Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 83
Filter
1.
Article in English | MEDLINE | ID: mdl-38935178

ABSTRACT

PURPOSE: To showcase the successful use of ICSI with PGT-M to overcome Beckwith-Wiedemann syndrome (BWS)-related reproductive challenges, resulting in the birth of a healthy baby boy. By targeting the maternally inherited CDKN1C pathogenic gene variant, this report highlights the genetic interventions in BWS reproductive risk management. METHODS: This case report describes a 41-year-old woman seeking fertility assistance after a previous pregnancy revealed a fetal anomaly related to BWS. Families with BWS recurrence face challenges, as maternally inherited CDKN1C pathogenic variants contribute to approximately 40% of genetic alterations, with a potential recurrence risk as high as 50%. Genetic analysis identified a pathogenic variant in the CDKN1C gene of the fetus that was maternally inherited. The pregnancy was terminated due to the fetal anomalies. The couple underwent intra-cytoplasmic sperm injection (ICSI) combined with preimplantation genetic testing for monogenic diseases (PGT-M) and preimplantation genetic testing for aneuploidy (PGT-A). RESULTS: Two embryos from IVF with low-risk PGT-M and euploid status. One transferred via frozen embryo transfer (FET) in February 2023 resulted in the successful birth of a healthy baby boy. This study reports the first successful delivery of a healthy boy after PGT-M for the CDKN1C gene variant c.79_100delinsGTGACC, contributing to the limited literature on successful outcomes for BWS. CONCLUSION: Utilizing PGT-M in combination with IVF can lead to favorable outcomes in managing BWS-associated reproductive challenges, offering insights into potential genetic interventions and successful birth.

2.
Am J Med Genet A ; : e63777, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38822599

ABSTRACT

Beckwith-Wiedemann spectrum (BWSp) is caused by genetic and epigenetic alterations on chromosome 11 that regulate cell growth and division. Considering the diverse phenotypic landscape in BWSp, the characterization of the CDKN1C molecular subtype remains relatively limited. Here, we investigate the role of CDKN1C in the broader BWSp phenotype. Notably, patients with CDKN1C variants appear to exhibit a different tumor risk than other BWSp molecular subtypes. We performed a comprehensive literature review using the search term "CDKN1C Beckwith" to identify 113 cases of patients with molecularly confirmed CDKN1C-BWSp. We then assessed the genotype and phenotype in a novel cohort of patients with CDKN1C-BWSp enrolled in the BWS Research Registry. Cardinal and suggestive features were evaluated for all patients reported, and tumor risk was established based on available reports. The most common phenotypes included macroglossia, omphalocele, and ear creases/pits. Tumor types reported from the literature included neuroblastoma, acute lymphocytic leukemia, superficial spreading melanoma, and intratubular germ cell neoplasia. Overall, this study identifies unique features associated with CDKN1C variants in BWSp, enabling more accurate clinical management. The absence of Wilms tumor and hepatoblastoma suggests that screening for these tumors may not be necessary, while the neuroblastoma risk warrants appropriate screening recommendations.

3.
Article in English | MEDLINE | ID: mdl-38809793

ABSTRACT

Interventional chemotherapy is a common operation in the clinical treatment of liver cancer. The aim of this study was to investigate the expression and molecular mechanism of serum miR-4746-5p in liver cancer patients before and after interventional chemotherapy. The levels of miR-4746-5p and CDKN1C in serum samples from liver cancer patients were detected using real-time fluorescence quantitative polymerase chain reaction. Receiver operating characteristic curves revealed the diagnostic value of miR-4746-5p in tumors. Differences in clinical indicators between liver cancer patients and healthy controls were assessed using Pearson correlation analysis. Luciferase reporter gene assays confirmed the targeted interaction between miR-4746-5p and CDKN1C. In vitro cellular assays were validated by Cell Counting Kit-8, Transwell assay, and chemoresistance assay. Serum miR-4746-5p levels were increased in liver cancer patients but were downregulated after chemotherapy intervention. CDKN1C expression showed the opposite trend. Low levels of miR-4746-5p mediated cell growth and metastasis by targeting and negatively regulating CDKN1C expression, while silencing CDKN1C restored cell activity. Inhibition of miR-4746-5p reduced chemoresistance, while downregulation of CDKN1C affected cell sensitivity. miR-4746-5p may be a potential therapeutic factor for liver cancer diagnosis and interventional chemotherapy.

