Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 741
Filter
1.
Methods Mol Biol ; 2780: 91-106, 2024.
Article in English | MEDLINE | ID: mdl-38987465

ABSTRACT

Concerted interactions between all the cell components form the basis of biological processes. Protein-protein interactions (PPIs) constitute a tremendous part of this interaction network. Deeper insight into PPIs can help us better understand numerous diseases and lead to the development of new diagnostic and therapeutic strategies. PPI interfaces, until recently, were considered undruggable. However, it is now believed that the interfaces contain "hot spots," which could be targeted by small molecules. Such a strategy would require high-quality structural data of PPIs, which are difficult to obtain experimentally. Therefore, in silico modeling can complement or be an alternative to in vitro approaches. There are several computational methods for analyzing the structural data of the binding partners and modeling of the protein-protein dimer/oligomer structure. The major problem with in silico structure prediction of protein assemblies is obtaining sufficient sampling of protein dynamics. One of the methods that can take protein flexibility and the effects of the environment into account is Molecular Dynamics (MD). While sampling of the whole protein-protein association process with plain MD would be computationally expensive, there are several strategies to harness the method to PPI studies while maintaining reasonable use of resources. This chapter reviews known applications of MD in the PPI investigation workflows.


Subject(s)
Molecular Docking Simulation , Molecular Dynamics Simulation , Protein Binding , Proteins , Molecular Docking Simulation/methods , Proteins/chemistry , Proteins/metabolism , Protein Interaction Mapping/methods , Protein Conformation , Humans , Software , Computational Biology/methods
3.
Front Genet ; 15: 1355368, 2024.
Article in English | MEDLINE | ID: mdl-38957808

ABSTRACT

Drosophila melanogaster has been at the forefront of genetic studies and biochemical modeling for over a century. Yet, the functions of many genes are still unknown, mainly because no phenotypic data are available. Herein, we present the first evidence data regarding the particular molecular and other quantifiable phenotypes, such as viability and anatomical anomalies, induced by a novel P{lacW} insertional mutant allele of the CG18135 gene. So far, the CG18135 functions have only been theorized based on electronic annotation and presumptive associations inferred upon high-throughput proteomics or RNA sequencing experiments. The descendants of individuals harboring the CG18135 P{lacW}CG18135 allele were scored in order to assess mutant embryonic, larval, and pupal viability versus Canton Special (CantonS). Our results revealed that the homozygous CG18135 P{lacW}CG18135 /CG18135 P{lacW}CG18135 genotype determines significant lethality both at the inception of the larval stage and during pupal development. The very few imago escapers that either breach or fully exit the puparium exhibit specific eye depigmentation, wing abnormal unfolding, strong locomotor impairment with apparent spasmodic leg movements, and their maximum lifespan is shorter than 2 days. Using the quantitative real-time PCR (qRT-PCR) method, we found that CG18135 is upregulated in male flies, but an unexpected gene upregulation was also detected in heterozygous mutants compared to wild-type flies, probably because of regulatory perturbations induced by the P{lacW} transposon. Our work provides the first phenotypic evidence for the essential role of CG18135, a scenario in accordance with the putative role of this gene in carbohydrate-binding processes.

4.
ACS Appl Mater Interfaces ; 16(25): 32633-32648, 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38864608

ABSTRACT

The lack of a comprehensive force field and understanding at the mesoscale for hydrated calcium silicate (CSH)/polyvinyl alcohol (PVA) fiber has hindered the upscaling and bridging of nanoscale to macroscale phenomena. In this study, we propose a coarse-grained (CG) force field that incorporates bond-breaking operations to endow fiber reactivity, abrasion, and fracture properties. By employing a cubic lattice modeling, we effectively address the challenges associated with semicrystalline relaxation of fibers. For the first time, quasi-reaction CG simulation successfully replicates slip-hardening behaviors and surface abrasion. We demonstrate that abrasion improves interface load transfer and triggers slip-hardening by redistributing stress. Additionally, the influences of single and coupled factors, such as nonbonding interactions and surface roughness, are investigated. Mesoscale understanding provides insights for enabling precise control of load transfer paths and fabrication of interface damage-predictable materials.

