretching force, CD40L expression was induced on cementoblasts. CD40L on cementoblasts may interact with CD40 on heterogeneous PDL cells at the necessary time and location, inducing cell viability, proliferation, and cytodifferentiation, maintaining periodontal tissue remodeling and homeostasis.


Subject(s)
CD40 Antigens , CD40 Ligand , Periodontal Ligament , Animals , Humans , Mice , CD40 Ligand/metabolism , Cells, Cultured , Dental Cementum , Ligands , Periodontal Ligament/metabolism , Stress, Mechanical , CD40 Antigens/metabolism
11.
Int J Mol Sci ; 24(18)2023 Sep 11.
Article in English | MEDLINE | ID: mdl-37762241

ABSTRACT

It is theorized that dysregulated immune responses to infectious insults contribute to the development of pediatric B-ALL. In this context, our understanding of the immunomodulatory-mediator-induced signaling responses of leukemic blasts in pediatric B-ALL diagnostic samples is rather limited. Hence, in this study, we defined the signaling landscape of leukemic blasts, as well as normal mature B cells and T cells residing in diagnostic samples from 63 pediatric B-ALL patients. These samples were interrogated with a range of immunomodulatory-mediators within 24 h of collection, and phosflow analyses of downstream proximal signaling nodes were performed. Our data reveal evidence of basal hyperphosphorylation across a broad swath of these signaling nodes in leukemic blasts in contrast to normal mature B cells and T cells in the same sample. We also detected similarities in the phosphoprotein signature between blasts and mature B cells in response to IFNγ and IL-2 treatment, but significant divergence in the phosphoprotein signature was observed between blasts and mature B cells in response to IL-4, IL-7, IL-10, IL-21 and CD40 ligand treatment. Our results demonstrate the existence of both symmetry and asymmetry in the phosphoprotein signature between leukemic and non-leukemic cells in pediatric B-ALL diagnostic samples.

12.
Biology (Basel) ; 12(7)2023 Jul 14.
Article in English | MEDLINE | ID: mdl-37508433

ABSTRACT

T cell activation is a highly regulated process, modulated via the expression of various immune regulatory proteins including cytokines, surface receptors and co-stimulatory proteins. N6-methyladenosine (m6A) is an RNA modification that can directly regulate RNA expression levels and it is associated with various biological processes. However, the function of m6A in T cell activation remains incompletely understood. We identify m6A as a novel regulator of the expression of the CD40 ligand (CD40L) in human CD4+ lymphocytes. Manipulation of the m6A 'eraser' fat mass and obesity-associated protein (FTO) and m6A 'writer' protein methyltransferase-like 3 (METTL3) directly affects the expression of CD40L. The m6A 'reader' protein YT521-B homology domain family-2 (YTHDF2) is hypothesized to be able to recognize and bind m6A specific sequences on the CD40L mRNA and promotes its degradation. This study demonstrates that CD40L expression in human primary CD4+ T lymphocytes is regulated via m6A modifications, elucidating a new regulatory mechanism in CD4+ T cell activation that could possibly be leveraged in the future to modulate T cell responses in patients with immune-related diseases.

13.
Clin Immunol ; 253: 109692, 2023 08.
Article in English | MEDLINE | ID: mdl-37433422

ABSTRACT

X-Linked Hyper-IgM Syndrome is caused by pathogenic variants in CD40LG. Three patients with atypical clinical and immunological features were identified with variants in CD40LG requiring further characterization. Flow cytometry was used to evaluate CD40L protein expression and binding capacity to a surrogate receptor, CD40-muIg. Though functional anomalies were observed, there was still a lack of clarity regarding the underlying mechanism. We developed structural models for wild-type and the three variants of CD40L protein observed in these patients (p. Lys143Asn, Leu225Ser and Met36Arg) to evaluate structural alterations by molecular mechanic calculations, and assess protein movement by molecular dynamic simulations. These studies demonstrate that functional analysis of variants of unknown significance in CD40LG can be supplemented by advanced computational analysis in atypical clinical contexts. These studies in combination identify the deleterious effects of these variants and potential mechanisms for protein dysfunction.