4.
Article in English | MEDLINE | ID: mdl-38568329

ABSTRACT

BACKGROUND: Forkhead box O3 (FOXO3) and cyclin dependent kinase inhibitor 1 C Gene (CDKN1C) have been shown to be involved in the melanoma process, but their roles in the cisplatin (DDP) resistance of melanoma remain unclear. METHODS: The mRNA levels of CDKN1C and FOXO3 were measured using quantitative real-time PCR. The protein levels of CDKN1C, FOXO3 and mitochondrial oxidative phosphorylation (mtOXPHOS)-related markers were determinant by western blot analysis. The DDP resistance, proliferation, and apoptosis of melanoma cells were assessed by cell counting kit 8 assay, colony formation assay and flow cytometry. Glucose consumption, lactate production and ATP level were detected to assess glycolysis. The regulation of FOXO3 on CDKN1C was confirmed by ChIP assay and dual-luciferase reporter assay. In vivo experiments were performed to evaluate the effect of FOXO3 on DDP sensitivity in melanoma tumor tissues. RESULTS: CDKN1C and FOXO3 were downregulated in chemoresistant melanoma tissues, and their low expression levels were related to the poor prognosis of melanoma patients. Overexpression of CDKN1C and FOXO3 repressed DDP resistance, proliferation, and glycolysis, while promoted apoptosis and mtOXPHOS in DDP-resistant melanoma cells. Further analysis suggested that FOXO3 could bind to CDKN1C promoter region to enhance its transcription. Besides, CDKN1C knockdown reversed the regulation of FOXO3 on melanoma cell DDP resistance and progression. Moreover, FOXO3 overexpression enhanced the DDP sensitivity of melanoma tumor tissues in vivo. CONCLUSION: FOXO3 promoted the transcription of CDKN1C, thereby inhibiting the DDP resistance and progression of melanoma cells.

5.
Int J Mol Sci ; 24(17)2023 Aug 29.
Article in English | MEDLINE | ID: mdl-37686168

ABSTRACT

Beckwith-Wiedemann Syndrome (BWS) is an imprinting disorder, which manifests by overgrowth and predisposition to embryonal tumors. The evidence on the relationship between maternal complications such as HELLP (hemolysis, elevated liver enzymes, and low platelet count) and preeclampsia and the development of BWS in offspring is scarce. A comprehensive clinical evaluation, with genetic testing focused on screening for mutations in the CDKN1C gene, which is commonly associated with BWS, was conducted in a newborn diagnosed with BWS born to a mother with a history of preeclampsia and HELLP syndrome. The case study revealed typical clinical manifestations of BWS in the newborn, including hemihyperplasia, macroglossia, midfacial hypoplasia, omphalocele, and hypoglycemia. Surprisingly, the infant also exhibited fetal growth restriction, a finding less commonly observed in BWS cases. Genetic analysis, however, showed no mutations in the CDKN1C gene, which contrasts with the majority of BWS cases. This case report highlights the complex nature of BWS and its potential association with maternal complications such as preeclampsia and HELLP syndrome. The atypical presence of fetal growth restriction in the newborn and the absence of CDKN1C gene mutations have not been reported to date in BWS.


Subject(s)
Beckwith-Wiedemann Syndrome , HELLP Syndrome , Pre-Eclampsia , Female , Pregnancy , Infant , Infant, Newborn , Humans , HELLP Syndrome/diagnosis , HELLP Syndrome/genetics , Pre-Eclampsia/genetics , Beckwith-Wiedemann Syndrome/diagnosis , Beckwith-Wiedemann Syndrome/genetics , Fetal Growth Retardation/genetics , Mothers , Genetic Variation , Cyclin-Dependent Kinase Inhibitor p57/genetics
6.
Eur J Med Res ; 28(1): 340, 2023 Sep 12.
Article in English | MEDLINE | ID: mdl-37700362

ABSTRACT

BACKGROUND: The exact mechanisms of type 2 diabetes mellitus (T2DM) remain largely unknown. We intended to authenticate critical genes linked to T2DM progression by tandem single-cell sequencing and general transcriptome sequencing data. METHODS: T2DM single-cell RNA-sequencing data were submitted by the Gene Expression Omnibus (GEO) database and ArrayExpress (EBI), from which gene expression matrices were retrieved. The common cell clusters and representative marker genes were ascertained by principal component analysis (PCA), t-distributed stochastic neighbor embedding (t-SNE), CellMarker, and FindMarkers in two datasets (GSE86469 and GSE81608). T2DM-related differentially expressed marker genes were defined by intersection analysis of marker genes and GSE86468-differentially expressed genes. Receiver operating characteristic (ROC) curves were utilized to assign representative marker genes with diagnostic values by GSE86468, GSE29226 and external validation GSE29221, and their prospective target compounds were forecasted by PubChem. Besides, the R package clusterProfiler-based functional annotation was designed to unveil the intrinsic mechanisms of the target genes. At last, western blot was used to validate the alternation of CDKN1C and DLK1 expression in primary pancreatic islet cells cultured with or without 30mM glucose. RESULTS: Three common cell clusters were authenticated in two independent T2DM single-cell sequencing data, covering neurons, epithelial cells, and smooth muscle cells. Functional ensemble analysis disclosed an intimate association of these cell clusters with peptide/insulin secretion and pancreatic development. Pseudo-temporal trajectory analysis indicated that almost all epithelial and smooth muscle cells were of neuron origin. We characterized CDKN1C and DLK1, which were notably upregulated in T2DM samples, with satisfactory availability in recognizing three representative marker genes in non-diabetic and T2DM samples, and they were also robustly interlinked with the clinical characteristics of patients. Western blot also demonstrated that, compared with control group, the expression of CDKN1C and DLK1 were increased in primary pancreatic islet cells cultured with 30 mM glucose for 48 h. Additionally, PubChem projected 11 and 21 potential compounds for CDKN1C and DLK1, respectively. CONCLUSION: It is desirable that the emergence of the 2 critical genes indicated (CDKN1C and DLK1) could be catalysts for the investigation of the mechanisms of T2DM progression and the exploitation of innovative therapies.


