Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 179
Filter
1.
Brain Sci ; 14(6)2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38928601

ABSTRACT

Cerebral amyloid angiopathy is characterized by a weakening of the small- and medium-sized cerebral arteries, as their smooth muscle cells are progressively replaced with acellular amyloid ß, increasing vessel fragility and vulnerability to microhemorrhage. In this context, an aberrant overactivation of the complement system would further aggravate this process. The surface protein CD59 protects most cells from complement-induced cytotoxicity, but expression levels can fluctuate due to disease and varying cell types. The degree to which CD59 protects human cerebral vascular smooth muscle (HCSM) cells from complement-induced cytotoxicity has not yet been determined. To address this shortcoming, we selectively blocked the activity of HCSM-expressed CD59 with an antibody, and challenged the cells with complement, then measured cellular viability. Unblocked HCSM cells proved resistant to all tested concentrations of complement, and this resistance decreased progressively with increasing concentrations of anti-CD59 antibody. Complete CD59 blockage, however, did not result in a total loss of cellular viability, suggesting that additional factors may have some protective functions. Taken together, this implies that CD59 plays a predominant role in HCSM cellular protection against complement-induced cytotoxicity. The overexpression of CD59 could be an effective means of protecting these cells from excessive complement system activity, with consequent reductions in the incidence of microhemorrhage. The precise extent to which cellular repair mechanisms and other complement repair proteins contribute to this resistance has yet to be fully elucidated.

2.
Res Sq ; 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38645247

ABSTRACT

Cerebral amyloid angiopathy is characterized by a weakening of the small and medium sized cerebral arteries, as their smooth muscle cells are progressively replaced with acellular amyloid ß, increasing vessel fragility and vulnerability to microhemorrhage. In this context, an aberrant overactivation of the complement system would further aggravate this process. The surface protein CD59 protects most cells from complement-induced cytotoxicity, but expression levels can fluctuate due to disease and vary between cell types. The degree to which CD59 protects human cerebral vascular smooth muscle (HCSM) cells from complement-induced cytotoxicity has not yet been determined. To address this shortcoming, we selectively blocked the activity of HCSM-expressed CD59 with an antibody and challenged the cells with complement, then measured cellular viability. Unblocked HCSM cells proved resistant to all tested concentrations of complement, and this resistance decreased progressively with increasing concentrations of anti-CD59 antibody. Complete CD59 blockage, however, did not result in total loss of cellular viability, suggesting that additional factors may have some protective functions. Taken together, this implies that CD59 plays a predominant role in HCSM cellular protection against complement-induced cytotoxicity. Over-expression of CD59 could be an effective means of protecting these cells from excessive complement system activity, with consequent reduction in the incidence of microhemorrhage. The precise extent to which cellular repair mechanisms and other complement repair proteins contribute to this resistance has yet to be fully elucidated.

3.
Int J Lab Hematol ; 46(2): 383-389, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38069562

ABSTRACT

INTRODUCTION: Flow cytometry-based paroxysmal nocturnal hemoglobinuria (PNH) testing involves utilization of monoclonal antibodies against GPI-linked proteins and FLAER. The ability of FLAER to bind to a wide variety of GPI-linked structures and to be utilized across different leukocyte subsets is remarkable. We hypothesize that FLAER as a standalone reagent may be equally effective for detecting PNH clones. The present study intends to compare the results of a FLAER alone-based strategy to the recommended FLAER+GPI-linked protein-based approach for applicability in clinical settings. METHODS: EDTA-anticoagulated blood samples from patients for PNH workup were tested for PNH by multiparametric flow cytometry. A conventional panel comprising gating markers (CD45 for WBC, CD15 for granulocytes, and CD64 for monocytes) and a combination of FLAER and GPI-linked markers, such as CD24 and CD14, henceforth referred to as the "routine panel," was employed. Second, a "FLAER-only panel" comprising the gating markers and FLAER alone (excluding the GPI-linked markers CD24 and CD14) was set up. The samples were processed using the lyse-wash-stain-wash technique, and events were acquired on BC Navios Ex flow cytometer (Beckman Coulter, Inc., USA) and analyzed on Kaluza Software 2.1. The presence of a PNH clone was reported at a value of ≥0.01%. RESULTS: A total of 209 patients were tested. Both panels found a PNH clone in 20.1% of patients (n = 42/209) with a 100% concordance rate. The PNH clone range for granulocytes was 0.01%-89.68%, and for monocyte was 0.04%-96.09% in the routine panel. The range in the FLAER-only panel for granulocytes was 0.01%-89.61%, and for monocytes, it was 0.01%-96.05%. Pearson correlation statistics revealed a significant correlation between the size of the PNH clone of granulocytes and monocytes among the two panels tested (granulocytes r = 0.9999, p < 0.0001, 95% CI = 0.9999 to 1.000; monocytes r = 0.9974, p < 0.0001, 95% CI = 0.9966-0.9980). CONCLUSION: Based on our results, FLAER as a standalone marker is specific and sensitive for identifying PNH clones in granulocytes and monocytes, even for high-sensitivity PNH assay. The proposed "FLAER-only panel" panel is efficient and cost-effective for highly sensitive PNH testing in two different cell lineages, especially in resource-limited clinical settings.


