Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 6.849
Filter
1.
J Neurooncol ; 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38963658

ABSTRACT

PURPOSE: Central nervous system (CNS) metastases from lung cancers and melanoma, significantly contribute to morbidity and mortality. Despite advances in local therapies, there is a need for effective systemic treatments. Pembrolizumab, a PD-1 inhibitor, has shown promise for some patients with untreated brain metastases from melanoma and non-small cell lung cancer (NSCLC). This study aims to analyze the response of brain metastasis to pembrolizumab and associate characteristics like size and location with treatment outcome. METHODS: This retrospective study used imaging data from a phase II trial of pembrolizumab in melanoma or NSCLC patients with untreated brain metastases. MRI evaluations were conducted at 2 month intervals, with each brain metastasis treated as a distinct tumor for response assessment, based on modified RECIST criteria (maximum 5 lesions, 5 mm target lesions). RESULTS: Of 130 individual target metastases (> 5 mm), in 65 patients with NSCLC (90 metastases) and Melanoma (40 metastases), 32 (24.6%) demonstrated complete resolution, 24 (18.5%) had partial resolution, 32 (24.6%) were SD and 42 (32.3%) demonstrated PD. Those smaller than 10 mm were more likely to show complete resolution (p = 0.0218), while those ≥ 10 mm were more likely to have PR. There was no significant association between size, number or location (supratentorial vs. infratentorial) and lesion progression. The median time to metastatic lesion progression in the brain was 5.7-7 weeks. CONCLUSION: Pembrolizumab is effective in brain metastases from NSCLC and melanoma, showing response (CR + PR) in 43% and progression (PD) in 32% of metastases. With the median time to CNS progression of 5.7-7 weeks, careful radiographic monitoring is essential to guide timely local treatment decisions.

2.
Front Cell Dev Biol ; 12: 1426395, 2024.
Article in English | MEDLINE | ID: mdl-38983786

ABSTRACT

Cerebrospinal fluid-contacting neurons (CSF-cNs) represent a distinct group of interneurons characterized by their prominent apical globular protrusions penetrating the spinal cord's central canal and their basal axons extending towards adjacent cells. Identified nearly a century back, the specific roles and attributes of CSF-cNs have just started to emerge due to the historical lack of definitive markers. Recent findings have confirmed that CSF-cNs expressing PKD2L1 possess attributes of neural stem cells, suggesting a critical function in the regeneration processes following spinal cord injuries. This review aims to elucidate the molecular markers of CSF-cNs as potential neural stem cells during spinal cord development and assess their roles post-spinal cord injury, with an emphasis on their potential therapeutic implications for spinal cord repair.

3.
Pathologica ; 116(3): 170-175, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38979591

ABSTRACT

Embryonal tumors with multilayered rosettes (ETMR) are highly aggressive and therapy-resistant pediatric central nervous system (CNS) tumors that have three histological patters: embryonal tumor with abundant neuropil and true rosettes, ependymoblastoma, and medulloepithelioma. We present a case of ETMR in an 18-year-old woman with DICER1 syndrome. This report confirms the important role of DNA-methylation analysis in the classification of CNS embryonal tumors and the importance of investigating somatic and germline DICER1 mutations in all CNS embryonal tumors.


Subject(s)
DEAD-box RNA Helicases , Neoplasms, Germ Cell and Embryonal , Ribonuclease III , Humans , Female , Ribonuclease III/genetics , DEAD-box RNA Helicases/genetics , Adolescent , Neoplasms, Germ Cell and Embryonal/genetics , Neoplasms, Germ Cell and Embryonal/pathology , DNA Methylation
4.
Cancers (Basel) ; 16(13)2024 Jun 26.
Article in English | MEDLINE | ID: mdl-39001407

ABSTRACT

GBM WHO CNS Grade 4 represents a major challenge for oncology due to its aggressive behavior. Conventional imaging has restrictions in detecting tumor recurrence. This prospective study aims to identify gene-based biomarkers in whole blood instead of isolating exosomes for the early detection of tumor recurrence. Blood samples (n = 33) were collected from seven GBM patients at time points before and after surgery as well as upon tumor recurrence. Four tumor tissue samples were assessed in parallel. Next-generation sequencing (NGS), including mRNA-seq and small RNA-seq, was used to analyze gene expression profiles in blood samples and tumor tissues. A novel filtering pipeline was invented to narrow down potential candidate genes. In total, between 6-93 mRNA and 1-19 small RNA candidates could be identified among the seven patients. The overlap of genes between the patients was minimal, indicating significant inter-individual variance among GBM patients. In summary, this prospective study supports the applicability of gene expression measurements in whole blood for the detection of tumor recurrence. It might provide an alternative to the challenging workflow of liquid biopsy after laborious exosome isolation from whole blood.