Subject(s)
Diabetes Mellitus, Type 2 , Humans , Diabetes Mellitus, Type 2/genetics , Blotting, Western , Glucose , Insulin , RNA
7.
Genes Chromosomes Cancer ; 62(12): 732-739, 2023 12.
Article in English | MEDLINE | ID: mdl-37530573

ABSTRACT

Rhabdomyosarcomas (RMS) constitute a heterogeneous spectrum of tumors with respect to clinical behavior and tumor morphology. The paternal uniparental disomy (pUPD) of 11p15.5 is a molecular change described mainly in embryonal RMS. In addition to LOH, UPD, the MLPA technique (ME030kit) also determines copy number variants and methylation of H19 and KCNQ1OT1 genes, which have not been systematically investigated in RMS. All 127 RMS tumors were divided by histology and PAX status into four groups, pleomorphic histology (n = 2); alveolar RMS PAX fusion-positive (PAX+; n = 39); embryonal RMS (n = 70) and fusion-negative RMS with alveolar pattern (PAX-RMS-AP; n = 16). The following changes were detected; negative (n = 21), pUPD (n = 75), gain of paternal allele (n = 9), loss of maternal allele (n = 9), hypermethylation of H19 (n = 6), hypomethylation of KCNQ1OT1 (n = 6), and deletion of CDKN1C (n = 1). We have shown no difference in the frequency of pUPD 11p15.5 in all groups. Thus, we have proven that changes in the 11p15.5 are not only specific to the embryonal RMS (ERMS), but are often also present in alveolar RMS (ARMS). We have found changes that have not yet been described in RMS. We also demonstrated new potential diagnostic markers for ERMS (paternal duplication and UPD of whole chromosome 11) and for ARMS PAX+ (hypomethylation KCNQ1OT1).


Subject(s)
Rhabdomyosarcoma, Alveolar , Rhabdomyosarcoma, Embryonal , Rhabdomyosarcoma , Humans , Rhabdomyosarcoma, Embryonal/genetics , Rhabdomyosarcoma, Embryonal/pathology , Rhabdomyosarcoma/genetics , Rhabdomyosarcoma, Alveolar/genetics , DNA Methylation , Uniparental Disomy , Chromosomes
8.
World J Clin Cases ; 11(19): 4655-4663, 2023 Jul 06.
Article in English | MEDLINE | ID: mdl-37469742

ABSTRACT

BACKGROUND: Cyclin-dependent kinase inhibitor 1C (CDKN1C) is a cell proliferation inhibitor that regulates the cell cycle and cell growth through G1 cell cycle arrest. CDKN1C mutations can lead to IMAGe syndrome (CDKN1C allele gain-of-function mutations lead to intrauterine growth restriction, metaphyseal dysplasia, adrenal hypoplasia congenital, and genitourinary malformations). We present a Silver-Russell syndrome (SRS) pedigree that was due to a missense mutation affecting the same amino acid position, 279, in the CDKN1C gene, resulting in the amino acid substitution p.Arg279His (c.836G>A). The affected family members had an SRS phenotype but did not have limb asymmetry or adrenal insufficiency. The amino acid changes in this specific region were located in a narrow functional region that contained mutations previously associated with IMAGe syndrome. In familial SRS patients, the PCNA region of CDKN1C should be analysed. Adrenal insufficiency should be excluded in all patients with functional CDKN1C variants. CASE SUMMARY: We describe the case of an 8-year-old girl who initially presented with short stature. Her height was 91.6 cm, and her weight was 10.2 kg. Physical examination revealed that she had a relatively large head, an inverted triangular face, a protruding forehead, a low ear position, sunken eye sockets, and irregular cracked teeth but no limb asymmetry. Family history: The girl's mother, great-grandmother, and grandmother's brother also had a prominent forehead, triangular face, and severely proportional dwarfism but no limb asymmetry or adrenal insufficiency. Exome sequencing of the girl revealed a new heterozygous CDKN1C (NM_000076. 2) c.836G>A mutation, resulting in a variant with a predicted evolutionarily highly conserved arginine substituted by histidine (p.Arg279His). The same causative mutation was found in both the proband's mother, great-grandmother, and grandmother's brother, who had similar phenotypes. Thus far, we found an SRS pedigree, which was due to a missense mutation affecting the same amino acid position, 279, in the CDKN1C gene, resulting in the amino acid substitution p.Arg279His (c.836G>A). Although the SRS-related CDKN1C mutation is in the IMAGe-related mutation hotspot region [the proliferating cell nuclear antigen (PCNA) domain], no adrenal insufficiency was reported in this SRS pedigree. The reason may be that the location of the genomic mutation and the type of missense mutation determines the phenotype. The proband was treated with recombinant human growth hormone (rhGH). After 1 year of rhGH treatment, the height standard deviation score of the proband increased by 0.93 standard deviation score, and her growth rate was 8.1 cm/year. No adverse reactions, such as abnormal blood glucose, were found. CONCLUSION: Functional mutations in CDKN1C can lead to familial SRS without limb asymmetry, and some patients may have glucose abnormalities. In familial SRS patients, the PCNA region of CDKN1C should be analysed. Adrenal insufficiency should be excluded in all patients with functional CDKN1C variants.