5.
Leuk Lymphoma ; : 1-16, 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38871487

ABSTRACT

Despite the development of several Fms-like tyrosine kinase 3 (FLT3) inhibitors that have improved outcomes in patients with FLT3-mutant acute myeloid leukemia (AML), drug resistance is frequently observed, which may be associated with the activation of additional pro-survival pathways, such as those regulated by BTK, aurora kinases (AuroK), and potentially others, in addition to acquired tyrosine kinase domain (TKD) mutations of FLT3 gene. FLT3 may not always be a driver mutation. We evaluated the anti-leukemia efficacy of the novel multi-kinase inhibitor CG-806, which targets FLT3 and other kinases, to circumvent drug resistance and target FLT3 wild-type (WT) cells. The anti-leukemia activity of CG-806 was investigated by measuring apoptosis induction and analyzing the cell cycle using flow cytometry in vitro. CG-806 demonstrated superior anti-leukemia efficacy compared to commercially available FLT3 inhibitors, both in vitro and in vivo, regardless of FLT3 mutational status. The mechanism of action of CG-806 may involve its broad inhibitory profile against FLT3, BTK, and AuroK. In FLT3 mutant cells, CG-806 induced G1 phase blockage, whereas in FLT3 WT cells, it resulted in G2/M phase arrest. Targeting FLT3 and Bcl-2 and/or Mcl-1 simultaneously results in a synergistic pro-apoptotic effect in FLT3 mutant leukemia cells. The results of this study suggest that CG-806 is a promising multi-kinase inhibitor with anti-leukemic efficacy regardless of FLT3 mutational status. A phase 1 clinical trial of CG-806 for the treatment of AML has been initiated (NCT04477291).Key pointsThe multi-kinase inhibitor CG-806 exerts superior anti-leukemic activity in AML, regardless of its FLT3 status.CG-806 triggered G1 arrest in FLT3 mutated cells and G2/M arrest in FLT3 WT cells through the suppression of FLT3/BTK and aurora kinases.Concomitantly targeting FLT3 and Bcl-2 and/or Mcl-1 exerted synergistic pro-apoptotic effects on both FLT3 WT and mutated AML cells.

6.
Clin Microbiol Rev ; : e0017523, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38856686

ABSTRACT

SUMMARYStreptococcus dysgalactiae subsp. equisimilis (SDSE) is an increasingly recognized cause of disease in humans. Disease manifestations range from non-invasive superficial skin and soft tissue infections to life-threatening streptococcal toxic shock syndrome and necrotizing fasciitis. Invasive disease is usually associated with co-morbidities, immunosuppression, and advancing age. The crude incidence of invasive disease approaches that of the closely related pathogen, Streptococcus pyogenes. Genomic epidemiology using whole-genome sequencing has revealed important insights into global SDSE population dynamics including emerging lineages and spread of anti-microbial resistance. It has also complemented observations of overlapping pathobiology between SDSE and S. pyogenes, including shared virulence factors and mobile gene content, potentially underlying shared pathogen phenotypes. This review provides an overview of the clinical and genomic epidemiology, disease manifestations, treatment, and virulence determinants of human infections with SDSE with a particular focus on its overlap with S. pyogenes. In doing so, we highlight the importance of understanding the overlap of SDSE and S. pyogenes to inform surveillance and disease control strategies.