Subject(s)
Hemoglobinuria, Paroxysmal , Humans , Hemoglobinuria, Paroxysmal/diagnosis , Indicators and Reagents , Granulocytes/metabolism , Leukocytes/metabolism , Monocytes , GPI-Linked Proteins/metabolism , Flow Cytometry/methods
4.
Brain Behav Immun ; 115: 419-431, 2024 01.
Article in English | MEDLINE | ID: mdl-37924957

ABSTRACT

Regular aerobic activity is associated with a reduced risk of chronic pain in humans and rodents. Our previous studies in rodents have shown that prior voluntary wheel running can normalize redox signaling at the site of peripheral nerve injury, attenuating subsequent neuropathic pain. However, the full extent of neuroprotection offered by voluntary wheel running after peripheral nerve injury is unknown. Here, we show that six weeks of voluntary wheel running prior to chronic constriction injury (CCI) reduced the terminal complement membrane attack complex (MAC) at the sciatic nerve injury site. This was associated with increased expression of the MAC inhibitor CD59. The levels of upstream complement components (C3) and their inhibitors (CD55, CR1 and CFH) were altered by CCI, but not increased by voluntary wheel running. Since MAC can degrade myelin, which in turn contributes to neuropathic pain, we evaluated myelin integrity at the sciatic nerve injury site. We found that the loss of myelinated fibers and decreased myelin protein which occurs in sedentary rats following CCI was not observed in rats with prior running. Substitution of prior voluntary wheel running with exogenous CD59 also attenuated mechanical allodynia and reduced MAC deposition at the nerve injury site, pointing to CD59 as a critical effector of the neuroprotective and antinociceptive actions of prior voluntary wheel running. This study links attenuation of neuropathic pain by prior voluntary wheel running with inhibition of MAC and preservation of myelin integrity at the sciatic nerve injury site.


Subject(s)
Neuralgia , Peripheral Nerve Injuries , Sciatic Neuropathy , Humans , Rats , Animals , Myelin Sheath/metabolism , Complement Membrane Attack Complex , Motor Activity/physiology , Peripheral Nerve Injuries/complications , Hyperalgesia/metabolism , Neuralgia/complications , Sciatic Nerve/injuries
5.
J Fluoresc ; 2023 Nov 17.
Article in English | MEDLINE | ID: mdl-37976023

ABSTRACT

Cluster of differentiation (CD59), a cell surface glycoprotein, regulates the complement system to prevent immune damage. In cancer, altered CD59 expression allows tumors to evade immune surveillance, promote growth, and resist certain immunotherapies. Targeting CD59 could enhance cancer treatment strategies by boosting the immune response against tumors. Herein, we present a one-step synthesis of Polyethyleneimine (PEI) functionalized graphene quantum dots (Lf-GQDs) from weathered lemon leaf extract. The fabricated Lf-GQDs were successfully used for the quantitative detection of the cluster of CD59 antigen that is reported for its expression in different types of cancer. In this work, we utilized orientation-based attachment of CD59 antibody (Anti-CD59). Our findings reveal that, instead of using random serial addition of antigen or antibody, oriented conjugation saves accumulated concentration offering greater sensitivity and selectivity. The Anti-CD59@Lf-GQDs immunosensor was fabricated using the oriented conjugation of antibodies onto the Lf-GQDs surface. Besides, the fabricated immunosensor demonstrated detection of CD59 in the range of 0.01 to 40.0 ng mL-1 with a low detection limit of 5.3 pg mL-1. Besides, the cellular uptake potential of the synthesized Lf-GQDs was also performed in A549 cells using a bioimaging study. The present approach represents the optimal utilization of Anti-CD59 and CD59 antigen. This approach could afford a pathway for constructing oriented conjugation of antibodies on the nanomaterials-based immunosensor for different biomarkers detection.

