Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 112
Filter
1.
Cell Mol Biol Lett ; 29(1): 103, 2024 Jul 12.
Article in English | MEDLINE | ID: mdl-38997648

ABSTRACT

BACKGROUND: Extrachromosomal circular DNA (eccDNA), a kind of circular DNA that originates from chromosomes, carries complete gene information, particularly the oncogenic genes. This study aimed to examine the contributions of FAM84B induced by eccDNA to prostate cancer (PCa) development and the biomolecules involved. METHODS: The presence of eccDNA in PCa cells and the FAM84B transcripts that eccDNA carries were verified by outward and inward PCR. The effect of inhibition of eccDNA synthesis on FAM84B expression in PCa cells was analyzed by knocking down Lig3. The impact of FAM84B on the growth and metastases of PCa cells was verified by Cell Counting Kit-8 (CCK8), EdU, transwell assays, and a xenograft mouse model. Chromatin immunoprecipitation quantitative PCR (ChIP-qPCR) and dual-luciferase reporter assays were carried out to examine the effect of FAM84B/MYC on WWP1 transcription, and a co-immunoprecipitation (Co-IP) assay was conducted to verify the modification of CDKN1B by WWP1. The function of this molecular axis in PCa was explored by rescue assays. RESULTS: The inhibited eccDNA synthesis significantly downregulated FAM84B in PCa cells, thereby attenuating the growth and metastasis of PCa. FAM84B promoted the transcription of WWP1 by MYC by activating the expression of MYC coterminous with the 8q24.21 gene desert in a beta catenin-dependent approach. WWP1 transcription promoted by MYC facilitated the ubiquitination and degradation of CDKN1B protein and inversely attenuated the repressive effect of CDKN1B on MYC expression. Exogenous overexpression of CDKN1B blocked FAM84B-activated MYC/WWP1 expression, thereby inhibiting PCa progression. CONCLUSIONS: FAM84B promoted by eccDNA mediates degradation of CDKN1B via MYC/WWP1, thereby accelerating PCa progression.


Subject(s)
DNA, Circular , Disease Progression , Gene Expression Regulation, Neoplastic , Prostatic Neoplasms , Proto-Oncogene Proteins c-myc , Ubiquitin-Protein Ligases , Male , Humans , Prostatic Neoplasms/genetics , Prostatic Neoplasms/pathology , Prostatic Neoplasms/metabolism , Cell Line, Tumor , Animals , DNA, Circular/genetics , DNA, Circular/metabolism , Proto-Oncogene Proteins c-myc/metabolism , Proto-Oncogene Proteins c-myc/genetics , Mice , Ubiquitin-Protein Ligases/metabolism , Ubiquitin-Protein Ligases/genetics , Cell Proliferation/genetics , Mice, Nude , Neoplasm Proteins/genetics , Neoplasm Proteins/metabolism , Cyclin-Dependent Kinase Inhibitor p27
2.
Mol Med Rep ; 30(1)2024 Jul.
Article in English | MEDLINE | ID: mdl-38757344

ABSTRACT

Muscle atrophy is a debilitating condition with various causes; while aging is one of these causes, reduced engagement in routine muscle­strengthening activities also markedly contributes to muscle loss. Although extensive research has been conducted on microRNAs (miRNAs/miRs) and their associations with muscle atrophy, the roles played by miRNA precursors remain underexplored. The present study detected the upregulation of the miR­206 precursor in cell­free (cf)RNA from the plasma of patients at risk of sarcopenia, and in cfRNAs from the muscles of mice subjected to muscle atrophy. Additionally, a decline in the levels of the miR­6516 precursor was observed in mice with muscle atrophy. The administration of mimic­miR­6516 to mice immobilized due to injury inhibited muscle atrophy by targeting and inhibiting cyclin­dependent kinase inhibitor 1b (Cdkn1b). Based on these results, the miR­206 precursor appears to be a potential biomarker of muscle atrophy, whereas miR­6516 shows promise as a therapeutic target to alleviate muscle deterioration in patients with muscle disuse and atrophy.