7.
Fly (Austin) ; 18(1): 2368336, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38884422

ABSTRACT

The Drosophila melanogaster brain is a complex organ with various cell types, orchestrating the development, physiology, and behaviors of the fly. While each cell type in Drosophila brain is known to express a unique gene set, their complete genetic profile is still unknown. Advances in the RNA sequencing techniques at single-cell resolution facilitate identifying novel cell type markers and/or re-examining the specificity of the available ones. In this study, exploiting a single-cell RNA sequencing data of Drosophila optic lobe, we categorized the cells based on their expression pattern for known markers, then the genes with enriched expression in astrocytes were identified. CG11000 was identified as a gene with a comparable expression profile to the Eaat1 gene, an astrocyte marker, in every individual cell inside the Drosophila optic lobe and midbrain, as well as in the entire Drosophila brain throughout its development. Consistent with our bioinformatics data, immunostaining of the brains dissected from transgenic adult flies showed co-expression of CG11000 with Eaat1 in a set of single cells corresponding to the astrocytes in the Drosophila brain. Physiologically, inhibiting CG11000 through RNA interference disrupted the normal development of male D. melanogaster, while having no impact on females. Expression suppression of CG11000 in adult flies led to decreased locomotion activity and also shortened lifespan specifically in astrocytes, indicating the gene's significance in astrocytes. We designated this gene as 'deathstar' due to its crucial role in maintaining the star-like shape of glial cells, astrocytes, throughout their development into adult stage.


Subject(s)
Astrocytes , Drosophila Proteins , Drosophila melanogaster , Locomotion , Longevity , Animals , Drosophila melanogaster/genetics , Drosophila melanogaster/metabolism , Drosophila melanogaster/growth & development , Drosophila melanogaster/physiology , Astrocytes/metabolism , Astrocytes/cytology , Drosophila Proteins/metabolism , Drosophila Proteins/genetics , Longevity/genetics , Excitatory Amino Acid Transporter 1/metabolism , Excitatory Amino Acid Transporter 1/genetics , Male , Female , Brain/metabolism , Brain/cytology , Brain/growth & development
8.
Forensic Sci Int ; 361: 112073, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38843764

ABSTRACT

In vehicular accident reconstruction, a number of parameters need to be estimated, as commonly no specific measurement data or convenient measurement methods are available. One of these parameters is the position of a car's centre of gravity. Depending on the impact configuration, the centre of gravity may have a significant influence on the reconstruction result. A number of regression models and rules of thumb have already been developed in the past to calculate the position of the centre of gravity. The further automotive vehicle development in recent years has led to different vehicle architectures with larger masses. This study therefore deals with developing and testing a new regression model for vehicles, distinguishing between conventional and electric drives. That is based on the analysis of 147 rollover stability measurements of road vehicles from the years 2016-2022. The model developed from these tests for the centre of gravity height shows a good fit with the measurement data and only requires knowledge of the roof height.

9.
Dev Biol ; 512: 13-25, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38703942

ABSTRACT

Drosophila melanogaster is an ideal model organism for investigating spermatogenesis due to its powerful genetics, conserved genes and visible morphology of germ cells during sperm production. Our previous work revealed that ocnus (ocn) knockdown resulted in male sterility, and CG9920 was identified as a significantly downregulated protein in fly abdomen after ocn knockdown, suggesting a role of CG9920 in male reproduction. In this study, we found that CG9920 was highly expressed in fly testes. CG9920 knockdown in fly testes caused male infertility with no mature sperms in seminal vesicles. Immunofluorescence staining showed that depletion of CG9920 resulted in scattered spermatid nuclear bundles, fewer elongation cones that did not migrate to the anterior region of the testis, and almost no individualization complexes. Transmission electron microscopy revealed that CG9920 knockdown severely disrupted mitochondrial morphogenesis during spermatogenesis. Notably, we found that CG9920 might not directly interact with Ocn, but rather was inhibited by STAT92E, which itself was indirectly affected by Ocn. We propose a possible novel pathway essential for spermatogenesis in D. melanogaster, whereby Ocn indirectly induces CG9920 expression, potentially counteracting its inhibition by the JAK-STAT signaling pathway.