6.
J Neuroinflammation ; 20(1): 245, 2023 Oct 24.
Article in English | MEDLINE | ID: mdl-37875972

ABSTRACT

BACKGROUND: Homozygous CD59-deficient patients manifest with recurrent peripheral neuropathy resembling Guillain-Barré syndrome (GBS), hemolytic anemia and recurrent strokes. Variable mutations in CD59 leading to loss of function have been described and, overall, 17/18 of patients with any mutation presented with recurrent GBS. Here we determine the localization and possible role of membrane-bound complement regulators, including CD59, in the peripheral nervous systems (PNS) of mice and humans. METHODS: We examined the localization of membrane-bound complement regulators in the peripheral nerves of healthy humans and a CD59-deficient patient, as well as in wild-type (WT) and CD59a-deficient mice. Cross sections of teased sciatic nerves and myelinating dorsal root ganglia (DRG) neuron/Schwann cell cultures were examined by confocal and electron microscopy. RESULTS: We demonstrate that CD59a-deficient mice display normal peripheral nerve morphology but develop myelin abnormalities in older age. They normally express myelin protein zero (P0), ankyrin G (AnkG), Caspr, dystroglycan, and neurofascin. Immunolabeling of WT nerves using antibodies to CD59 and myelin basic protein (MBP), P0, and AnkG revealed that CD59 was localized along the internode but was absent from the nodes of Ranvier. CD59 was also detected in blood vessels within the nerve. Finally, we show that the nodes of Ranvier lack other complement-membrane regulatory proteins, including CD46, CD55, CD35, and CR1-related gene-y (Crry), rendering this area highly exposed to complement attack. CONCLUSION: The Nodes of Ranvier lack CD59 and are hence not protected from complement terminal attack. The myelin unit in human PNS is protected by CD59 and CD55, but not by CD46 or CD35. This renders the nodes and myelin in the PNS vulnerable to complement attack and demyelination in autoinflammatory Guillain-Barré syndrome, as seen in CD59 deficiency.


Subject(s)
Guillain-Barre Syndrome , Membrane Proteins , Mice , Humans , Animals , Ranvier's Nodes , Complement System Proteins , CD59 Antigens/genetics , CD55 Antigens/genetics
7.
Microbiology (Reading) ; 169(9)2023 09.
Article in English | MEDLINE | ID: mdl-37702594

ABSTRACT

Cholesterol-dependent cytolysins (CDCs) are a large family of pore-forming toxins, produced by numerous Gram-positive pathogens. CDCs depend on host membrane cholesterol for pore formation; some CDCs also require surface-associated human CD59 (hCD59) for binding, conferring specificity for human cells. We purified a recombinant version of a putative CDC encoded in the genome of Streptococcus oralis subsp. tigurinus, tigurilysin (TGY), and used CRISPR/Cas9 to construct hCD59 knockout (KO) HeLa and JEG-3 cell lines. Cell viability assays with TGY on wild-type and hCD59 KO cells showed that TGY is a hCD59-dependent CDC. Two variants of TGY exist among S. oralis subsp. tigurinus genomes, only one of which is functional. We discovered that a single amino acid change between these two TGY variants determines its activity. Flow cytometry and oligomerization Western blots revealed that the single amino acid difference between the two TGY isoforms disrupts host cell binding and oligomerization. Furthermore, experiments with hCD59 KO cells and cholesterol-depleted cells demonstrated that TGY is fully dependent on both hCD59 and cholesterol for activity, unlike other known hCD59-dependent CDCs. Using full-length CDCs and toxin constructs differing only in the binding domain, we determined that having hCD59 dependence leads to increased lysis efficiency, conferring a potential advantage to organisms producing hCD59-dependent CDCs.


Subject(s)
Cytotoxins , Host Specificity , Humans , Cell Line, Tumor , Cytotoxins/genetics , Cholesterol , Amino Acids , CD59 Antigens/genetics
8.
Int J Mol Sci ; 24(16)2023 Aug 14.
Article in English | MEDLINE | ID: mdl-37628958