Subject(s)
MicroRNAs , Muscular Atrophy , Muscular Disorders, Atrophic , Adult , Aged , Animals , Female , Humans , Male , Mice , Middle Aged , Biomarkers , Disease Models, Animal , MicroRNAs/genetics , MicroRNAs/metabolism , Muscle, Skeletal/metabolism , Muscle, Skeletal/pathology , Muscular Atrophy/genetics , Muscular Atrophy/metabolism , Muscular Atrophy/pathology , Muscular Disorders, Atrophic/genetics , Muscular Disorders, Atrophic/metabolism , Muscular Disorders, Atrophic/pathology , Muscular Disorders, Atrophic/therapy , Sarcopenia/metabolism , Sarcopenia/genetics , Sarcopenia/pathology , Sarcopenia/therapy
3.
Front Immunol ; 15: 1335112, 2024.
Article in English | MEDLINE | ID: mdl-38476236

ABSTRACT

Background: Non-alcoholic fatty liver disease (NAFLD) is the most common chronic liver disease globally, with the potential to progress to non-alcoholic steatohepatitis (NASH), cirrhosis, and even hepatocellular carcinoma. Given the absence of effective treatments to halt its progression, novel molecular approaches to the NAFLD diagnosis and treatment are of paramount importance. Methods: Firstly, we downloaded oxidative stress-related genes from the GeneCards database and retrieved NAFLD-related datasets from the GEO database. Using the Limma R package and WGCNA, we identified differentially expressed genes closely associated with NAFLD. In our study, we identified 31 intersection genes by analyzing the intersection among oxidative stress-related genes, NAFLD-related genes, and genes closely associated with NAFLD as identified through Weighted Gene Co-expression Network Analysis (WGCNA). In a study of 31 intersection genes between NAFLD and Oxidative Stress (OS), we identified three hub genes using three machine learning algorithms: Least Absolute Shrinkage and Selection Operator (LASSO) regression, Support Vector Machine - Recursive Feature Elimination (SVM-RFE), and RandomForest. Subsequently, a nomogram was utilized to predict the incidence of NAFLD. The CIBERSORT algorithm was employed for immune infiltration analysis, single sample Gene Set Enrichment Analysis (ssGSEA) for functional enrichment analysis, and Protein-Protein Interaction (PPI) networks to explore the relationships between the three hub genes and other intersecting genes of NAFLD and OS. The distribution of these three hub genes across six cell clusters was determined using single-cell RNA sequencing. Finally, utilizing relevant data from the Attie Lab Diabetes Database, and liver tissues from NASH mouse model, Western Blot (WB) and Reverse Transcription Quantitative Polymerase Chain Reaction (RT-qPCR) assays were conducted, this further validated the significant roles of CDKN1B and TFAM in NAFLD. Results: In the course of this research, we identified 31 genes with a strong association with oxidative stress in NAFLD. Subsequent machine learning analysis and external validation pinpointed two genes: CDKN1B and TFAM, as demonstrating the closest correlation to oxidative stress in NAFLD. Conclusion: This investigation found two hub genes that hold potential as novel targets for the diagnosis and treatment of NAFLD, thereby offering innovative perspectives for its clinical management.


Subject(s)
Liver Neoplasms , Non-alcoholic Fatty Liver Disease , Animals , Mice , Genes, cdc , Gene Expression Profiling , Biomarkers
4.
Ann Endocrinol (Paris) ; 85(2): 127-135, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38325596

ABSTRACT

Multiple endocrine neoplasia (MEN) is a group of syndromes with a genetic predisposition to the appearance of endocrine tumors, and shows autosomal dominant transmission. The advent of molecular genetics has led to improvements in the management of MEN in terms of diagnosis, prognosis and therapy. The genetics of MEN is the subject of regular updates, which will be presented throughout this paper. MEN1, the first to be described, is associated with the MEN1 gene. MEN1 is well known in terms of the observed phenotype, with genetic analysis being conclusive in 90% of patients with a typical phenotype, but is negative in around 10% of families with MEN1. Improvement in analysis techniques and the identification of other genes responsable for phenocopies allows the resolution of some, but not all, cases, notably non-familial forms suspected to be fortuitous assocations with tumors. MEN4 is a rare phenocopy of MEN1 linked to constitutional mutations in the CDKN1B gene. Though it closely resembles the phenotype of MEN1, published data suggests the appearance of tumors is later and less frequent in MEN4. MEN2, which results from mutations in the RET oncogene, shows a strong genotype-phenotype correlation. This correlation is particularly evident in the major manifestation of MEN2, medullary thyroid carcinoma (MTC), in which disease aggressiveness is dependent on the pathogenic variant of RET. However, recent studies cast doubt on this correlation between MTC and pathogenic variant. Lastly, the recent description of families carrying a mutation in MAX, which is known to predispose to the development of pheochromocytoma and paraganglioma, and presents a phenotypic spectrum that evokes MEN, suggests the existence of another syndrome, MEN5.


