Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
1.
J Clin Exp Hepatol ; 13(2): 203-217, 2023.
Article in English | MEDLINE | ID: mdl-36950498

ABSTRACT

Background/Aims: Global liquid chromatography mass spectrometry (LC-MS) profiling in a Thai population has previously identified a urinary metabolic signature in Opisthorchis viverrini-induced cholangiocarcinoma (CCA), primarily characterised by disturbance in acylcarnitine, bile acid, steroid, and purine metabolism. However, the detection of thousands of analytes by LC-MS in a biological sample in a single experiment potentially introduces false discovery errors. To verify these observed metabolic perturbations, a second validation dataset from the same population was profiled in a similar fashion. Methods: Reverse-phase ultra-performance liquid-chromatography mass spectrometry was utilised to acquire the global spectral profile of 98 spot urine samples (from 46 healthy volunteers and 52 CCA patients) recruited from Khon Kaen, northeast Thailand (the highest incidence of CCA globally). Results: Metabolites were differentially expressed in the urinary profiles from CCA patients. High urinary elimination of bile acids was affected by the presence of obstructive jaundice. The urine metabolome associated with non-jaundiced CCA patients showed a distinctive pattern, similar but not identical to published studies. A panel of 10 metabolites achieved a diagnostic accuracy of 93.4% and area under the curve value of 98.8% (CI = 96.3%-100%) for the presence of CCA. Conclusions: Global characterisation of the CCA urinary metabolome identified several metabolites of biological interest in this validation study. Analyses of the diagnostic utility of the discriminant metabolites showed excellent diagnostic potential. Further larger scale studies are required to confirm these findings internationally, particularly in comparison to sporadic CCA, not associated with liver fluke infestation.

2.
J Mass Spectrom Adv Clin Lab ; 28: 20-26, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36814695

ABSTRACT

ß-thalassemia is a quantitative hemoglobin (Hb) disorder resulting in reduced production of Hb A and increased levels of Hb A2. Diagnosis of ß-thalassemia can be problematic when combined with other structural Hb variants, so that the separation approaches in routine clinical centers are not sufficiently decisive to obtain accurate results. Here, we separate the intact Hb subunits by high-performance liquid chromatography, followed by top-down tandem mass spectrometry of intact subunits to distinguish Hb variants. Proton transfer reaction-parallel ion parking (PTR-PIP), in which a radical anion removes protons from multiply charged precursor ions and produces charge-reduced ions spanning a limited m/z range, was used to increase the signal-to-noise ratio of the subunits of interest. We demonstrate that the δ/ß ratio can act as a biomarker to identify ß-thalassemia in normal electrospray ionization MS1 and PTR-PIP MS1. The application of PTR-PIP significantly increases the sensitivity and specificity of the HPLC-MS method to identify δ/ß ratio as a thalassemia biomarker.

3.
J Mass Spectrom Adv Clin Lab ; 27: 7-17, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36568714

ABSTRACT

Introduction: Adherence to medication is an important determinant of outcomes in chronic diseases like heart failure. Drug assays provide objective adherence biomarkers. Dried blood spots (DBS) are appealing samples for drug assays due to less demanding transportation and storage requirements. Objectives: To analytically validate a LC-MS/MS method for the simultaneous quantification of carvedilol, enalaprilat, and perindoprilat in DBS and evaluate the feasibility of using the method as an adherence determining assay. To validate the assay further clinically by establishing correlation and agreement between plasma and DBS samples from a pharmacokinetic pilot study. Methods: The method was validated over a concentration range of 1.00-200 ng/mL according to FDA guidelines. Adherence tracking ability of the assay was evaluated using a pharmacokinetic pilot study. Correlation and agreement were evaluated through Deming regression and Bland-Altman analysis, respectively. Results: Accuracy, precision, selectivity, and sensitivity were proven with complete and reproducible extraction recovery at all concentrations tested. Stability of the analytes in the matrix and throughout sample processing was proven. The full range of concentrations of the pharmacokinetic pilot study could be quantified for enalaprilat, but not for carvedilol and perindoprilat. The difference between the observed and calculated plasma concentrations was less than 20 % of their mean for >67 % of samples for all analytes. Conclusions: The assay is suitable as a screening tool for carvedilol and perindoprilat, while suitable as an adherence determining assay for enalaprilat. Equivalence between observed and predicted plasma concentrations proves DBS and plasma concentrations can be used interchangeably.