ABSTRACT

Depending on their central metal atom, metalloporphyrins (MPs) can attenuate or exacerbate the severity of immune-mediated kidney injury, and this has been attributed to the induction or inhibition of heme oxygenase (HO) activity, particularly the inducible isoform (HO-1) of this enzyme. The role of central metal or porphyrin moieties in determining the efficacy of MPs to attenuate injury, as well as mechanisms underlying this effect, have not been assessed. Using an antibody-mediated complement-dependent model of injury directed against rat visceral glomerular epithelial cells (podocytes) and two MPs (FePPIX, CoPPIX) that induce both HO-1 expression and HO enzymatic activity in vivo but differ in their chelated metal, we assessed their efficacy in reducing albuminuria. Podocyte injury was induced using rabbit immune serum raised against the rat podocyte antigen, Fx1A, and containing an anti-Fx1A antibody that activates complement at sites of binding. FePPIX or CoPPIX were injected intraperitoneally (5 mg/kg) 24 h before administration of the anti-Fx1A serum and on days 1, 3, 6, and 10 thereafter. Upon completion of urine collection on day 14, the kidney cortex was obtained for histopathology and isolation of glomeruli, from which total protein extracts were obtained. Target proteins were analyzed by capillary-based separation and immunodetection (Western blot analysis). Both MPs had comparable efficacy in reducing albuminuria in males, but the efficacy of CoPPIX was superior in female rats. The metal-free protoporphyrin, PPIX, had minimal or no effect on urine albumin excretion. CoPPIX was also the most potent MP in inducing glomerular HO-1, reducing complement deposition, and preserving the expression of the complement regulatory protein (CRP) CD55 but not that of CD59, the expression of which was reduced by both MPs. These observations demonstrate that the metal moiety of HO-1-inducing MPs plays an important role in reducing proteinuria via mechanisms involving reduced complement deposition and independently of an effect on CRPs.


Subject(s)
Metalloporphyrins , Podocytes , Porphyrins , Female , Male , Animals , Rabbits , Rats , Metalloporphyrins/pharmacology , Metalloporphyrins/therapeutic use , Albuminuria , Proteinuria/drug therapy
9.
Eur J Obstet Gynecol Reprod Biol ; 288: 222-228, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37572452

ABSTRACT

OBJECTIVES: This study aimed to evaluate the expression pattern of complement regulatory proteins (CRPs) CD46, CD59, and CD55 in HPV-positive (HPV+) & negative (HPV-) cervical cancer cell lines in search of a reliable differential biomarker. STUDY DESIGN: We analysed the expression of CRPs in HPV 16-positive SiHa cell line, HPV 18-positive HeLa cell line, and HPV-negative cell line C33a using RT-qPCR, Western blotting, flow cytometry, and confocal microscopy. RESULTS: We observed a differential expression profile of CRPs in HPV+ and HPV- cervical cancer cell lines. The mRNA level of CD59 & CD55 showed a higher expression pattern in HPV+ cells when compared to HPV- cancer cells. However, flow cytometry-based experiments revealed that CD46 was preferentially expressed more in HPV 16-positive SiHa cells followed by HPV 18-positive HeLa cells when compared to HPV- C33a cells. Interestingly, confocal microscopy revealed a high level of CD59 expression in Hela cells and SiHa cells but low expression in HPV- C33a cells. In addition, HPV 18-positive HeLa cells expressed more CD55, which was lower in SiHa cells and very weak in C33a cells. CONCLUSION: The study demonstrates the differential expression of CRPs in both HPV+ and HPV- cervical cancer cells for the first time, and their potential to serve as an early diagnostic marker for cervical carcinogenesis.


Subject(s)
Papillomavirus Infections , Uterine Cervical Neoplasms , Female , Humans , Human Papillomavirus Viruses , HeLa Cells , Papillomavirus Infections/complications , CD55 Antigens/genetics , CD55 Antigens/metabolism , Transcription Factors
10.
Cancer Biomark ; 38(1): 27-35, 2023.
Article in English | MEDLINE | ID: mdl-37522198

ABSTRACT

BACKGROUND: Cell surface molecules play important roles in cell signal transduction pathways during microbial infection. OBJECTIVE: In this study, the expression and the functions of CD59 was investigated in H. pylori infected gastric cancer (GC). METHODS AND RESULTS: The differential expression of CD59 and the influence of H. pylori on the expression of CD59 were analyzed via bioinformatics through Gene Set Enrichment in GC. In addition, the expression of CD59 in GES-1, AGS cells and GC tissues infected with H. pylori was confirmed by Western blot. Bioinformatics results and H. pylori infection experiments showed CD59 decreased obviously in H. pylori infected GC cells and tissues. The expression of CD59 was linked to the survival rate of GC patients, and influenced various immune cells in the immune microenvironment of GC. CD59 interacts with other genes to form a network in H. pylori infected GC. Certainly, CD59 decreased significantly in H. pylori infected GC tissues, GES-1 and AGS cells in vitro. CONCLUSION: H. pylori infection could influence the expression of CD59 in GC indicating that CD59 may be a promising treatment target.