Subject(s)
Adrenal Gland Neoplasms , Carcinoma, Neuroendocrine , Multiple Endocrine Neoplasia , Pheochromocytoma , Thyroid Neoplasms , Humans , Multiple Endocrine Neoplasia/diagnosis , Pheochromocytoma/genetics , Thyroid Neoplasms/genetics , Adrenal Gland Neoplasms/genetics
5.
J Clin Endocrinol Metab ; 109(7): e1482-e1493, 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38288531

ABSTRACT

CONTEXT: Germline CDKN1B variants predispose patients to multiple endocrine neoplasia type 4 (MEN4), a rare MEN1-like syndrome, with <100 reported cases since its discovery in 2006. Although CDKN1B mutations are frequently suggested to explain cases of genetically negative MEN1, the prevalence and phenotype of MEN4 patients is poorly known, and genetic counseling is unclear. OBJECTIVE: To evaluate the prevalence of MEN4 in MEN1-suspected patients and characterize the phenotype of MEN4 patients. DESIGN: Retrospective observational nationwide study. Narrative review of literature and variant class reassessment. PATIENTS: We included all adult patients with class 3/4/5 CDKN1B variants identified by the laboratories from the French Oncogenetic Network on Neuroendocrine Tumors network between 2015 and 2022 through germline genetic testing for MEN1 suspicion. After class reassessment, we compared the phenotype of symptomatic patients with class 4/5 CDKN1B variants (ie, with genetically confirmed MEN4 diagnosis) in our series and in literature with 66 matched MEN1 patients from the UMD-MEN1 database. RESULTS: From 5600 MEN1-suspected patients analyzed, 4 with class 4/5 CDKN1B variant were found (0.07%). They presented with multiple duodenal NET, primary hyperparathyroidism (PHPT) and adrenal nodule, isolated PHPT, PHPT, and pancreatic neuroendocrine tumor. We listed 29 patients with CDKN1B class 4/5 variants from the literature. Compared with matched MEN1 patients, MEN4 patients presented lower NET incidence and older age at PHPT diagnosis. CONCLUSION: The prevalence of MEN4 is low. PHPT and pituitary adenoma represent the main associated lesions, NETs are rare. Our results suggest a milder and later phenotype than in MEN1. Our observations will help to improve genetic counseling and management of MEN4 families.


Subject(s)
Multiple Endocrine Neoplasia Type 1 , Humans , Retrospective Studies , France/epidemiology , Male , Female , Adult , Middle Aged , Multiple Endocrine Neoplasia Type 1/genetics , Multiple Endocrine Neoplasia Type 1/epidemiology , Aged , Germ-Line Mutation , Phenotype , Cyclin-Dependent Kinase Inhibitor p27/genetics , Prevalence , Multiple Endocrine Neoplasia/genetics , Multiple Endocrine Neoplasia/epidemiology , Proto-Oncogene Proteins
6.
Animals (Basel) ; 13(23)2023 Nov 28.
Article in English | MEDLINE | ID: mdl-38067033

ABSTRACT

Heat stress (HS) has become one of the key challenges faced by the dairy industry due to global warming. Studies have reported that miR-196a may exert a role in the organism's response to HS, enhancing cell proliferation and mitigating cellular stress. However, its specific role in bovine mammary epithelial cells (BMECs) remains to be elucidated. In this study, we aimed to investigate whether miR-196a could protect BMECs against proliferation arrest induced by HS and explore its potential underlying mechanism. In this research, we developed an HS model for BMECs and observed a significant suppression of cell proliferation as well as a significant decrease in miR-196a expression when BMECs were exposed to HS. Importantly, when miR-196a was overexpressed, it alleviated the inhibitory effect of HS on cell proliferation. We conducted RNA-seq and identified 105 differentially expressed genes (DEGs). Some of these DEGs were associated with pathways related to thermogenesis and proliferation. Through RT-qPCR, Western blotting, and dual-luciferase reporter assays, we identified CDKN1B as a target gene of miR-196a. In summary, our findings highlight that miR-196a may promote BMEC proliferation by inhibiting CDKN1B and suggest that the miR-196a/CDKN1B axis may be a potential pathway by which miR-196a alleviates heat-stress-induced proliferation arrest in BMECs.