4.
Food Chem X ; 12: 100162, 2021 Dec 30.
Article in English | MEDLINE | ID: mdl-34825171

ABSTRACT

Angelica dahurica is a famous functional food and herb. To guarantee quality of A. dahurica, a strategy "Q-markers targeted screening" was successfully developed by sufficient extraction of compounds and the targeted screening of qualitative and quantitative markers calculated through chemometric methods based fingerprints. Accelerated solvent extraction was selected due to its prominent advantages exhibiting the maximum extraction yields and varieties of compounds and especially excellent reproducibility (RSD < 1). After extraction, the fingerprints of A. dahuricae samples were established. For the preliminary herb authenticity, the targeted screening of 23 quantitative markers were performed by similarity analysis and hierarchical cluster analysis based on the fingerprints, which were identified by liquid chromatography tandem mass spectrometry (LC-MS). Subsequently, for further quality control, the targeted screening of nine quantitative markers were done by similarity analysis & linear discriminant analysis, which were determined by LC. Lastly, the strategy was successfully applied to quality assessment of A. dahurica samples.

5.
Acta Pharm Sin B ; 11(6): 1469-1492, 2021 Jun.
Article in English | MEDLINE | ID: mdl-34221863

ABSTRACT

Traditional Chinese medicine (TCM) has been an indispensable source of drugs for curing various human diseases. However, the inherent chemical diversity and complexity of TCM restricted the safety and efficacy of its usage. Over the past few decades, the combination of liquid chromatography with mass spectrometry has contributed greatly to the TCM qualitative analysis. And novel approaches have been continuously introduced to improve the analytical performance, including both the data acquisition methods to generate a large and informative dataset, and the data post-processing tools to extract the structure-related MS information. Furthermore, the fast-developing computer techniques and big data analytics have markedly enriched the data processing tools, bringing benefits of high efficiency and accuracy. To provide an up-to-date review of the latest techniques on the TCM qualitative analysis, multiple data-independent acquisition methods and data-dependent acquisition methods (precursor ion list, dynamic exclusion, mass tag, precursor ion scan, neutral loss scan, and multiple reaction monitoring) and post-processing techniques (mass defect filtering, diagnostic ion filtering, neutral loss filtering, mass spectral trees similarity filter, molecular networking, statistical analysis, database matching, etc.) were summarized and categorized. Applications of each technique and integrated analytical strategies were highlighted, discussion and future perspectives were proposed as well.

6.
Cell Chem Biol ; 28(10): 1528-1538.e4, 2021 10 21.
Article in English | MEDLINE | ID: mdl-34081921

ABSTRACT

Proteolysis-targeting chimeras (PROTACs) represent a new direction in small-molecule therapeutics whereby a heterobifunctional linker to a protein of interest (POI) induces its ubiquitination-based proteolysis by recruiting an E3 ligase. Here, we show that charge reduction, native mass spectrometry, and gas-phase activation methods combine for an in-depth analysis of a PROTAC-linked ternary complex. Electron capture dissociation (ECD) of the intact POI-PROTAC-VCB complex (a trimeric subunit of an E3 ubiquitin ligase) promotes POI dissociation. Collision-induced dissociation (CID) causes elimination of the nonperipheral PROTAC, producing an intact VCB-POI complex not seen in solution but consistent with PROTAC-induced protein-protein interactions. In addition, we used ion mobility spectrometry (IMS) and collisional activation to identify the source of this unexpected dissociation. Together, the evidence shows that this integrated approach can be used to screen for ternary complex formation and PROTAC-protein contacts and may report on PROTAC-induced protein-protein interactions, a characteristic correlated with PROTAC selectivity and efficacy.