9.
Cell Rep ; 42(6): 112659, 2023 06 27.
Article in English | MEDLINE | ID: mdl-37327110

ABSTRACT

p57Kip2 is a cyclin/CDK inhibitor and a negative regulator of cell proliferation. Here, we report that p57 regulates intestinal stem cell (ISC) fate and proliferation in a CDK-independent manner during intestinal development. In the absence of p57, intestinal crypts exhibit an increased proliferation and an amplification of transit-amplifying cells and of Hopx+ ISCs, which are no longer quiescent, while Lgr5+ ISCs are unaffected. RNA sequencing (RNA-seq) analyses of Hopx+ ISCs show major gene expression changes in the absence of p57. We found that p57 binds to and inhibits the activity of Ascl2, a transcription factor critical for ISC specification and maintenance, by participating in the recruitment of a corepressor complex to Ascl2 target gene promoters. Thus, our data suggest that, during intestinal development, p57 plays a key role in maintaining Hopx+ ISC quiescence and repressing the ISC phenotype outside of the crypt bottom by inhibiting the transcription factor Ascl2 in a CDK-independent manner.


Subject(s)
Co-Repressor Proteins , Intestines , Stem Cells , Cell Differentiation , Cell Proliferation , Intestines/metabolism , Stem Cells/physiology , Transcription Factors , Co-Repressor Proteins/metabolism
10.
Cancer Med ; 12(13): 14413-14425, 2023 07.
Article in English | MEDLINE | ID: mdl-37212524

ABSTRACT

BACKGROUND: Liver cancer is a highly malignant disease and the third leading cause of cancer death worldwide. Abnormal activation of PI3K/Akt signaling is common in cancer, but whether phosphoinositide-3-kinase regulatory subunit 3 (PIK3R3) plays a role in liver cancer is largely unexplored. METHODS: We determined the expression of PIK3R3 in liver cancer by using TCGA data and our clinical samples and knocked it down by siRNA or overexpressing it by the lentivirus vector system. We also investigated the function of PIK3R3 by colony formation, 5-Ethynyl-2-Deoxyuridine, flow cytometry assay, and subcutaneous xenograft model. The downstream of PIK3R3 was explored by RNA sequence and rescue assays. RESULTS: We found that PIK3R3 was significantly upregulated in liver cancer and correlated with prognosis. PIK3R3 promoted liver cancer growth in vitro and in vivo by controlling cell proliferation and cell cycle. RNA sequence revealed that hundreds of genes were dysregulated upon PIK3R3 knockdown in liver cancer cells. CDKN1C, a cyclin-dependent kinase inhibitor, was significantly upregulated by PIK3R3 knockdown, and CDKN1C siRNA rescued the impaired tumor cell growth. SMC1A was partially responsible for PIK3R3 regulated function, and SMC1A overexpression rescued the impaired tumor cell growth in liver cancer cells. Immunoprecipitation demonstrated there is indirect interaction between PIK3R3 and CNKN1C or SMC1A. Importantly, we verified that PIK3R3-activated Akt signaling determined the expression of CDKN1C and SMC1A, two downstream of PIK3R3 in liver cancer cells. CONCLUSION: PIK3R3 is upregulated in liver cancer and activates Akt signaling to control cancer growth by regulation of CDNK1C and SMC1A. Targeting PIK3R3 could be a promising treatment strategy for liver cancer that deserves further investigation.