7.
PeerJ ; 11: e16170, 2023.
Article in English | MEDLINE | ID: mdl-37868060

ABSTRACT

Background: Diabetic nephropathy (DN) is a frequent microvascular complication of diabetes. Glomerular mesangial cell (MC) hypertrophy occurs at the initial phase of DN and plays a critical role in the pathogenesis of DN. Given the role of long non coding RNA (lncRNA) in regulating MC hypertrophy and extracellular matrix (ECM) accumulation, our aim was to identify functional lncRNAs during MC hypertrophy. Methods: Here, an lncRNA, C920021L13Rik (L13Rik for short), was identified to be up-regulated in DN progression. The expression of L13Rik in DN patients and diabetic mice was assessed using quantitative real-time PCR (qRT-PCR), and the function of L13Rik in regulating HG-induced MC hypertrophy and ECM accumulation was assessed through flow cytometry and western blotting analysis. Results: The L13Rik levels were significantly increased while the miR-2861 levels were decreased in the peripheral blood of DN patients, the renal tissues of diabetic mice, and HG-treated MCs. Functionally, both L13Rik depletion and miR-2861 overexpression effectively reduced HG-induced cell hypertrophy and ECM accumulation. Mechanistically, L13Rik functioned as a competing endogenous RNA (ceRNA) to sponge miR-2861, resulting in the de-repression of cyclin-dependent kinase inhibitor 1B (CDKN1B), a gene known to regulate cell cycle and MC hypertrophy. Conclusions: Collectively, the current results demonstrate that up-regulated L13Rik is correlated with DN and may be a hopeful therapeutic target for DN.


Subject(s)
Diabetes Mellitus, Experimental , Diabetic Nephropathies , MicroRNAs , RNA, Long Noncoding , Humans , Mice , Animals , Mesangial Cells/metabolism , RNA, Long Noncoding/genetics , MicroRNAs/genetics , Diabetes Mellitus, Experimental/genetics , Cyclin-Dependent Kinase Inhibitor p27/metabolism , Diabetic Nephropathies/genetics , Hypertrophy/genetics , Glucose/pharmacology
8.
FEBS Open Bio ; 13(12): 2263-2272, 2023 12.
Article in English | MEDLINE | ID: mdl-37876309

ABSTRACT

The transcription factor E-twenty-six variant 5 (ETV5) regulates acute insulin secretion. Adequate insulin secretion is dependent on pancreatic ß-cell size and cell proliferation, but the effects of ETV5 on proliferation, cell number, and viability, as well as its relationship with insulin secretion, have not been established yet. Here, we partially silenced ETV5 in the INS-1 (832/13) cell line by siRNA transfection and then measured secreted insulin concentration at different time points, observing similar levels to control cells. After 72 h of ETV5 silencing, we observed decreased cell number and proliferation, without any change in viability or apoptosis. Thus, partial silencing of ETV5 modulates cell proliferation in INS-1 (832/13) independently of secreted insulin levels via upregulation of E2F1 and of inhibitors of the cyclin/CDKs complexes (p21Cdkn1a , p27Cdkn1b , and p57Cdkn1c ) and downregulation of cell cycle activators (PAK3 and FOS).


Subject(s)
Genes, cdc , Insulin , Animals , Rats , Cell Division , Cell Line , Cell Proliferation/genetics , Insulin/genetics , Insulin/metabolism
9.
Genes Genomics ; 45(12): 1623-1632, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37856053

ABSTRACT

BACKGROUND: Human gliomas are aggressive brain tumors characterized by uncontrolled cell proliferation. Differential expression of Polycomb repressive complex 2 (PRC2) has been reported in various subtypes of glioma. However, the role of PRC2 in uncontrolled growth in glioma and its underlying molecular mechanisms remain to be elucidated. OBJECTIVE: We aimed to investigate the functional role of PRC2 in human glioblastoma cell growth by silencing SUZ12, the non-catalytic core component of PRC2. METHODS: Knockdown of SUZ12 was achieved by infecting T98G cells with lentivirus carrying sequences specifically targeting SUZ12 (shSUZ12). Gene expression was examined by quantitative PCR and western analysis. The impact of shSUZ12 on cell growth was assessed using a cell proliferation assay. Cell cycle distribution was analyzed by flow cytometry, and protein stability was evaluated in cycloheximide-treated cells. Subcellular localization was examined through immunofluorescence staining and biochemical cytoplasmic-nuclear fractionation. Gene expression analysis was also performed on human specimens from normal brain and glioblastoma patients. RESULTS: SUZ12 knockdown (SUZ12 KD) led to widespread decrease in the PRC2-specific histone mark, accompanied by a slowdown of cell proliferation through G1 arrest. In SUZ12 KD cells, the degradation of CDKN1B protein was reduced, resulting from alterations in the MYC-SKP2-CDKN1B axis. Furthermore, nuclear localization of CDKN1B was enhanced in SUZ12 KD cells. Analysis of human glioblastoma samples yielded increased expression of EZH2 and MYC along with reduced CDKN1B compared to normal human brain tissue. CONCLUSION: Our findings suggest a novel role for SUZ12 in cell proliferation through post-translational regulation of CDKN1B in glioblastoma.