Subject(s)
Drosophila Proteins , Drosophila melanogaster , Mitochondria , Spermatogenesis , Testis , Animals , Spermatogenesis/genetics , Spermatogenesis/physiology , Male , Drosophila melanogaster/metabolism , Drosophila Proteins/metabolism , Drosophila Proteins/genetics , Mitochondria/metabolism , Testis/metabolism , Morphogenesis/genetics , Signal Transduction , Infertility, Male/genetics , Infertility, Male/metabolism , Gene Knockdown Techniques , STAT Transcription Factors/metabolism , Spermatids/metabolism
10.
Plants (Basel) ; 13(9)2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38732386

ABSTRACT

Nicosulfuron, an acetolactate synthase (ALS) inhibitor herbicide, is a broad-spectrum and highly effective post-emergence herbicide. Glycosyltransferases (GTs) are widely found in organisms and transfer sugar molecules from donors to acceptors to form glycosides or sugar esters, thereby altering the physicochemical properties of the acceptor molecule, such as participating in detoxification. In this study, nine glycosyltransferases in group D of the apple glycosyltransferase family I were predicted to possibly be involved in the detoxification metabolism of ALS-inhibiting herbicides based on gene chip data published online. In order to confirm this, we analysed whether the expression of the nine glycosyltransferase genes in group D was induced by the previously reported ALS-inhibiting herbicides by real-time PCR (polymerase chain reaction). It was found that the ALS-inhibiting herbicide nicosulfuron significantly increased the expression of the MdUGT73CG22 gene in group D. Further investigation of the mechanism of action revealed that the apple glycosyltransferase MdUGT73CG22 glycosylated and modified nicosulfuron both in vivo and ex vivo to form nicosulfuron glycosides, which were involved in detoxification metabolism. In conclusion, a new glycosyltransferase, MdUGT73CG22, was identified for the first time in this study, which can glycosylate modifications of the ALS-inhibiting herbicide nicosulfuron and may be involved in the detoxification process in plants, which can help to further improve the knowledge of the non-targeted mechanism of herbicides.

11.
Bioinformation ; 20(3): 229-233, 2024.
Article in English | MEDLINE | ID: mdl-38711996

ABSTRACT

Measurement of renal function is required for diagnosis and stratification of kidney disease. GFR is considered as the best overall measure of kidney function for diagnosis and treatment of patients with CKD. Measuring GFR is time consuming and hence eGFR is calculated using equations with endogenous markers like SCr. Therefore, it is of interest to examine the accuracy of creatinine based estimates (CrCl and CG formula) of GFR among patients. Thus, 60 in-patients (30 men and 30 women) at the GVP hospital and 40 controls were enrolled in the study. SCr and 24 hrs urine creatinine are estimated using blood sample and same day 24-hr urine collection. SCr is estimated using the Kinetic Jaffe's method in Auto analyzer for serum and urine. eGFR is calculated using the CG formula for the SCr value. We evaluated the correlation between measured CrCl derived from 24-hr urine collection and calculated/predicted CrCl using the CG equations. A positive correlation was observed between measured GFR and e-GFR in case and control groups.

12.
Transfus Apher Sci ; 63(4): 103942, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38815499

ABSTRACT

Blood transfusion in critically ill individuals such as sepsis was associated with higher morbidity and mortality. During storage, various bioactive substances accumulated, may exacerbate the initial immunosuppressive reaction in severely ill patients. The objective of this study is to explore how resin adsorption impacts the accumulation of cytokines and the presence of extracellular microvesicles (EVs) in whole blood. Through comparative analysis and screening, amberchrom CG 300 C was chosen to assess the adsorption efficiency and evaluate the quality of whole blood after adsorption. Subsequently, the supernatants from both the unadsorpted (UA) and adsorpted (A) groups were co-cultured with peripheral blood mononuclear cells (PBMCs) to assess their effects on cellular growth and cytokine concentrations. The findings of our study revealed that resin adsorption effectively eradicated most bioactive components in conserved blood, including IL-8, TGF-ß, sCD40L, sFasL, without affecting the quality of the blood. Furthermore, scanning electron microscopy (SEM) revealed a reduction in extracellular microvesicles following adsorption. Compared to UA, A 's supernatant markedly enhanced PBMC growth (p < 0.01). Additionally, the A's supernatant markedly diminished the emission of pro-inflammatory cytokines, like IL-6. The research revealed that adsorbing resin effectively reduced bioactive substances from preserved whole blood, and did not impact red blood cell quality, proving to be a reliable method for extracting bioactive substances from storage blood. The results could pave the way for creating innovative blood bags and hold clinical significance in lowering the frequency of TRIM among patients who have undergone transfusions.