Subject(s)
Helicobacter pylori , Stomach Neoplasms , Humans , Stomach Neoplasms/genetics , Stomach Neoplasms/metabolism , Helicobacter pylori/genetics , Computational Biology , Signal Transduction , Tumor Microenvironment , CD59 Antigens/genetics
11.
Int J Mol Sci ; 24(9)2023 Apr 27.
Article in English | MEDLINE | ID: mdl-37175646

ABSTRACT

Fucoidans from brown algae are described as anti-inflammatory, antioxidative, and antiangiogenic. We tested two Saccharina latissima fucoidans (SL-FRO and SL-NOR) regarding their potential biological effects against age-related macular degeneration (AMD). Primary porcine retinal pigment epithelium (RPE), human RPE cell line ARPE-19, and human uveal melanoma cell line OMM-1 were used. Cell survival was assessed in tetrazolium assay (MTT). Oxidative stress assays were induced with erastin or H2O2. Supernatants were harvested to assess secreted vascular endothelial growth factor A (VEGF-A) in ELISA. Barrier function was assessed by measurement of trans-epithelial electrical resistance (TEER). Protectin (CD59) and retinal pigment epithelium-specific 65 kDa protein (RPE65) were evaluated in western blot. Polymorphonuclear elastase and complement inhibition assays were performed. Phagocytosis of photoreceptor outer segments was tested in a fluorescence assay. Secretion and expression of proinflammatory cytokines were assessed with ELISA and real-time PCR. Fucoidans were chemically analyzed. Neither toxic nor antioxidative effects were detected in ARPE-19 or OMM-1. Interleukin 8 gene expression was slightly reduced by SL-NOR but induced by SL-FRO in RPE. VEGF secretion was reduced in ARPE-19 by SL-FRO and in RPE by both fucoidans. Polyinosinic:polycytidylic acid induced interleukin 6 and interleukin 8 secretion was reduced by both fucoidans in RPE. CD59 expression was positively influenced by fucoidans, and they exhibited a complement and elastase inhibitory effect in cell-free assay. RPE65 expression was reduced by SL-NOR in RPE. Barrier function of RPE was transiently reduced. Phagocytosis ability was slightly reduced by both fucoidans in primary RPE but not in ARPE-19. Fucoidans from Saccharina latissima, especially SL-FRO, are promising agents against AMD, as they reduce angiogenic cytokines and show anti-inflammatory and complement inhibiting properties; however, potential effects on gene expression and RPE functions need to be considered for further research.


Subject(s)
Laminaria , Macular Degeneration , Humans , Animals , Swine , Retinal Pigment Epithelium/metabolism , Vascular Endothelial Growth Factor A/metabolism , Laminaria/metabolism , Hydrogen Peroxide/metabolism , Interleukin-8/metabolism , Macular Degeneration/drug therapy , Macular Degeneration/metabolism
12.
Int J Biol Macromol ; 239: 124317, 2023 Jun 01.
Article in English | MEDLINE | ID: mdl-37023872

ABSTRACT

Complement component 9 (C9), as an essential component of terminal membrane attack complex of complement system, plays an important role in innate immune defense. However, the function and regulatory mechanism of C9 in the antimicrobial immune response of teleost fish remain unclear. In this study, the open reading frame of Nile tilapia (Oreochromis niloticus) C9 (OnC9) gene was amplified. The mRNA and protein expression of OnC9 were significantly changed upon infection with Streptococcus agalactiae and Aeromonas hydrophila in vivo and in vitro. Upon bacterial challenge, the OnC9 knockdown could lead to rapid proliferation of the pathogenic bacteria, ultimately resulting in tilapia death. However, the phenotype was rescued by re-injection of OnC9, which restored the healthy status of the knockdown tilapia. Further, the OnC9 was an essential component in complement-mediated cell lysis and associated with OnCD59 to regulate the efficiency of lysis. Overall, this study indicates that OnC9 is involved in host defense against bacterial infection, and provides a valuable reference for further exploration of the molecular regulatory mechanism of C9 in innate immune defense in a primary animal.


Subject(s)
Bacterial Infections , Cichlids , Fish Diseases , Animals , Gene Expression Regulation , Amino Acid Sequence , Cichlids/genetics , Fish Proteins/metabolism , Streptococcus agalactiae/metabolism
13.
Cell Rep ; 42(4): 112349, 2023 04 25.
Article in English | MEDLINE | ID: mdl-37027303

ABSTRACT

Complement-dependent microglia pruning of excitatory synapses has been widely reported in physiological and pathological conditions, with few reports concerning pruning of inhibitory synapses or direct regulation of synaptic transmission by complement components. Here, we report that loss of CD59, an important endogenous inhibitor of the complement system, leads to compromised spatial memory performance. Furthermore, CD59 deficiency impairs GABAergic synaptic transmission in the hippocampal dentate gyrus (DG). This depends on regulation of GABA release triggered by Ca2+ influx through voltage-gated calcium channels (VGCCs) rather than inhibitory synaptic pruning by microglia. Notably, CD59 colocalizes with inhibitory pre-synaptic terminals and regulates SNARE complex assembly. Together, these results demonstrate that the complement regulator CD59 plays an important role in normal hippocampal function.