Subject(s)
Cell Cycle Proteins/metabolism , Gases/chemistry , Ion Mobility Spectrometry/methods , Transcription Factors/metabolism , Ubiquitin-Protein Ligases/metabolism , Cell Cycle Proteins/chemistry , Protein Interaction Maps , Proteolysis , Transcription Factors/chemistry , Ubiquitin-Protein Ligases/chemistry
7.
Acta Pharmaceutica Sinica B ; (6): 1469-1492, 2021.
Article in English | WPRIM (Western Pacific) | ID: wpr-888815

ABSTRACT

Traditional Chinese medicine (TCM) has been an indispensable source of drugs for curing various human diseases. However, the inherent chemical diversity and complexity of TCM restricted the safety and efficacy of its usage. Over the past few decades, the combination of liquid chromatography with mass spectrometry has contributed greatly to the TCM qualitative analysis. And novel approaches have been continuously introduced to improve the analytical performance, including both the data acquisition methods to generate a large and informative dataset, and the data post-processing tools to extract the structure-related MS information. Furthermore, the fast-developing computer techniques and big data analytics have markedly enriched the data processing tools, bringing benefits of high efficiency and accuracy. To provide an up-to-date review of the latest techniques on the TCM qualitative analysis, multiple data-independent acquisition methods and data-dependent acquisition methods (precursor ion list, dynamic exclusion, mass tag, precursor ion scan, neutral loss scan, and multiple reaction monitoring) and post-processing techniques (mass defect filtering, diagnostic ion filtering, neutral loss filtering, mass spectral trees similarity filter, molecular networking, statistical analysis, database matching, etc.) were summarized and categorized. Applications of each technique and integrated analytical strategies were highlighted, discussion and future perspectives were proposed as well.

8.
J Clin Exp Hepatol ; 9(5): 597-606, 2019.
Article in English | MEDLINE | ID: mdl-31695250

ABSTRACT

Metabolic profiling, metabonomics and metabolomics are terms coined in the late 1990s as they emerged as the newest 'omics' technology at the time. This line of research enquiry uses spectroscopic analytical platforms, which are mainly nuclear magnetic resonance spectroscopy and mass spectrometry (MS), to acquire a snapshot of metabolites, the end products of a complex biological system. Metabolic profiling enables the detection, quantification and characterisation of metabolites in biofluids, cells and tissues. The source of these compounds can be of endogenous, microbial or exogenous origin, such as dietary or xenobiotic. This results in generating extensive, multivariate spectroscopic data that require specific statistical manipulation, typically performed using chemometric and pattern recognition techniques to reduce its dimensions, facilitate its biological interpretation and allow sample classification and biomarker discovery. Consequently, it is possible to study the dynamic metabolic changes in response to disease, intervention or environmental conditions. In this review, we describe the fundamentals of MS so that clinicians can be literate in the field and are able to interrogate the right scientific questions.