Subject(s)
Glioblastoma , Glioma , Humans , Glioblastoma/genetics , Cyclin-Dependent Kinase Inhibitor p27/metabolism , Neoplasm Proteins/genetics , Polycomb Repressive Complex 2/genetics , Polycomb Repressive Complex 2/metabolism , Cell Proliferation , Glioma/genetics
10.
Endocrine ; 82(3): 480-490, 2023 12.
Article in English | MEDLINE | ID: mdl-37632635

ABSTRACT

PURPOSE: Multiple endocrine neoplasia type 4 (MEN4) is a rare multiglandular endocrine neoplasia syndrome, associated with a wide tumor spectrum but hallmarked by primary hyperparathyroidism, which represents the most common clinical feature, followed by pituitary (functional and non-functional) adenomas, and neuroendocrine tumors. MEN4 clinically overlaps MEN type 1 (MEN1) but differs from it for milder clinical features and an older patient's age at onset. The underlying mutated gene, CDKN1B, encodes the cell cycle regulator p27, implicated in cellular proliferation, motility and apoptosis. Given the paucity of MEN4 cases described in the literature, possible genotype-phenotype correlations have not been thoroughly assessed, and specific clinical recommendations are lacking. The present review provides an extensive overview of molecular genetics and clinical features of MEN4, with the aim of contributing to delineate peculiar strategies for clinical management, screening and follow-up of the last and least known MEN syndrome. METHODS: A literature search was performed through online databases like MEDLINE and Scopus. CONCLUSIONS: MEN4 is much less common that MEN1, tend to present later in life with a more indolent course, although involving the same primary organs as MEN1. As a consequence, MEN4 patients might need specific diagnostic and therapeutic approaches and a different strategy for screening and follow-up. Further studies are needed to assess the real oncological risk of MEN4 carriers, and to establish a standardized screening protocol. Furthermore, a deeper understanding of molecular genetics of MEN4 is needed in order to explore p27 as a novel therapeutic target.


Subject(s)
Adenoma , Multiple Endocrine Neoplasia Type 1 , Multiple Endocrine Neoplasia , Neuroendocrine Tumors , Humans , Multiple Endocrine Neoplasia/diagnosis , Multiple Endocrine Neoplasia/genetics , Multiple Endocrine Neoplasia/pathology , Multiple Endocrine Neoplasia Type 1/genetics , Multiple Endocrine Neoplasia Type 1/diagnosis , Neuroendocrine Tumors/genetics , Adenoma/genetics , Syndrome
11.
J Cell Physiol ; 238(10): 2304-2315, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37555566

ABSTRACT

Gastrointestinal epithelial cells respond to milk-born molecules throughout breastfeeding, influencing growth, and development. The rapid renewal of the small intestine depends on the proliferation in the crypt that drives cell fates. We used early weaning model to investigate immediate and late effects of breastfeeding on proliferation, differentiation of jejunal epithelial cells. Wistar rats were either allowed to suckle (S) until 21 postnatal days or submitted to early weaning (EW) at 15 days. By comparing ages (18, 60, and 120 days), we found that EW decreased Ki67 indices and villi height at 18 and 60 days (p < 0.05), and at 120 days they were similar between diets. Proliferative reduction and augmented expression of Cdkn1b (p27 gene) were parallel. In the stem cell niche, EW increased the number and activity (Defa24) of Paneth cells at 18 and 60 days (p < 0.05), and Lgr5 and Ascl2 genes showed inverted responses between ages. Among target cells, EW decreased goblet cell number at 18 and 60 days (p < 0.05) and increased it at 120 days (p < 0.05), whereas enteroendocrine marker genes were differentially altered. EW reduced enterocytes density at 18 days (p < 0.05), and at 120 days this population was decreased (vs. 60 days). Among cell fate crypt-controlling genes, Notch and Atoh1 were the main targets of EW. Metabolically, intraperitoneal glucose tolerance was immediately reduced (18 days), being reverted until 120 days (p < 0.05). Currently, we showed that breastfeeding has a lifespan influence on intestinal mucosa and on its stem cell compartment. We suggest that, although jejunum absorptive function is granted after early weaning, the long lasting changes in gene expression might prime the mucosa with a different sensitivity to gut disorders that still have to be further explored.

12.
Discov Oncol ; 14(1): 126, 2023 Jul 11.
Article in English | MEDLINE | ID: mdl-37432583

ABSTRACT

BACKGROUND: Human health and life are threatened by cancer with high morbidity and mortality worldwide. In many experiments, CDKN1B level is associated with cancer risk, Nevertheless, no pan-cancer analysis has been conducted on CDKN1B in human cancers. METHODS: With the help of bioinformatics, a pan-cancer analysis was conducted on the expression levels of CDKN1B in cancer tissues and adjacent tissues from the TCGA, CPTAC and GEO databases. The CDKN1B expression levels in tumor patients was further validated using immunohistochemistry (IHC) and quantitative real-time PCR. RESULTS: In the study, we first investigated the cancer-related roles of CDKN1B's in 40 tumors with malignancy. The CDKN1B gene encodes the p27Kip1 protein, which can block the production cyclin-dependent kinase (CDK), which is obviously related to the function and survival of cancer cells and alters the prognosis of cancer patients. Furthermore, CDKN1B function requires both protein processing and RNA metabolism. Additionally, the elevated expression of the CDKN1B gene and protein was validated in several cancer tissues from the patients. CONCLUSIONS: These results showed that the levels of CDKN1B were considerably different in a number of cancer tissues, offering a potential future target for cancer therapy.