Subject(s)
Liver Neoplasms , Proto-Oncogene Proteins c-akt , Humans , Cell Line, Tumor , Cell Movement , Cell Proliferation , Cyclin-Dependent Kinase Inhibitor p57/genetics , Cyclin-Dependent Kinase Inhibitor p57/metabolism , Gene Expression Regulation, Neoplastic , Liver Neoplasms/genetics , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , RNA, Small Interfering
11.
Cell Signal ; 109: 110735, 2023 09.
Article in English | MEDLINE | ID: mdl-37257769

ABSTRACT

PURPOSE: Cervical Squamous Cell Carcinoma (CSCC) is one of the significant causes of cancer deaths among women. Distinct genetic and epigenetic-altered loci, including chromosomal 11p15.5-15.4, have been identified. CDKN1C (Cyclin-Dependent Kinase Inhibitor 1C, p57KIP2), a member of the CIP/KIP family of cyclin-dependent kinase inhibitors (CDKIs), located at 11p15.4, is a putative tumor suppressor. Apart from transcriptional control, S-Phase Kinase Associated Protein 2 (SKP2), an oncogenic E3 ubiquitin ligase, regulates the protein turnover of CDKN1C. But the molecular status of CDKN1C in CSCC and the underlying mechanistic underpinnings have yet to be explored. METHODS: TCGA and other publicly available datasets were analyzed to evaluate the expression of CDKN1C and SKP2. The expression (transcript/protein) was validated in independent CSCC tumors (n = 155). Copy number alteration and promoter methylation were correlated with the expression. Finally, in vitro functional validation was performed. RESULTS: CDKN1C was down-regulated, and SKP2 was up-regulated at the transcript and protein levels in CSCC tumors and the SiHa cell line. Notably, promoter methylation (50%) was associated with the downregulation of the CDKN1C transcript. However, high expression of SKP2 was found to be associated with the decreased expression of CDKN1C protein. Independent treatments with 5-aza-dC, MG132, and SKP2i (SKPin C1) in SiHa cells led to an enhanced expression of CDKN1C protein, validating the mechanism of down-regulation in CSCC. CONCLUSION: Collectively, CDKN1C was down-regulated due to the synergistic effect of promoter hyper-methylation and SKP2 over-expression in CSCC tumors, paving the way for further studies of its role in the pathogenesis of the disease.


Subject(s)
Carcinoma, Squamous Cell , Uterine Cervical Neoplasms , Female , Humans , Carcinoma, Squamous Cell/genetics , Cyclin-Dependent Kinase Inhibitor p27/metabolism , Cyclin-Dependent Kinase Inhibitor p57/metabolism , Down-Regulation/genetics , Methylation , S-Phase Kinase-Associated Proteins/genetics , S-Phase Kinase-Associated Proteins/metabolism , Uterine Cervical Neoplasms/genetics
12.
Epigenetics ; 18(1): 2088173, 2023 Dec.
Article in English | MEDLINE | ID: mdl-35770551

ABSTRACT

Cadmium (Cd) is a toxic metal ubiquitous in the environment. In utero, Cd is inefficiently transported to the foetus but causes foetal growth restriction (FGR), likely through impairment of the placenta where Cd accumulates. However, the underlying molecular mechanisms are poorly understood. Cd can modulate the expression of imprinted genes, defined by their transcription from one parental allele, which play critical roles in placental and foetal growth. The expression of imprinted genes is governed by DNA methylation at Imprinting Control Regions (ICRs), which are susceptible to environmental perturbation. The imprinted gene Cdkn1c/CDKN1C is a major regulator of placental development, is implicated in FGR, and shows increased expression in response to Cd exposure in mice. Here, we use a hybrid mouse model of in utero Cd exposure to determine if the increase in placental Cdkn1c expression is caused by changes to ICR DNA methylation and loss of imprinting (LOI). Consistent with prior studies, Cd causes FGR and impacts placental structure and Cdkn1c expression at late gestation. Using polymorphisms to distinguish parental alleles, we demonstrate that increased Cdkn1c expression is not driven by changes to DNA methylation or LOI. We show that Cdkn1c is expressed primarily in the placental labyrinth which is proportionally increased in size in response to Cd. We conclude that the Cd-associated increase in Cdkn1c expression can be fully explained by alterations to placental structure. These results have implications for understanding mechanisms of Cd-induced placental dysfunction and, more broadly, for the study of FGR associated with increased Cdkn1c/CDKN1C expression.


Subject(s)
DNA Methylation , Placenta , Pregnancy , Female , Animals , Mice , Placenta/metabolism , Cadmium/toxicity , Cadmium/metabolism , Genomic Imprinting , Placentation/genetics , Cyclin-Dependent Kinase Inhibitor p57/genetics , Cyclin-Dependent Kinase Inhibitor p57/metabolism
13.
Diabetes Res Clin Pract ; 196: 110228, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36549505