Subject(s)
Complement Inactivating Agents , Synaptic Transmission , Synaptic Transmission/physiology , Hippocampus/physiology , Synapses/physiology , Dentate Gyrus/physiology
14.
Diabet Med ; 40(9): e15121, 2023 09.
Article in English | MEDLINE | ID: mdl-37078256

ABSTRACT

AIMS: Gestational diabetes (GDM) is associated with the development of postpartum (PP) glucose intolerance. Plasma glycated CD59 (pGCD59) is an emerging biomarker for the detection of hyperglycaemia. The aim of this study was to assess the ability of PP pGCD59 to predict the development of PP GI as defined by the 2 h 75 g OGTT using the ADA criteria, in a cohort of women diagnosed with prior GDM in the index pregnancy using the 2 h 75 g OGTT at 24-28 weeks of gestation according to the World Health Organization (WHO) 2013 criteria. METHODS: Of the 2017 pregnant women recruited prospectively 140 women with gestational diabetes had samples for pGCD59 taken PP at the time of the OGTT. The ability of pGCD59 to predict the results of the PP OGTT was assessed using nonparametric receiver operating characteristic (ROC) curves. RESULTS: Women with PP glucose intolerance had significantly higher PP pGCD59 levels compared to women with normal glucose tolerance PP (3.8 vs. 2.7 SPU). PP pGCD59 identified women who developed glucose intolerance PP with an AUC of 0.80 (95% CI: 0.70-0.91). A PP pGCD59 cut-off value of 1.9 SPU generated a sensitivity of 100% (95% CI: 83.9-100), specificity of 16.9% (95% CI: 9.8-26.3), positive predictive value of 22.1% (95% CI: 21.0-22.6), and negative predictive value of 100% (95% CI: 87.4-100). PP fasting plasma glucose generated an AUC of 0.96 (95% CI: 0.89-0.99) for the identification of PP glucose intolerance. CONCLUSION: Our study found that PP pGCD9 may be a promising biomarker to identify women not requiring PP glucose intolerance screening using the traditional OGTT. While the diagnostic accuracy of pGCD59 is good, fasting plasma glucose remains a better test for the identification of PP glucose intolerance.


Subject(s)
Diabetes, Gestational , Glucose Intolerance , Female , Pregnancy , Humans , Diabetes, Gestational/diagnosis , Glucose Intolerance/diagnosis , Glucose Intolerance/epidemiology , Prospective Studies , Blood Glucose , Glucose Tolerance Test , Retrospective Studies , Postpartum Period , Biomarkers , CD59 Antigens
15.
J Microbiol Methods ; 207: 106696, 2023 04.
Article in English | MEDLINE | ID: mdl-36898586

ABSTRACT

Cholesterol-dependent cytolysins (CDCs) are proteinaceous toxins widely distributed in gram-positive pathogenic bacteria. CDCs can be classified into three groups (I-III) based on the mode of receptor recognition. Group I CDCs recognize cholesterol as their receptor. Group II CDC specifically recognizes human CD59 as the primary receptor on the cell membrane. Only intermedilysin from Streptococcus intermedius has been reported as a group II CDC. Group III CDCs recognize both human CD59 and cholesterol as receptors. CD59 contains five disulfide bridges in its tertiary structure. Therefore, we treated human erythrocytes with dithiothreitol (DTT) to inactivate CD59 on membranes. Our data showed that DTT treatment caused a complete loss of recognition of intermedilysin and an anti-human CD59 monoclonal antibody. In contrast, this treatment did not affect the recognition of group I CDCs, judging from the fact that DTT-treated erythrocytes were lysed with the same efficiency as mock-treated human erythrocytes. The recognition of group III CDCs toward DTT-treated erythrocytes was partially reduced, and these results are likely due to the loss of human CD59 recognition. Therefore, the degree of human CD59 and cholesterol requirements of uncharacterized group III CDCs frequently found in Mitis group streptococci can be easily estimated by comparing the amounts of hemolysis between DTT-treated and mock-treated erythrocytes.