Subject(s)
CD40 Ligand , Hyper-IgM Immunodeficiency Syndrome, Type 1 , Hyper-IgM Immunodeficiency Syndrome , Humans , CD40 Antigens , CD40 Ligand/genetics , Hyper-IgM Immunodeficiency Syndrome, Type 1/genetics , Immunoglobulin M , Mutation
14.
Int J Mol Sci ; 24(11)2023 Jun 03.
Article in English | MEDLINE | ID: mdl-37298667

ABSTRACT

CXCL12, belonging to the CXC chemokine family, is a weak agonist of platelet aggregation. We previously reported that the combination of CXCL12 and collagen at low doses synergistically activates platelets via not CXCR7 but CXCR4, a specific receptor for CXCL12 on the plasma membrane. Recently, we reported that not Rho/Rho kinase, but Rac is involved in the platelet aggregation induced by this combination. Ristocetin is an activator of the von Willebrand factor that interacts with glycoprotein (GP) Ib/IX/V, which generates thromboxane A2 via phospholipase A2 activation, resulting in the release of the soluble CD40 ligand (sCD40L) from human platelets. In the present study, we investigated the effects of a combination of ristocetin and CXCL12 at low doses on human platelet activation and its underlying mechanisms. Simultaneous stimulation with ristocetin and CXCL12 at subthreshold doses synergistically induce platelet aggregation. A monoclonal antibody against not CXCR7 but CXCR4 suppressed platelet aggregation induced by the combination of ristocetin and CXCL12 at low doses. This combination induces a transient increase in the levels of both GTP-binding Rho and Rac, followed by an increase in phosphorylated cofilin. The ristocetin and CXCL12-induced platelet aggregation as well as the sCD40L release were remarkably enhanced by Y27362, an inhibitor of Rho-kinase, but reduced by NSC23766, an inhibitor of the Rac-guanine nucleotide exchange factor interaction. These results strongly suggest that the combination of ristocetin and CXCL12 at low doses synergistically induces human platelet activation via Rac and that this activation is negatively regulated by the simultaneous activation of Rho/Rho-kinase.


Subject(s)
Ristocetin , rho-Associated Kinases , Humans , Blood Platelets/metabolism , CD40 Ligand/metabolism , Chemokine CXCL12/pharmacology , Chemokine CXCL12/metabolism , Phosphorylation , Platelet Activation , Platelet Aggregation , Platelet Glycoprotein GPIb-IX Complex/metabolism , rho-Associated Kinases/metabolism , Ristocetin/metabolism , Ristocetin/pharmacology , von Willebrand Factor/metabolism , rac GTP-Binding Proteins/drug effects , rac GTP-Binding Proteins/metabolism
16.
Clin Exp Immunol ; 213(1): 50-66, 2023 07 05.
Article in English | MEDLINE | ID: mdl-37279566

ABSTRACT

Mucosa-associated invariant T (MAIT) cells are evolutionarily conserved, innate-like T lymphocytes with enormous immunomodulatory potentials. Due to their strategic localization, their invariant T cell receptor (iTCR) specificity for major histocompatibility complex-related protein 1 (MR1) ligands of commensal and pathogenic bacterial origin, and their sensitivity to infection-elicited cytokines, MAIT cells are best known for their antimicrobial characteristics. However, they are thought to also play important parts in the contexts of cancer, autoimmunity, vaccine-induced immunity, and tissue repair. While cognate MR1 ligands and cytokine cues govern MAIT cell maturation, polarization, and peripheral activation, other signal transduction pathways, including those mediated by costimulatory interactions, regulate MAIT cell responses. Activated MAIT cells exhibit cytolytic activities and secrete potent inflammatory cytokines of their own, thus transregulating the biological behaviors of several other cell types, including dendritic cells, macrophages, natural killer cells, conventional T cells, and B cells, with significant implications in health and disease. Therefore, an in-depth understanding of how costimulatory pathways control MAIT cell responses may introduce new targets for optimized MR1/MAIT cell-based interventions. Herein, we compare and contrast MAIT cells and mainstream T cells for their expression of classic costimulatory molecules belonging to the immunoglobulin superfamily and the tumor necrosis factor (TNF)/TNF receptor superfamily, based not only on the available literature but also on our transcriptomic analyses. We discuss how these molecules participate in MAIT cells' development and activities. Finally, we introduce several pressing questions vis-à-vis MAIT cell costimulation and offer new directions for future research in this area.