ABSTRACT

AIMS: We examined the effect of growth hormone (GH) counter-regulation on carbohydrate metabolism in individuals with life-long diminished insulin secretion (DIS). METHODS: Adults homozygous for the E180 splice site mutation of GHR [Laron syndrome (LS)], adults with a gain-of-function mutation in CDKN1c [Guevara-Rosenbloom syndrome (GRS)], and controls were evaluated for body composition, leptin, total and high molecular weight (HMW) adiponectin, insulin-like growth factor (IGF) axis molecules, and a 5-hour oral glucose tolerance test (OGTT), with measurements of glucose, insulin, glucagon, ghrelin, pancreatic polypeptide, gastric inhibitory peptide, glucagon-like peptide-1, peptide YY, and islet amyloid polypeptide (IAPP). RESULTS: Both syndromic cohorts displayed DIS during OGTT. LS subjects had higher serum concentrations of total and HMW adiponectin, and lower levels of IGF-I, IGF-II, and IGF-Binding Protein-3 than individuals in other study groups. Furthermore, they displayed normal glycemic responses during OGTT with the lowest IAPP secretion. In contrast, individuals with GRS had higher levels of protein glycation, deficient glucose control during OGTT, and increased secretion of IAPP. CONCLUSIONS: A distinct metabolic phenotype depending on GH counter-regulatory status, associates with diabetes development and excess glucose-induced IAPP secretion.


Subject(s)
Adiponectin , Human Growth Hormone , Humans , Insulin Secretion , Syndrome , Insulin , Human Growth Hormone/metabolism , Glucose , Islet Amyloid Polypeptide/metabolism , Phenotype , Insulin-Like Growth Factor I/metabolism
14.
Int J Hematol ; 117(1): 78-89, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36280659

ABSTRACT

Disease-risk stratification and development of intensified chemotherapy protocols have substantially improved the outcome of acute lymphoblastic leukemia (ALL). However, outcomes of relapsed or refractory cases remain poor. Previous studies have discussed the oncogenic role of enhancer of zeste homolog 1 and 2 (EZH1/2), and the efficacy of dual inhibition of EZH1/2 as a treatment for hematological malignancy. Here, we investigated whether an EZH1/2 dual inhibitor, DS-3201 (valemetostat), has antitumor effects on B cell ALL (B-ALL). DS-3201 inhibited growth of B-ALL cell lines more significantly and strongly than the EZH2-specific inhibitor EPZ-6438, and induced cell cycle arrest and apoptosis in vitro. RNA-seq analysis to determine the effect of DS-3201 on cell cycle arrest-related genes expressed by B-ALL cell lines showed that DS-3201 upregulated CDKN1C and TP53INP1. CRIPSR/Cas9 knockout confirmed that CDKN1C and TP53INP1 are direct targets of EZH1/2 and are responsible for the antitumor effects of DS-3201 against B-ALL. Furthermore, a patient-derived xenograft (PDX) mouse model showed that DS-3201 inhibited the growth of B-ALL harboring MLL-AF4 significantly. Thus, DS-3201 provides another option for treatment of B-ALL.


Subject(s)
Burkitt Lymphoma , Lymphoma, B-Cell , Precursor Cell Lymphoblastic Leukemia-Lymphoma , Humans , Mice , Animals , Polycomb Repressive Complex 2 , Up-Regulation , Enhancer of Zeste Homolog 2 Protein , Enzyme Inhibitors/pharmacology , Cell Cycle Checkpoints/genetics , Precursor Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , Precursor Cell Lymphoblastic Leukemia-Lymphoma/genetics , Cyclin-Dependent Kinase Inhibitor p57/genetics , Cyclin-Dependent Kinase Inhibitor p57/metabolism , Carrier Proteins/genetics , Heat-Shock Proteins/genetics , Heat-Shock Proteins/metabolism
15.
Am J Med Genet A ; 191(2): 348-356, 2023 02.
Article in English | MEDLINE | ID: mdl-36322462

ABSTRACT

Beckwith-Wiedemann Spectrum (BWSp) is an overgrowth and cancer predisposition disorder characterized by a wide spectrum of phenotypic manifestations including macroglossia, abdominal wall defects, neonatal hypoglycemia, and predisposition to embryonal tumors. In 1981, Best and Hoekstra reported four patients with BWSp in a single family which suggested autosomal dominant inheritance, but standard clinical testing for BWSp was not available during this time. Meticulous phenotyping of this family has occurred over the past 40 years of follow-up with additional family members being identified and samples collected for genetic testing. Genetic testing revealed a pathogenic mutation in CDKN1C, consistent with the most common cause of familial BWSp. CDKN1C mutations account for just 5% of sporadic cases of BWSp. Here, we report the variable presentation of BWSp across the individuals affected by the CDKN1C mutation and other extended family members spanning multiple generations, all examined by the same physician. Additional phenotypes thought to be atypical in patients with BWSp were reported which included cardiac abnormalities. The incidence of tumors was documented in extended family members and included rhabdomyosarcoma, astrocytoma, and thyroid carcinoma, which have previously been reported in patients with BWSp. These observations suggest that in addition to the inheritance of the CDKN1C variant, there are modifying factors in this family driving the phenotypic spectrum observed. Alternative theories are suggested to explain the etiology of clinical variability including diffused mosaicism, anticipation, and the presence of additional variants tracking in the family. This study highlights the necessity of long-term follow-up in patients with BWSp and consideration of individual familial characteristics in the context of phenotype and/or (epi)genotype associations.