Subject(s)
Bacterial Toxins , Bacterial Toxins/metabolism , Cytotoxins/pharmacology , Cell Membrane/metabolism , Erythrocytes/metabolism , Cholesterol/chemistry , Cholesterol/metabolism , Cholesterol/pharmacology
16.
Genes (Basel) ; 14(2)2023 01 30.
Article in English | MEDLINE | ID: mdl-36833286

ABSTRACT

We present a case report of a child with features of hyperphosphatasia with neurologic deficit (HPMRS) or Mabry syndrome (MIM 239300) with variants of unknown significance in two post-GPI attachments to proteins genes, PGAP2 and PGAP3, that underlie HPMRS 3 and 4. BACKGROUND: In addition to HPMRS 3 and 4, disruption of four phosphatidylinositol glycan (PIG) biosynthesis genes, PIGV, PIGO, PIGW and PIGY, result in HPMRS 1, 2, 5 and 6, respectively. METHODS: Targeted exome panel sequencing identified homozygous variants of unknown significance (VUS) in PGAP2 c:284A>G and PGAP3 c:259G>A. To assay the pathogenicity of these variants, we conducted a rescue assay in PGAP2 and PGAP3 deficient CHO cell lines. RESULTS: Using a strong (pME) promoter, the PGAP2 variant did not rescue activity in CHO cells and the protein was not detected. Flow cytometric analysis showed that CD59 and CD55 expression on the PGAP2 deficient cell line was not restored by variant PGAP2. By contrast, activity of the PGAP3 variant was similar to wild-type. CONCLUSIONS: For this patient with Mabry syndrome, the phenotype is likely to be predominantly HPMRS3: resulting from autosomal recessive inheritance of NM_001256240.2 PGAP2 c:284A>G, p.Tyr95Cys. We discuss strategies for establishing evidence for putative digenic inheritance in GPI deficiency disorders.


Subject(s)
Databases, Genetic , Cricetinae , Animals , Cricetulus , Phenotype , CHO Cells
17.
J Intensive Care ; 11(1): 3, 2023 Feb 02.
Article in English | MEDLINE | ID: mdl-36732841

ABSTRACT

BACKGROUND: sCD59, as a soluble form of CD59, is observed in multiple types of body fluids and correlated with the cell damage after ischemia/reperfusion injury. This study aims to observe the dynamic changes of serum sCD59 in patients after restoration of spontaneous circulation (ROSC) and explore the association of serum sCD59 with neurological prognosis and all-cause mortality in patients after ROSC. METHODS: A total of 68 patients after ROSC were prospectively recruited and divided into survivors (n = 23) and non-survivors (n = 45) groups on the basis of 28-day survival. Twenty healthy volunteers were enrolled as controls. Serum sCD59 and other serum complement components, including sC5b-9, C5a, C3a, C3b, C1q, MBL, Bb, and pro-inflammatory mediators tumor necrosis factor (TNF)-α, interleukin-6 (IL-6), neurological damage biomarkers neuron-specific enolase (NSE) and soluble protein 100ß (S100ß) were measured by enzyme linked immunosorbent assay on day 1, 3, and 7 after ROSC. Neurologic outcome was assessed using cerebral performance category scores, with poor neurologic outcome defined as 3-5 points. RESULTS: In the first week after ROSC, serum levels of sCD59, sC5b-9, C5a, C3a, C3b, C1q, MBL, Bb, TNF-α, IL-6, NSE and S100ß were significantly elevated in patients after ROSC compared to healthy volunteers, with a significant elevation in the non-survivors compared to survivors except serum C1q and MBL. Serum sCD59 levels were positively correlated with serum sC5b-9, TNF-α, IL-6, NSE, S100ß, SOFA score and APACHE II score. Moreover, serum sCD59 on day 1, 3, and 7 after ROSC could be used for predicting poor 28-day neurological prognosis and all-cause mortality. Serum sCD59 on day 3 had highest AUCs for predicting poor 28-day neurological prognosis [0.862 (95% CI 0.678-0.960)] and 28-day all-cause mortality [0.891 (95% CI 0.769-0.962)]. In multivariate logistic regression analysis, the serum level of sCD59D1 was independently associated with poor 28-day neurological prognosis and all-cause mortality. CONCLUSIONS: The elevated serum level of sCD59 was positively correlated with disease severity after ROSC. Moreover, serum sCD59 could have good predictive values for the poor 28-day neurological prognosis and all-cause mortality in patients after ROSC.