13.
Mol Ther ; 32(6): 1917-1933, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38637990

ABSTRACT

Cancer immunotherapy has greatly improved the prognosis of tumor-bearing patients. Nevertheless, cancer patients exhibit low response rates to current immunotherapy drugs, such as PD1 and PDL1 antibodies. Cyclic dinucleotide analogs are a promising class of immunotherapeutic agents. In this study, in situ autologous tumor vaccines, composed of bis-2'-F-cGSASMP phosphonothioate isomers (FGA-di-pS-2 or FGA-di-pS-4) and cytidinyl/cationic lipids (Mix), were constructed. Intravenous and intratumoral injection of FGA-di-pS-2/Mix or FGA-di-pS-4/Mix enhanced the immunogenic cell death of tumor cells in vivo, leading to the exposure and presentation of whole tumor antigens, inhibiting tumor growth in both LLC and EO771 tumor in situ murine models and increasing their survival rates to 50% and 23%, respectively. Furthermore, the tumor-bearing mice after treatment showed potent immune memory efficacy and exhibited 100% protection against tumor rechallenge. Intravenous administration of FGA-di-pS-2/Mix potently promoted DC maturation, M1 macrophage polarization and CD8+ T cell activation and decreased the proportion of Treg cells in the tumor microenvironment. Notably, two doses of ICD-debris (generated by FGA-di-pS-2 or 4/Mix-treated LLC cells) protected 100% of mice from tumor growth. These tumor vaccines showed promising results and may serve as personalized cancer vaccinations in the future.


Subject(s)
Cancer Vaccines , Immunotherapy , Animals , Mice , Cancer Vaccines/immunology , Cancer Vaccines/administration & dosage , Immunotherapy/methods , Cell Line, Tumor , Humans , Tumor Microenvironment/drug effects , Tumor Microenvironment/immunology , CD8-Positive T-Lymphocytes/immunology , Disease Models, Animal , Neoplasms/immunology , Neoplasms/drug therapy , Neoplasms/therapy , Dendritic Cells/immunology , Female , Antigens, Neoplasm/immunology
14.
Genes (Basel) ; 15(4)2024 04 04.
Article in English | MEDLINE | ID: mdl-38674389

ABSTRACT

Metabolic dysfunction-associated steatotic liver disease (MASLD), formerly known as non-alcoholic fatty liver disease (NAFLD), is a frequent clinical condition globally. Single nucleotide polymorphisms (SNPs) associated with NAFLD have been proposed in the literature and based on bioinformatic screening. The association between NAFLD and genetic variants in Egyptians is still unclear. Hence, we sought to investigate the association of some genetic variants with NAFLD in Egyptians. Egyptians have been categorized into either the MASLD group (n = 205) or the healthy control group (n = 187). The severity of hepatic steatosis and liver fibrosis was assessed by a Fibroscan device. TaqMan-based genotyping assays were employed to explore the association of selected SNPs with MASLD. PNPLA3 rs738409 C>G variant is associated with the presence of MASLD with liver fibrosis, the severity of both hepatic steatosis and liver fibrosis, increased systolic and diastolic blood pressure and increased alanine aminotransferase (all p < 0.05), while the TM6SF2 rs58542926 C>T, HSD17B13 rs9992651 G>A, and GCKR rs1260326 T>C variants were not (all p > 0.05). The TM6SF2 rs58542926 T allele is associated with increased fasting blood glucose and a decreased waist circumference. The GCKR rs1260326 C allele is associated with decreased aspartate transaminase and diastolic blood pressure (all p < 0.05). Only after adjusting for the risk factors (age, sex, BMI, WC, HDL, TG, diabetes mellitus, and hypertension) F2 liver fibrosis score is negatively correlated with the HSD17B13 rs9992651 GA genotype. This study offers evidence for the association of the PNPLA3 rs738409 C>G variant with MASLD among Egyptians and for the association of the PNPLA3 rs738409 G allele, the TM6SF2 rs58542926 T allele, and the GCKR rs1260326 C allele with some parameters of cardiometabolic criteria.