Subject(s)
Astrocytoma , Beckwith-Wiedemann Syndrome , Humans , Beckwith-Wiedemann Syndrome/diagnosis , Beckwith-Wiedemann Syndrome/genetics , Beckwith-Wiedemann Syndrome/pathology , Extended Family , Phenotype , Genotype , Astrocytoma/genetics , Genomic Imprinting
16.
Mol Oncol ; 16(20): 3587-3605, 2022 10.
Article in English | MEDLINE | ID: mdl-36037042

ABSTRACT

Rhabdomyosarcoma (RMS), a cancer characterized by features of skeletal muscle, is the most common soft-tissue sarcoma of childhood. With 5-year survival rates among high-risk groups at < 30%, new therapeutics are desperately needed. Previously, using a myoblast-based model of fusion-negative RMS (FN-RMS), we found that expression of the Hippo pathway effector transcriptional coactivator YAP1 (YAP1) permitted senescence bypass and subsequent transformation to malignant cells, mimicking FN-RMS. We also found that YAP1 engages in a positive feedback loop with Notch signaling to promote FN-RMS tumorigenesis. However, we could not identify an immediate downstream impact of this Hippo-Notch relationship. Here, we identify a HES1-YAP1-CDKN1C functional interaction, and show that knockdown of the Notch effector HES1 (Hes family BHLH transcription factor 1) impairs growth of multiple FN-RMS cell lines, with knockdown resulting in decreased YAP1 and increased CDKN1C expression. In silico mining of published proteomic and transcriptomic profiles of human RMS patient-derived xenografts revealed the same pattern of HES1-YAP1-CDKN1C expression. Treatment of FN-RMS cells in vitro with the recently described HES1 small-molecule inhibitor, JI130, limited FN-RMS cell growth. Inhibition of HES1 in vivo via conditional expression of a HES1-directed shRNA or JI130 dosing impaired FN-RMS tumor xenograft growth. Lastly, targeted transcriptomic profiling of FN-RMS xenografts in the context of HES1 suppression identified associations between HES1 and RAS-MAPK signaling. In summary, these in vitro and in vivo preclinical studies support the further investigation of HES1 as a therapeutic target in FN-RMS.


Subject(s)
Proteomics , Rhabdomyosarcoma , Humans , Basic Helix-Loop-Helix Transcription Factors/metabolism , Cell Line, Tumor , Cell Proliferation/genetics , Cyclin-Dependent Kinase Inhibitor p57/genetics , Cyclin-Dependent Kinase Inhibitor p57/metabolism , Gene Expression Regulation, Neoplastic , Rhabdomyosarcoma/genetics , Rhabdomyosarcoma/pathology , RNA, Small Interfering , Transcription Factor HES-1/genetics , Transcription Factor HES-1/metabolism , Animals
17.
Cancers (Basel) ; 14(15)2022 Aug 05.
Article in English | MEDLINE | ID: mdl-35954470

ABSTRACT

Beckwith-Wiedemann syndrome spectrum (BWSp) is an overgrowth disorder caused by imprinting or genetic alterations at the 11p15.5 locus. Clinical features include overgrowth, macroglossia, neonatal hypoglycaemia, omphalocele, hemihyperplasia, cleft palate, and increased neoplasm incidence. The most common molecular defect observed is hypomethylation at the imprinting centre 2 (KCNQ1OT1:TSS DMR) in the maternal allele, which accounts for approximately 60% of cases, although CDKN1C pathogenic variants have been reported in 5-10% of patients, with a higher incidence in familial cases. In this study, we examined the clinical and molecular features of all cases of BWSp identified by the Spanish Overgrowth Registry Initiative with pathogenic or likely pathogenic CDKN1C variants, ascertained by Sanger sequencing or next-generation sequencing, with special focus on the neoplasm incidence, given that there is scarce knowledge of this feature in CDKN1C-associated BWSp. In total, we evaluated 21 cases of BWSp with CDKN1C variants; 19 were classified as classical BWS according to the BWSp scoring classification by Brioude et al. One of our patients developed a mediastinal ganglioneuroma. Our study adds evidence that tumour development in patients with BWSp and CDKN1C variants is infrequent, but it is extremely relevant to the patient's follow-up and supports the high heterogeneity of BWSp clinical features associated with CDKN1C variants.