13.
BMC Mol Cell Biol ; 24(1): 21, 2023 Jun 20.
Article in English | MEDLINE | ID: mdl-37337185

ABSTRACT

Janus kinase 3 (JAK3) is a member of the JAK family of tyrosine kinase proteins involved in cytokine receptor-mediated intracellular signal transduction through the JAK/STAT signaling pathway. JAK3 was previously shown as differentially expressed in granulosa cells (GC) of bovine pre-ovulatory follicles suggesting that JAK3 could modulate GC function and activation/inhibition of downstream targets. We used JANEX-1, a JAK3 inhibitor, and FSH treatments and analyzed proliferation markers, steroidogenic enzymes and phosphorylation of target proteins including STAT3, CDKN1B/p27Kip1 and MAPK8IP3/JIP3. Cultured GC were treated with or without FSH in the presence or not of JANEX-1. Expression of steroidogenic enzyme CYP11A1, but not CYP19A1, was upregulated in GC treated with FSH and both were significantly decreased when JAK3 was inhibited. Proliferation markers CCND2 and PCNA were reduced in JANEX-1-treated GC and upregulated by FSH. Western blots analyses showed that JANEX-1 treatment reduced pSTAT3 amounts while JAK3 overexpression increased pSTAT3. Similarly, FSH treatment increased pSTAT3 even in JANEX-1-treated GC. UHPLC-MS/MS analyses revealed phosphorylation of specific amino acid residues within JAK3 as well as CDKN1B and MAPK8IP3 suggesting possible activation or inhibition post-FSH or JANEX-1 treatments. We show that FSH activates JAK3 in GC, which could phosphorylate target proteins and likely modulate other signaling pathways involving CDKN1B and MAPK8IP3, therefore controlling GC proliferation and steroidogenic activity.


Subject(s)
Follicle Stimulating Hormone , Janus Kinases , Animals , Cattle , Female , Follicle Stimulating Hormone/pharmacology , Granulosa Cells/metabolism , Janus Kinase 3/metabolism , Janus Kinases/metabolism , Phosphorylation , Signal Transduction , STAT Transcription Factors/metabolism , Tandem Mass Spectrometry
14.
Biomark Res ; 11(1): 39, 2023 Apr 13.
Article in English | MEDLINE | ID: mdl-37055817

ABSTRACT

BACKGROUND: Osteoarthritis (OA) is the most prevalent age-related disease in the world. Chondrocytes undergo an age-dependent decline in their proliferation and synthetic capacity, which is the main cause of OA development. However, the intrinsic mechanism of chondrocyte senescence is still unclear. This study aimed to investigate the role of a novel long non-coding RNA (lncRNA), AC006064.4-201 in the regulation of chondrocyte senescence and OA progression and to elucidate the underlying molecular mechanisms. METHODS: The function of AC006064.4-201 in chondrocytes was assessed using western blotting, quantitative real-time polymerase chain reaction (qRT-PCR), immunofluorescence (IF) and ß-galactosidase staining. The interaction between AC006064.4-201 and polypyrimidine tract-binding protein 1 (PTBP1), as well as cyclin-dependent kinase inhibitor 1B (CDKN1B), was evaluated using RPD-MS, fluorescence in situ hybridization (FISH), RNA immunoprecipitation (RIP) and RNA pull-down assays. Mice models were used to investigate the role of AC006064.4-201 in post-traumatic and age-related OA in vivo. RESULTS: Our research revealed that AC006064.4-201 was downregulated in senescent and degenerated human cartilage, which could alleviate senescence and regulate metabolism in chondrocytes. Mechanically, AC006064.4-201 directly interacts with PTBP1 and blocks the binding between PTBP1 and CDKN1B mRNA, thereby destabilizing CDKN1B mRNA and decreasing the translation of CDKN1B. The in vivo experiments were consistent with the results of the in vitro experiments. CONCLUSIONS: The AC006064.4-201/PTBP1/CDKN1B axis plays an important role in OA development and provides new molecular markers for the early diagnosis and treatment of OA in the future. Schematic diagram of AC006064.4-201 mechanism. A schematic diagram of the mechanism underlying the effect of AC006064.4-201.