9.
Clin Mass Spectrom ; 14 Pt B: 106-114, 2019 Nov.
Article in English | MEDLINE | ID: mdl-34917767

ABSTRACT

BACKGROUND: Among Amish communities of North America, biallelic mutations of ST3GAL5 (c.694C > T) eliminate synthesis of GM3 and its derivative downstream a- and b-series gangliosides. Systemic ganglioside deficiency is associated with infantile onset psychomotor retardation, slow brain growth, intractable epilepsy, deafness, and cortical visual impairment. We developed a robust quantitative assay to simultaneously characterize glycan and ceramide moieties of plasma glycosphingolipids (GSLs) among ST3GAL5 c.694C > T homozygotes (n = 8), their heterozygous siblings (n = 24), and wild type control (n = 19) individuals. METHODS: Following extraction and saponification of total plasma lipids, GSLs were purified on a tC18 cartridge column, permethylated, and subjected to nanospray ionization mass spectrometry utilizing neutral loss scanning and data-dependent acquisition. Plasma GSLs were quantified against appropriate synthetic standards. RESULTS: Our method demonstrated linearity from 5 to 250 µl of plasma. Recovery of synthetic GSLs spiked into plasma was 99-104% with no matrix interference. Quantitative plasma GSL profiles discriminated among ST3GAL5 genotypes: GM3 and GD3 were undetectable in ST3GAL5 c.694C > T homozygotes, who had markedly elevated lactosylceramide (19.17 ±â€¯4.20 nmol/ml) relative to heterozygous siblings (9.62 ±â€¯2.46 nmol/ml) and wild type controls (6.55 ±â€¯2.16 nmol/ml). Children with systemic ganglioside deficiency had a distinctive shift in ceramide composition toward higher mass species. CONCLUSIONS: Our quantitative glycolipidomics method discriminates among ST3GAL5 c.694C > T genotypes, can reveal subtle structural heterogeneity, and represents a useful new strategy to diagnose and monitor GSL disorders in humans.

10.
Biosci Biotechnol Biochem ; 82(8): 1309-1315, 2018 Aug.
Article in English | MEDLINE | ID: mdl-29699437

ABSTRACT

To aid in the identification and quantification of biologically and agriculturally significant natural products, tandem mass spectrometry can provide accurate structural information with high selectivity and sensitivity. In this study, diagnostic fragmentation patterns of isoflavonoids were examined by liquid chromatography-ion trap-time of flight-mass spectrometry (LC-IT-TOF-MS). The fragmentation scheme for [M+H-2CO]+ ions derived from isoflavones and [M+H-B-ring-CO]+ ions derived from 5-hydroxyisoflavones, were investigated using different isotopically labeled isoflavones, specifically [1',2',3',4',5',6',2,3,4-13C9] and [2',3',5',6',2-D5] isoflavones. Specific isotopically labeled isoflavones were prepared through the biosynthetic incorporation of pharmacologically applied 13C- and D-labelled L-phenylalanine precursors in soybean plants following the application of insect elicitors. Using this approach, we empirically demonstrate that the [M+H-2CO]+ ion is generated by an intramolecular proton rearrangement during fragmentation. Furthermore, [M+H-B-ring-CO]+ ion is demonstrated to contain a C2H moiety derived from C-ring of 5-hydroxyisoflavones. A mechanistic understanding of characteristic isoflavone fragmentation patterns contributes to the efficacy and confidence in identifying related isoflavones by LC-MSn.


Subject(s)
Glycine max/metabolism , Isoflavones/chemistry , Isotopes/metabolism , Spectrometry, Mass, Electrospray Ionization/methods , Tandem Mass Spectrometry/methods , Animals , Chromatography, Liquid/methods , Insecta/physiology , Isoflavones/analysis , Isoflavones/standards , Phenylalanine/chemistry , Protons , Reference Standards , Glycine max/parasitology
11.
MAbs ; 7(4): 719-31, 2015.
Article in English | MEDLINE | ID: mdl-26030340

ABSTRACT

Non-enzymatic glycation is a challenging post-translational modification to characterize due to the structural heterogeneity it generates in proteins. Glycation has become increasingly recognized as an important product quality attribute to monitor, particularly for the biotechnology sector, which produces recombinant proteins under conditions that are amenable to protein glycation. The elucidation of sites of glycation can be problematic using conventional collision-induced dissociation (CID)-based mass spectrometry because of the predominance of neutral loss ions. A method to characterize glycation using an IgG1 monoclonal antibody (mAb) as a model is reported here. The sugars present on this mAb were derivatized using sodium borohydride chemistry to stabilize the linkage and identified using CID-based MS(2) mass spectrometry and spectral search engines. Quantification of specific glycation sites was then done using a targeted MS(1) based approach, which allowed the identification of a glycation hot spot in the heavy chain complementarity-determining region 3 of the mAb. This targeted approach provided a path forward to developing a structural understanding of the propensity of sites to become glycated on mAbs. Through structural analysis we propose a model in which the number and 3-dimensional distances of carboxylic acid amino acyl residues create a favorable environment for glycation to occur.