Subject(s)
17-Hydroxysteroid Dehydrogenases , Acyltransferases , Adaptor Proteins, Signal Transducing , Lipase , Membrane Proteins , Non-alcoholic Fatty Liver Disease , Phospholipases A2, Calcium-Independent , Polymorphism, Single Nucleotide , Humans , Membrane Proteins/genetics , Lipase/genetics , Non-alcoholic Fatty Liver Disease/genetics , Non-alcoholic Fatty Liver Disease/pathology , Egypt , Male , Female , Middle Aged , Adaptor Proteins, Signal Transducing/genetics , Adult , 17-Hydroxysteroid Dehydrogenases/genetics , Genetic Predisposition to Disease , Severity of Illness Index , Liver Cirrhosis/genetics , Liver Cirrhosis/pathology , Case-Control Studies , Genotype
15.
Biochem Genet ; 2024 Apr 11.
Article in English | MEDLINE | ID: mdl-38602596

ABSTRACT

Metastasis is a major cause of death in lung cancer. The aim of this study is to analyze the role and mechanism of PI3K catalytic subunit gamma (PIK3CG, also known as p110γ) in lung cancer cell migration and metastasis. Knockdown (KD) and overexpression (OE) of PIK3CG expression in lung cancer cell lines A549 and H1299 in vitro cultured was achieved. Two PIK3CG-specific inhibitors, Eganelisib and CAY10505, were used to treat A549 and H1299 cells. An experimental lung metastasis mouse model was constructed using tail vein injection of LLC cells. Finally, a co-culture system was established using Transwell chambers. Compared with the NC group, the number of cells that completed migration and the expression levels of matrix metalloproteinases (MMPs) were significantly reduced in the KD group and Eganelisib and CAY10505 treatment groups, while the number of cells that migrated successfully and the expression levels of MMPs were significantly increased in the OE group. Lung tissues of mice injected with PIK3CG-stabilized overexpressed LLC cells showed more pronounced lung cancer growth, lung metastatic nodules, neutrophil infiltration and MMPs expression. Co-culture with neutrophils, soluble extracts of neutrophils and cathepsin G all promoted the migration of lung cancer cells. PIK3CG overexpression in tumor cells significantly promoted the migration and metastasis of lung cancer cell.

16.
Insect Mol Biol ; 2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38668923

ABSTRACT

DNA methylation in insects is generally low in abundance, and its role is not well understood. It is often localised in protein coding regions and associated with the expression of 'housekeeping' genes. Few studies have explored DNA methylation dynamics during lifecycle stage transitions in holometabolous (metamorphosing) insects. Using targeted mass spectrometry, we have found a significant difference in global DNA methylation levels between larvae, pupae and adults of Helicoverpa armigera (Lepidoptera: Noctuidae) Hübner, a polyphagous pest of agricultural importance. Whole-genome bisulfite sequencing confirmed these observations and pointed to non-CG context being the primary explanation for the difference observed between pupa and adult. Non-CG methylation was enriched in genes specific to various signalling pathways (Hippo signalling, Hedgehog signalling and mitogen-activated protein kinase (MAPK) signalling) and ATP-dependent chromatin remodelling. Understanding the function of this epigenetic mark could be a target in future studies focusing on integrated pest management.