Subject(s)
Mucosal-Associated Invariant T Cells , Ligands , Cytokines/metabolism , Killer Cells, Natural , Gene Expression , Histocompatibility Antigens Class I , Minor Histocompatibility Antigens/genetics
17.
Front Genet ; 14: 1128139, 2023.
Article in English | MEDLINE | ID: mdl-36923793

ABSTRACT

Both obesity and obstructive sleep apnea (OSA) can lead to metabolic dysregulation and systemic inflammation. Similar to obesity, increasing evidence has revealed that immune infiltration in the visceral adipose tissue (VAT) is associated with obstructive sleep apnea-related morbidity. However, the pathological changes and potential molecular mechanisms in visceral adipose tissue of obstructive sleep apnea patients need to be further studied. Herein, by bioinformatics analysis and clinical validation methods, including the immune-related differentially expressed genes (IRDEGs) analysis, protein-protein interaction network (PPI), functional enrichment analysis, a devolution algorithm (CIBERSORT), spearman's correlation analysis, polymerase chain reaction (PCR), Enzyme-linked immunosorbent assay (ELISA) and immunohistochemistry (IHC), we identified and validated 10 hub IRDEGs, the relative mRNA expression of four hub genes (CRP, CD40LG, CCL20, and GZMB), and the protein expression level of two hub genes (CD40LG and GZMB) were consistent with the bioinformatics analysis results. Immune infiltration results further revealed that obstructive sleep apnea patients contained a higher proportion of pro-inflammatory M1 macrophages and a lower proportion of M2 macrophages. Spearman's correlation analysis showed that CD40LG was positively correlated with M1 macrophages and GZMB was negatively correlated with M2 macrophages. CD40LG and GZMB might play a vital role in the visceral adipose tissue homeostasis of obstructive sleep apnea patients. Their interaction with macrophages and involved pathways not only provides new insights for understanding molecular mechanisms but also be of great significance in discovering novel small molecules or other promising candidates as immunotherapies of OSA-associated metabolic complications.

18.
Front Immunol ; 14: 1111523, 2023.
Article in English | MEDLINE | ID: mdl-36860873

ABSTRACT

Dendritic cell (DC)-maturation stimuli determine the potency of these antigen-presenting cells and, therefore, the quality of the T-cell response. Here we describe that the maturation of DCs via TriMix mRNA, encoding CD40 ligand, a constitutively active variant of toll-like receptor 4 and the co-stimulatory molecule CD70, enables an antibacterial transcriptional program. Besides, we further show that the DCs are redirected into an antiviral transcriptional program when CD70 mRNA in TriMix is replaced with mRNA encoding interferon-gamma and a decoy interleukin-10 receptor alpha, forming a four-component mixture referred to as TetraMix mRNA. The resulting TetraMixDCs show a high potential to induce tumor antigen-specific T cells within bulk CD8+ T cells. Tumor-specific antigens (TSAs) are emerging and attractive targets for cancer immunotherapy. As T-cell receptors recognizing TSAs are predominantly present on naive CD8+ T cells (TN), we further addressed the activation of tumor antigen-specific T cells when CD8+ TN cells are stimulated by TriMixDCs or TetraMixDCs. In both conditions, the stimulation resulted in a shift from CD8+ TN cells into tumor antigen-specific stem cell-like memory, effector memory and central memory T cells with cytotoxic capacity. These findings suggest that TetraMix mRNA, and the antiviral maturation program it induces in DCs, triggers an antitumor immune reaction in cancer patients.