15.
Endocr Connect ; 12(2)2023 Feb 01.
Article in English | MEDLINE | ID: mdl-36520683

ABSTRACT

Objective: Multiple endocrine neoplasia type 4 (MEN4) is caused by a CDKN1B germline mutation first described in 2006. Its estimated prevalence is less than one per million. The aim of this study was to define the disease characteristics. Methods: A systematic review was performed according to the PRISMA 2020 criteria. A literature search from January 2006 to August 2022 was done using MEDLINE® and Web of ScienceTM. Results: Forty-eight symptomatic patients fulfilled the pre-defined eligibility criteria. Twenty-eight different CDKN1B variants, mostly missense (21/48, 44%) and frameshift mutations (17/48, 35%), were reported. The majority of patients were women (36/48, 75%). Men became symptomatic at a median age of 32.5 years (range 10-68, mean 33.7 ± 23), whereas the same event was recorded for women at a median age of 49.5 years (range 5-76, mean 44.8 ± 19.9) (P = 0.25). The most frequently affected endocrine organ was the parathyroid gland (36/48, 75%; uniglandular disease 31/36, 86%), followed by the pituitary gland (21/48, 44%; hormone-secreting 16/21, 76%), the endocrine pancreas (7/48, 15%), and the thyroid gland (4/48, 8%). Tumors of the adrenal glands and thymus were found in three and two patients, respectively. The presenting first endocrine pathology concerned the parathyroid (27/48, 56%) and the pituitary gland (11/48, 23%). There were one (27/48, 56%), two (13/48, 27%), three (3/48, 6%), or four (5/48, 10%) syn- or metachronously affected endocrine organs in a single patient, respectively. Conclusion: MEN4 is an extremely rare disease, which most frequently affects women around 50 years of age. Primary hyperparathyroidism as a uniglandular disease is the leading pathology.

16.
Endocr Relat Cancer ; 30(1)2023 01 01.
Article in English | MEDLINE | ID: mdl-36256846

ABSTRACT

Multiple endocrine neoplasia 4 (MEN4) is a rare multiglandular endocrine neoplasia syndrome clinically hallmarked by primary hyperparathyroidism (PHPT), pituitary adenoma (PitAd), and neuroendocrine tumors (NET), clinically overlapping MEN1. The underlying mutated gene - CDKN1B, encodes for the cell-cycle regulator p27. Possible genotype-phenotype correlations in MEN4 have not been thoroughly assessed. Prompted by the findings in three Israeli MEN4 kindreds, we performed a literature review on published and unpublished data from previously reported MEN4/CDKN1B cases. Univariate analysis analyzed time-dependent risks for developing PHPT, PitAd, or NET by variant type and position along the gene. Overall, 74 MEN4 cases were analyzed. PHPT risk was 53.4% by age 60 years (mean age at diagnosis age 50.6 ± 13.9 years), risk for PitAd was 23.2% and risk for NET was 16.2% (34.4 ± 21.4 and 52.9 ± 13.9 years, respectively). The frameshift variant p.Q107fs was the most common variant identified (4/41 (9.7%) kindreds). Patients with indels had higher risk for PHPT vs point mutations (log-rank, P = 0.029). Variants in codons 94-96 were associated with higher risk for PHPT (P < 0.001) and PitAd (P = 0.031). To conclude, MEN4 is clinically distinct from MEN1, with lower risk and older age for PHPT diagnosis. We report recurrent CDKN1B frameshift variants and possible genotype-phenotype correlations.


Subject(s)
Adenoma , Multiple Endocrine Neoplasia Type 1 , Multiple Endocrine Neoplasia , Neuroendocrine Tumors , Pituitary Neoplasms , Humans , Multiple Endocrine Neoplasia/genetics , Cyclin-Dependent Kinase Inhibitor p27/genetics , Germ-Line Mutation , Phenotype , Pituitary Neoplasms/genetics , Adenoma/genetics , Neuroendocrine Tumors/pathology , Multiple Endocrine Neoplasia Type 1/genetics
17.
Neural Regen Res ; 18(3): 671-682, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36018193