17.
Cell Mol Life Sci ; 81(1): 190, 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38649521

ABSTRACT

The high-protein diet (HPD) has emerged as a potent dietary approach to curb obesity. Peroxisome, a highly malleable organelle, adapts to nutritional changes to maintain homeostasis by remodeling its structure, composition, and quantity. However, the impact of HPD on peroxisomes and the underlying mechanism remains elusive. Using Drosophila melanogaster as a model system, we discovered that HPD specifically increases peroxisome levels within the adipose tissues. This HPD-induced peroxisome elevation is attributed to cysteine and methionine by triggering the expression of CG33474, a fly homolog of mammalian PEX11G. Both the overexpression of Drosophila CG33474 and human PEX11G result in increased peroxisome size. In addition, cysteine and methionine diets both reduce lipid contents, a process that depends on the presence of CG33474. Furthermore, CG33474 stimulates the breakdown of neutral lipids in a cell-autonomous manner. Moreover, the expression of CG33474 triggered by cysteine and methionine requires TOR signaling. Finally, we found that CG33474 promotes inter-organelle contacts between peroxisomes and lipid droplets (LDs), which might be a potential mechanism for CG33474-induced fat loss. In summary, our findings demonstrate that CG33474/PEX11G may serve as an essential molecular bridge linking HPD to peroxisome dynamics and lipid metabolism.


Subject(s)
Adipose Tissue , Cysteine , Drosophila Proteins , Drosophila melanogaster , Methionine , Peroxisomes , Animals , Methionine/metabolism , Peroxisomes/metabolism , Drosophila Proteins/metabolism , Drosophila Proteins/genetics , Drosophila melanogaster/metabolism , Drosophila melanogaster/genetics , Cysteine/metabolism , Adipose Tissue/metabolism , Humans , Lipid Metabolism , Lipid Droplets/metabolism , Signal Transduction , Diet
18.
PeerJ ; 12: e16971, 2024.
Article in English | MEDLINE | ID: mdl-38495765

ABSTRACT

Stem cells are critical for replenishment of cells lost to death, damage or differentiation. Drosophila testes are a key model system for elucidating mechanisms regulating stem cell maintenance and differentiation. An intriguing gene identified through such studies is the transcription factor, chronologically inappropriate morphogenesis (Chinmo). Chinmo is a downstream effector of the Jak-STAT signaling pathway that acts in testis somatic stem cells to ensure maintenance of male stem cell fate and sexual identity. Defects in these processes can lead to infertility and the formation of germ cell tumors. While Chinmo's effect on testis stem cell behavior has been investigated in detail, there is still much to be learned about its structure, function, and interactions with other proteins. Using a two-hybrid screen, we find that Chinmo interacts with itself, the small ubiquitin-like modifier SUMO, the novel protein CG11180, and four other proteins (CG4318, Ova (ovaries absent), Taf3 (TBP-associated factor 3), and CG18269). Since both Chinmo and CG11180 contain sumoylation sites and SUMO-interacting motifs (SIMs), we analyzed their interaction in more detail. Using site-directed mutagenesis of a unique SIM in CG11180, we demonstrate that Chinmo's interaction with CG11180 is SUMO-dependent. Furthermore, to assess the functional relevance of both SUMO and CG11180, we performed RNAi-mediated knockdown of both proteins in somatic cells of the Drosophila testis. Using this approach, we find that CG11180 and SUMO are required in somatic cells of adult testes, and that reduction of either protein causes formation of germ cell tumors. Overall, our work suggests that SUMO may be involved in the interaction of Chinmo and CG11180 and that these genes are required in somatic cells of the adult Drosophila testis. Consistent with the CG11180 knockdown phenotype in male testes, and to underscore its connection to Chinmo, we propose the name Chigno (Childless Gambino) for CG11180.