Subject(s)
Antineoplastic Agents , Antiviral Agents , Humans , CD8-Positive T-Lymphocytes , Memory T Cells , Neoplastic Stem Cells , Antigens, Neoplasm , Dendritic Cells
19.
J Pathol ; 259(4): 402-414, 2023 04.
Article in English | MEDLINE | ID: mdl-36640261

ABSTRACT

Mucosa-associated lymphoid tissue (MALT) lymphoma is a B-cell tumour that develops over many decades in the stomachs of individuals with chronic Helicobacter pylori infection. We developed a new mouse model of human gastric MALT lymphoma in which mice with a myeloid-specific deletion of the innate immune molecule, Nlrc5, develop precursor B-cell lesions to MALT lymphoma at only 3 months post-Helicobacter infection versus 9-24 months in existing models. The gastric B-cell lesions in the Nlrc5 knockout mice had the histopathological features of the human disease, notably lymphoepithelial-like lesions, centrocyte-like cells, and were infiltrated by dendritic cells (DCs), macrophages, and T-cells (CD4+ , CD8+ and Foxp3+ ). Mouse and human gastric tissues contained immune cells expressing immune checkpoint receptor programmed death 1 (PD-1) and its ligand PD-L1, indicating an immunosuppressive tissue microenvironment. We next determined whether CD40L, overexpressed in a range of B-cell malignancies, may be a potential drug target for the treatment of gastric MALT lymphoma. Importantly, we showed that the administration of anti-CD40L antibody either coincident with or after establishment of Helicobacter infection prevented gastric B-cell lesions in mice, when compared with the control antibody treatment. Mice administered the CD40L antibody also had significantly reduced numbers of gastric DCs, CD8+ and Foxp3+ T-cells, as well as decreased gastric expression of B-cell lymphoma genes. These findings validate the potential of CD40L as a therapeutic target in the treatment of human gastric B-cell MALT lymphoma. © 2023 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.


Subject(s)
Helicobacter Infections , Helicobacter pylori , Lymphoma, B-Cell, Marginal Zone , Stomach Neoplasms , Animals , Mice , B-Lymphocytes , CD40 Ligand , Forkhead Transcription Factors/metabolism , Helicobacter Infections/complications , Helicobacter Infections/drug therapy , Helicobacter pylori/genetics , Intracellular Signaling Peptides and Proteins/metabolism , Lymphoma, B-Cell, Marginal Zone/drug therapy , Lymphoma, B-Cell, Marginal Zone/genetics , Lymphoma, B-Cell, Marginal Zone/prevention & control , Stomach Neoplasms/pathology , Tumor Microenvironment
20.
J Clin Pharmacol ; 63(4): 435-444, 2023 04.
Article in English | MEDLINE | ID: mdl-36453450

ABSTRACT

Systemic lupus erythematosus (SLE) is a systemic, autoimmune disease characterized by chronic inflammation and organ damage. Dapirolizumab pegol inhibits CD40 ligand (CD40L) and is currently undergoing phase 3 trials for the treatment of SLE. To describe the pharmacokinetic characteristics of dapirolizumab pegol and the relationship between exposure and probability of achieving a British Isles Lupus Assessment Group-based Composite Lupus Assessment (BICLA) response, a population pharmacokinetic (popPK) model and an exposure-response model were developed, based on results of the phase 2b trial (RISE; NCT02804763) of dapirolizumab pegol in SLE. Dapirolizumab pegol pharmacokinetics were found to be dose proportional and well described by a 2-compartment model with first-order elimination from the central compartment. In the popPK model, body weight was the only significant covariate. The average concentration of dapirolizumab pegol, derived from the popPK model, was incorporated into the exposure-response model. Overall, the exposure-response model showed that treatment with dapirolizumab pegol increased the probability of transitioning from BICLA "Nonresponder" to "Responder." No significant covariates on BICLA responder status were identified. Notably, the half maximal effective concentration was greater for the transition from "Responder" to "Nonresponder" (150 µg/mL) than the transition from "Nonresponder" to "Responder" (12 µg/mL), indicating that sustained dapirolizumab pegol concentrations may be required to maintain BICLA response. In conclusion, dapirolizumab pegol pharmacokinetics were as expected for a PEGylated molecule and results from the exposure-response model indicate that a favorable dapirolizumab pegol effect was identified for both BICLA "Nonresponder" to "Responder" and "Responder" to "Nonresponder" transition probabilities.


Subject(s)
Lupus Erythematosus, Systemic , Humans , Immunoglobulin Fab Fragments/therapeutic use , Lupus Erythematosus, Systemic/drug therapy , Polyethylene Glycols/therapeutic use , Severity of Illness Index , Treatment Outcome
SELECTION OF CITATIONS
SEARCH DETAIL
...