Subject(s)
Antibodies, Monoclonal, Murine-Derived/chemistry , Immunoglobulin G/chemistry , Protein Processing, Post-Translational , Antibodies, Monoclonal, Murine-Derived/metabolism , Glycosylation , Immunoglobulin G/metabolism , Mass Spectrometry
12.
FEBS Open Bio ; 4: 179-84, 2014.
Article in English | MEDLINE | ID: mdl-24649399

ABSTRACT

Matrix-assisted laser desorption/ionisation spiral orbit-type time-of-flight mass spectrometry (MALDI-SpiralTOF) can analyse lipid profiles and characterise lipid structure. Imaging mass spectrometry (IMS) also provides distribution maps of selected m/z values. Here, we investigated triacylglycerol (TG) structure and distribution using these technologies to estimate mouse fatty liver. The distribution and intensity of the most intense mass spectrum ion was indicated by IMS at m/z 881.7 (52:2). Analysis using MS/MS showed a structural change between liver TG and dietary TG. These findings suggest that MALDI-SpiralTOF is a powerful tool for clinical screening and estimating fatty liver.

13.
J Proteomics ; 89: 265-72, 2013 Aug 26.
Article in English | MEDLINE | ID: mdl-23707235

ABSTRACT

Soybean (Glycine max (L.) Merr. cv Jack) seed development was separated into nine defined stages (S1 to S9). Testa (seed coats) were removed from developing seeds at stages S2, 4, 6, 8, and 9, and subjected to shotgun proteomic profiling. For each stage "total proteins" were isolated from 150 mg dry weight of seed coat using a phenol-based method, then reduced, alkylated, and digested with trypsin. The tryptic peptides were separated using a C18-reversed phase matrix, then analyzed using an LTQ Orbitrap Mass Spectrometer. Spectra were searched against the Phytozome G. max DB using the Sorcerer 2 IDA Sequest-based search algorithm. Identities were verified using Scaffold 3. A total of 306 (S2), 328 (S4), 273 (S6), 193 (S8), and 272 (S9) proteins were identified in three out of three biological replicates, and sorted into 11 functional groups: Primary Metabolism, Secondary Metabolism, Cellular Structure, Stress Responses, Nucleic Acid metabolism, Protein Synthesis, Protein Folding, Protein Targeting, Hormones and Signaling, Seed Storage Proteins, and Proteins of Unknown Function. In selected instances, individual seed coat proteins were quantified by spectral counting. The number of proteins involved in intermediary metabolism, flavonoid biosynthesis, protein folding and degradation are discussed as they relate to seed coat function. BIOLOGICAL SIGNIFICANCE: Most previous analyses of seed coats have either targeted individual enzymes or used the results from high-throughput transcript profiling to infer biological function. Because there is seldom a linear correlation between transcript and protein levels, we have undertaken a shotgun proteomics-based description of soybean (G. max (L.) Merr. cv Jack) seed coats, as a function of development, in order to bridge this gap and to establish the baseline for a more comprehensive understanding of seed biology.


Subject(s)
Glycine max/metabolism , Peptides/metabolism , Pregnancy Proteins/metabolism , Proteomics , Seeds/metabolism , Peptides/chemistry , Pregnancy Proteins/chemistry , Seeds/chemistry , Seeds/embryology , Glycine max/chemistry , Glycine max/embryology
SELECTION OF CITATIONS
SEARCH DETAIL
...