ABSTRACT

The functional properties of endogenous Schwann cells (SCs) during nerve repair are dynamic. Optimizing the functional properties of SCs at different stages of nerve repair may have therapeutic benefit in improving the repair of damaged nerves. Previous studies showed that miR-221-3p promotes the proliferation and migration of SCs, and miR-338-3p promotes the myelination of SCs. In this study, we established rat models of sciatic nerve injury by bridging the transected sciatic nerve with a silicone tube. We injected a miR-221 lentiviral vector system together with a doxycycline-inducible Tet-On miR-338 lentiviral vector system into the cavity of nerve conduits of nerve stumps to sequentially regulate the biological function of endogenous SCs at different stages of nerve regeneration. We found that the biological function of SCs was sequentially regulated, the diameter and density of myelinated axons were increased, the expression levels of NF200 and myelin basic protein were increased, and the function of injured peripheral nerve was improved using this system. miRNA Target Prediction Database prediction, Nanopore whole transcriptome sequencing, quantitative PCR, and dual luciferase reporter gene assay results predicted and verified Cdkn1b and Nrp1 as target genes of miR-221-3p and miR-338-3p, respectively, and their regulatory effects on SCs were confirmed in vitro. In conclusion, here we established a new method to enhance nerve regeneration through sequential regulation of biological functions of endogenous SCs, which establishes a new concept and model for the treatment of peripheral nerve injury. The findings from this study will provide direct guiding significance for clinical treatment of sciatic nerve injury.

18.
Clinical Medicine of China ; (12): 233-236, 2023.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-992495

ABSTRACT

The serious decrease in the number of functional β cells is one of the main features in the pathogenesis of diabetes mellitus. CDKN1B is a new kind of regulatory protein, which can bind and inactivate cyclin and cyclin-dependent kinase complex to control the process of cell cycle. It was suggested that down-regulation or deletion of CDKN1B in islet β cells could accelerate the proliferation of islet β cells, thus increasing the number of islet β cells, which is of great significance for treatments of diabetes.

19.
J Pers Med ; 14(1)2023 Dec 25.
Article in English | MEDLINE | ID: mdl-38248731

ABSTRACT

The cyclin-dependent kinase inhibitor 1B (CDKN1B) gene, which encodes the p27Kip1 protein, is important in regulating the cell cycle process and cell proliferation. Its role in breast cancer prognosis is controversial. We evaluated the significance and predictive role of CDKN1B expression in breast cancer prognosis. We investigated the clinicopathologic factors, survival rates, immune cells, gene sets, and prognostic models according to CDKN1B expression in 3794 breast cancer patients. We performed gene set enrichment analysis (GSEA), in silico cytometry, pathway network analyses, gradient boosting machine (GBM) learning, and in vitro drug screening. High CDKN1B expression levels in breast cancer correlated with high lymphocyte infiltration signature scores and increased CD8+ T cells, both of which were associated with improved prognosis in breast cancer. which were associated with a better prognosis. CDKN1B expression was associated with gene sets for the upregulation of T-cell receptor signaling pathways and downregulation of CD8+ T cells. Pathway network analysis revealed a direct link between CDKN1B and the pathway involved in the positive regulation of the protein catabolic process pathway. In addition, an indirect link was identified between CDKN1B and the T-cell receptor signaling pathway. In in vitro drug screening, BMS-345541 demonstrated efficacy as a therapeutic targeting of CDKN1B, effectively impeding the growth of breast cancer cells characterized by low CDKN1B expression. The inclusion of CDKN1B expression in GBM models increased the accuracy of survival predictions. CDKN1B expression plays a significant role in breast cancer progression, implying that targeting CDKN1B might be a promising strategy for treating breast cancer.

20.
Cancers (Basel) ; 14(23)2022 Nov 24.
Article in English | MEDLINE | ID: mdl-36497267

ABSTRACT

The recurrence, progression, and drug resistance of prostate cancer (PC) is closely related to the cancer stem cells (CSCs). Therefore, it is necessary to find the key regulators of prostate cancer stem cells (PCSCs). Here, we analyzed the results of a single-class logistic regression machine learning algorithm (OCLR) to identify the PCSC-associated lncRNA MBNL1-AS1. The effects of MBNL1-AS1 on the stemness of CSCs was assessed using qPCR, western blot and sphere-forming assays. The role of MBNL1-AS1 in mediating the proliferation and invasion of the PC cell lines was examined using Transwell, wounding-healing, CCK-8, EdU and animal assays. Dual-luciferase and ChIRP assays were used to examine the molecular mechanism of MBNL1-AS1 in PCSCs. MBNL1-AS1 was shown to be negatively correlated with stemness index (mRNAsi), and even prognosis, tumor progression, recurrence, and drug resistance in PC patients. The knockdown of MBNL1-AS1 significantly affected the stemness of the PC cells, and subsequently their invasive and proliferative abilities. Molecular mechanism studies suggested that MBNL1-AS1 regulates CDKN1B through competitive binding to miR-221-3p, which led to the inhibition of the Wnt signaling pathway to affect PCSCs. In conclusion, our study identified MBNL1-AS1 as a key regulator of PCSCs and examined its mechanism of action in the malignant progression of PC.

SELECTION OF CITATIONS
SEARCH DETAIL
...