18.
Stem Cell Reports ; 17(8): 1788-1798, 2022 08 09.
Article in English | MEDLINE | ID: mdl-35905741

ABSTRACT

To generate sufficient numbers of transplantable hematopoietic stem cells (HSCs) in vitro, a detailed understanding of how this process takes place in vivo is essential. The endothelial-to-hematopoietic transition (EHT), which culminates in the production of the first HSCs, is a highly complex process during which key regulators are switched on and off at precise moments, and that is embedded into a myriad of microenvironmental signals from surrounding cells and tissues. We have previously demonstrated an HSC-supportive function for GATA3 within the sympathetic nervous system and the sub-aortic mesenchyme, but show here that it also plays a cell-intrinsic role during the EHT. It is expressed in hemogenic endothelial cells and early HSC precursors, where its expression correlates with a more quiescent state. Importantly, endothelial-specific deletion of Gata3 shows that it is functionally required for these cells to mature into HSCs, placing GATA3 at the core of the EHT regulatory network.


Subject(s)
Hemangioblasts , Hematopoietic Stem Cells , Cell Differentiation/genetics , Endothelium , Gonads , Hematopoiesis/physiology , Hematopoietic Stem Cells/metabolism , Mesoderm , Mesonephros
19.
Psychopharmacology (Berl) ; 239(9): 2997-3008, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35881147

ABSTRACT

RATIONALE: MicroRNA (miRNA) control of post-transcription gene expression in the nucleus accumbens (NAc) has been implicated in methamphetamine (METH) dependence. Conditioned place preference (CPP) is a classical animal procedure that reflects the rewarding effects of addictive drugs. miR-222-3p has been reported to play a key role in various neurological diseases and is strongly associated with alcohol dependence. Nevertheless, the role of miR-222-3p in METH dependence remains unclear. OBJECTIVE: To explore the molecular mechanisms underlying the role of miR-222-3p in the NAc in METH-induced CPP. METHODS: miR-222-3p expression in the NAc of METH-induced CPP mice was detected by quantitative real-time (qPCR). Following adeno-associated virus (AAV)-mediated overexpression or knockdown of miR-222-3p in the NAc, mice were subjected to CPP to investigate the effects of miR-222-3p on METH-induced CPP. Target genes of mir-222-3p were predicted using bioinformatics analysis. Candidate target genes for METH-induced CPP were validated by qPCR. RESULTS: miR-222-3p expression in the NAc was decreased in CPP mice. Overexpression of miR-222-3p in the NAc blunted METH-induced CPP. Ppp3r1, Cdkn1c, Fmr1, and PPARGC1A were identified as target gene transcripts potentially mediating the effects of miR-222-3p on METH-induced CPP. CONCLUSION: Our results highlight miR-222-3p as a key epigenetic regulator in METH-induced CPP and suggest a potential role for miR-222-3p in the regulation of METH-induced reward-related changes in the brain.


Subject(s)
Amphetamine-Related Disorders , Central Nervous System Stimulants , Methamphetamine , MicroRNAs , Amphetamine-Related Disorders/metabolism , Animals , Central Nervous System Stimulants/metabolism , Central Nervous System Stimulants/pharmacology , Fragile X Mental Retardation Protein , Methamphetamine/metabolism , Methamphetamine/pharmacology , Mice , MicroRNAs/genetics , MicroRNAs/metabolism , Nucleus Accumbens
20.
Comput Struct Biotechnol J ; 20: 2759-2777, 2022.
Article in English | MEDLINE | ID: mdl-35685361

ABSTRACT

Tick-borne encephalitis virus (TBEV), the most medically relevant tick-transmitted flavivirus in Eurasia, targets the host central nervous system and frequently causes severe encephalitis. The severity of TBEV-induced neuropathogenesis is highly cell-type specific and the exact mechanism responsible for such differences has not been fully described yet. Thus, we performed a comprehensive analysis of alterations in host poly-(A)/miRNA/lncRNA expression upon TBEV infection in vitro in human primary neurons (high cytopathic effect) and astrocytes (low cytopathic effect). Infection with severe but not mild TBEV strain resulted in a high neuronal death rate. In comparison, infection with either of TBEV strains in human astrocytes did not. Differential expression and splicing analyses with an in silico prediction of miRNA/mRNA/lncRNA/vd-sRNA networks found significant changes in inflammatory and immune response pathways, nervous system development and regulation of mitosis in TBEV Hypr-infected neurons. Candidate mechanisms responsible for the aforementioned phenomena include specific regulation of host mRNA levels via differentially expressed miRNAs/lncRNAs or vd-sRNAs mimicking endogenous miRNAs and virus-driven modulation of host pre-mRNA splicing. We suggest that these factors are responsible for the observed differences in the virulence manifestation of both TBEV strains in different cell lines. This work brings the first complex overview of alterations in the transcriptome of human astrocytes and neurons during the infection by two TBEV strains of different virulence. The resulting data could serve as a starting point for further studies dealing with the mechanism of TBEV-host interactions and the related processes of TBEV pathogenesis.

SELECTION OF CITATIONS
SEARCH DETAIL
...