Subject(s)
Drosophila Proteins , Neoplasms, Germ Cell and Embryonal , Animals , Male , Drosophila/genetics , Drosophila melanogaster/genetics , Drosophila Proteins/genetics , Neoplasms, Germ Cell and Embryonal/metabolism , Nerve Tissue Proteins/genetics , STAT Transcription Factors/genetics , Testis , SUMO-1 Protein
19.
Dev Psychobiol ; 66(2): e22456, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38388195

ABSTRACT

Reduced play experience over the juvenile period leads to adults with impoverished social skills and to anatomical and physiological aberrations of the neurons found in the medial prefrontal cortex (mPFC). Even rearing rats from high-playing strains with low-playing strains show these developmental consequences. In the present study, we evaluated whether low-playing rats benefit from being reared with higher playing peers. To test this, we reared male Fischer 344 rats (F344), typically thought to be a low-playing strain, with a Long-Evans (LE) peer, a relatively high-playing strain. As juveniles, F344 rats reared with LE rats experienced less play and lower quality play compared to those reared with another F344. As adults, the F344 rats reared with LE partners exhibited poorer social skills and the pyramidal neurons of their mPFC had larger dendritic arbors than F344 rats reared with same-strain peers. These findings show that being reared with a more playful partner does not improve developmental outcomes of F344 rats, rather the discordance in the play styles of F344 and LE rats leads to poorer outcomes.


Subject(s)
Neurons , Prefrontal Cortex , Rats , Animals , Male , Rats, Inbred F344 , Rats, Long-Evans , Prefrontal Cortex/physiology
20.
Environ Pollut ; 346: 123650, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38402932

ABSTRACT

Anaerobic microbial transformation is a key pathway in the natural attenuation of polychlorinated biphenyls (PCBs). Much less is known about the transformation behaviors induced by pure organohalide-respiring bacteria, especially kinetic isotope effects. Therefore, the kinetics, pathways, enantioselectivity, and carbon and chlorine isotope fractionation of PCBs transformation by Dehalococcoides mccartyi CG1 were comprehensively explored. The results indicated that the PCBs were mainly dechlorinated via removing their double-flanked meta-chlorine, with their first-order kinetic constants following the order of PCB132 > PCB174 > PCB85 > PCB183 > PCB138. However, PCBs occurred great loss of stoichiometric mass balance during microbial transformation, suggesting the generation of other non-dehalogenation products and/or stable intermediates. The preferential transformation of (-)-atropisomers and generation of (+)-atropisomers were observed during PCB132 and PCB174 biotransformation with the enantiomeric enrichment factors of -0.8609 ± 0.1077 and -0.4503 ± 0.1334 (first half incubation times)/-0.1888 ± 0.1354 (second half incubation times), respectively, whereas no enantioselectivity occurred during PCB183 biotransformation. More importantly, although there was no carbon and chlorine isotope fractionation occurring for studied substrates, the δ13C values of dechlorination products, including PCB47 (-28.15 ± 0.35‰ âˆ¼ -27.77 ± 0.20‰), PCB91 (-36.36 ± 0.09‰ âˆ¼ -34.71 ± 0.49‰), and PCB149 (-28.08 ± 0.26‰ âˆ¼ -26.83 ± 0.10‰), were all significantly different from those of their corresponding substrates (PCB85: -30.81 ± 0.02‰ âˆ¼ -30.22 ± 0.21‰, PCB132: -33.57 ± 0.15‰ âˆ¼ -33.13 ± 0.14‰, and PCB174: -26.30 ± 0.09‰ âˆ¼ -26.01 ± 0.07‰), which further supported the generation of other non-dehalogenation products and/or stable intermediates with enrichment or depletion of 13C. These findings provide deeper insights into the anaerobic microbial transformation behaviors of PCBs.


Subject(s)
Chloroflexi , Polychlorinated Biphenyls , Polychlorinated Biphenyls/metabolism , Chloroflexi/metabolism , Biodegradation, Environmental , Chlorine/metabolism , Anaerobiosis , Biotransformation , Carbon/metabolism , Isotopes/metabolism , Dehalococcoides
SELECTION OF CITATIONS
SEARCH DETAIL
...