18.
Theriogenology ; 198: 164-171, 2023 Mar 01.
Article in English | MEDLINE | ID: mdl-36587540

ABSTRACT

Extracellular vesicles (EVs) are small spherical particles surrounded by a membrane with an unusual lipid composition and a striking cholesterol/phospholipidic ratio. About 2000 lipid and 3500 protein species were identified in EVs secreted by different cell sources. EVs mediate cell to cell communication in proximity to or distant from the cell of origin. In particular, it was suggested that they represent modulators of multiple processes during pregnancy. The aim of this study was to identify the presence of EVs in canine amnion-derived cells (ASCs) culture and the expression of CD 59 on their surface. Amniotic membrane was collected in PBS with antibiotics added from 2 bitches during elective caesarean section. Cells culture was prepared and EVs were isolated. EVs were used to evaluate CD59 expression by flow cytofluorimetry. We found that the majority of EVs expressed CD59. Our results could increase the knowledge about the complex mechanisms that regulate the pregnancy in the bitch.


Subject(s)
Amnion , Extracellular Vesicles , Animals , Dogs , Female , Pregnancy , Amnion/metabolism , Cell Culture Techniques/veterinary , Cesarean Section/veterinary , Extracellular Vesicles/physiology , Lipids , CD59 Antigens/metabolism
19.
Alzheimers Dement ; 19(5): 2084-2094, 2023 05.
Article in English | MEDLINE | ID: mdl-36349985

ABSTRACT

INTRODUCTION: Blood-based diagnostics and prognostics in sporadic Alzheimer's disease (AD) are important for identifying at-risk individuals for therapeutic interventions. METHODS: In three stages, a total of 34 leukocyte antigens were examined by flow cytometry immunophenotyping. Data were analyzed by logistic regression and receiver operating characteristic (ROC) analyses. RESULTS: We identified leukocyte markers differentially expressed in the patients with AD. Pathway analysis revealed a complex network involving upregulation of complement inhibition and downregulation of cargo receptor activity and Aß clearance. A proposed panel including four leukocyte markers - CD11c, CD59, CD91, and CD163 - predicts patients' PET Aß status with an area under the curve (AUC) of 0.93 (0.88 to 0.97). CD163 was the top performer in preclinical models. These findings have been validated in two independent cohorts. CONCLUSION: Our finding of changes on peripheral leukocyte surface antigens in AD implicates the deficit in innate immunity. Leukocyte-based biomarkers prove to be both sensitive and practical for AD screening and diagnosis.


Subject(s)
Alzheimer Disease , Humans , Alzheimer Disease/diagnosis , Amyloid beta-Peptides/metabolism , Biomarkers , Leukocytes/metabolism , Immunity, Innate
20.
Exp Eye Res ; 227: 109368, 2023 02.
Article in English | MEDLINE | ID: mdl-36586549

ABSTRACT

While choroidal neuronal control is known to be essential for retinal and ocular health, its mechanisms are not understood. Especially, the local choroidal innervation mediated by intrinsic choroidal neurons (ICN) remains enigmatic. Neuronal functionality depends on the synaptic neurotransmitters and neuroregulatory peptides involved as well as from membrane components presented on the cell surface. Since the neuronal surface molecular expression patterns in the choroid are currently unknown, we sought to determine the presence of various cluster-of-differentiation (CD) antigens in choroidal neuronal structures with a particular focus on ICN. Human choroids were prepared for immunohistochemistry and the pan-neuronal marker PGP9.5 was combined with CD15, CD24, CD29, CD34, CD46, CD49b, CD49e, CD56, CD58, CD59, CD71, CD81, CD90, CD146, CD147, CD151, CD165, CD171, CD184, CD200, CD271 and fluorescence- and confocal laser scanning-microscopy was used for documentation. The following antigens were found to be co-localized in PGP.9.5+ nerve fibers and ICN perikarya: CD29, CD34, CD56, CD81, CD90, CD146, CD147, CD151, CD171, CD200 and CD271, while all other CD markers where not detectable. Whereas CD24- and CD59- immunoreactivity was clearly absent in ICN perikarya, some neural processes of the choroidal stroma displayed CD24 and CD59 immunopositivity. While a multitude of the aforementioned CD-markers were indeed detected in nervous structures of the choroid, the CD24+ and CD59+ nerve fibers most likely have extrinsic origin from cranial ganglia since ICN cell bodies were found to lack both markers. These findings illustrate how the detailed analysis of CD molecules described here opens novel avenues for future functional studies on choroidal innervation and its control.


Subject(s)
Choroid , Neurons , Humans , CD146 Antigen/metabolism , Neurons/metabolism , Choroid/innervation , Nerve Fibers
SELECTION OF CITATIONS
SEARCH DETAIL
...