5.
Bull Exp Biol Med ; 177(1): 1-9, 2024 May.
Article in English | MEDLINE | ID: mdl-38954296

ABSTRACT

In sexually mature male Wistar rats with modeled post-traumatic stress disorder, personalized characteristics of neurobiological reactions in the population of predator-induced stress-resilient and stress-susceptible heparinized animals were determined. Characteristics of the systemic response of immune mechanisms, hypothalamic-pituitary-adrenal axis, behavioral manifestations, as well as basic properties of the CNS (excitation/inhibition) are presented. The study demonstrated encouraging positive results of the course administration of unfractionated heparin at a dose below the therapeutic and prophylactic doses. The inclusion of heparin drugs into the clinical practice for the treatment of post-traumatic stress disorder will not require large-scale clinical trials, because many effects of heparin as a nonspecific adaptogen are well studied. Moreover, these properties were confirmed at a higher technological level during the COVID-19 pandemic.


Subject(s)
Heparin , Hypothalamo-Hypophyseal System , Pituitary-Adrenal System , Rats, Wistar , Stress Disorders, Post-Traumatic , Animals , Stress Disorders, Post-Traumatic/drug therapy , Male , Heparin/therapeutic use , Heparin/pharmacology , Rats , Hypothalamo-Hypophyseal System/drug effects , Pituitary-Adrenal System/drug effects , Disease Models, Animal , COVID-19/virology , Behavior, Animal/drug effects , SARS-CoV-2/drug effects
6.
Int J Mol Sci ; 25(13)2024 Jun 22.
Article in English | MEDLINE | ID: mdl-38999983

ABSTRACT

The synthesis, biochemical evaluation and radiosynthesis of a cyclin-dependent kinases 4 and 6 (CDK4/6) inhibitor and radioligand was performed. NT431, a newly synthesized 4-fluorobenzyl-abemaciclib, exhibited high potency to CDK4/6 and against four cancer cell lines with IC50 similar to that of the parent abemaciclib. We performed a two-step one-pot radiosynthesis to produce [18F]NT431 with good radiochemical yield (9.6 ± 3%, n = 3, decay uncorrected), high radiochemical purity (>95%), and high molar activity (>370 GBq/µmol (>10.0 Ci/µmol). In vitro autoradiography confirmed the specific binding of [18F]NT431 to CDK4/6 in brain tissues. Dynamic PET imaging supports that both [18F]NT431 and the parent abemaciclib crossed the BBB albeit with modest brain uptake. Therefore, we conclude that it is unlikely that NT431 or abemaciclib (FDA approved drug) can accumulate in the brain in sufficient concentrations to be potentially effective against breast cancer brain metastases or brain cancers. However, despite the modest BBB penetration, [18F]NT431 represents an important step towards the development and evaluation of a new generation of CDK4/6 inhibitors with superior BBB penetration for the treatment and visualization of CDK4/6 positive tumors in the CNS. Also, [18F]NT431 may have potential application in peripheral tumors such as breast cancer and other CDK4/6 positive tumors.


Subject(s)
Aminopyridines , Benzimidazoles , Brain Neoplasms , Cyclin-Dependent Kinase 4 , Cyclin-Dependent Kinase 6 , Positron-Emission Tomography , Protein Kinase Inhibitors , Cyclin-Dependent Kinase 4/antagonists & inhibitors , Cyclin-Dependent Kinase 4/metabolism , Humans , Positron-Emission Tomography/methods , Brain Neoplasms/diagnostic imaging , Brain Neoplasms/drug therapy , Brain Neoplasms/metabolism , Brain Neoplasms/enzymology , Cyclin-Dependent Kinase 6/antagonists & inhibitors , Cyclin-Dependent Kinase 6/metabolism , Cell Line, Tumor , Benzimidazoles/pharmacology , Benzimidazoles/chemistry , Aminopyridines/chemistry , Aminopyridines/pharmacology , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/chemical synthesis , Animals , Radiopharmaceuticals/chemistry , Fluorine Radioisotopes/chemistry , Brain/diagnostic imaging , Brain/metabolism , Mice , Female
7.
Int J Mol Sci ; 25(13)2024 Jun 27.
Article in English | MEDLINE | ID: mdl-39000150

ABSTRACT

Neuroinflammation, crucial in neurological disorders like Alzheimer's disease, multiple sclerosis, and hepatic encephalopathy, involves complex immune responses. Extracellular vesicles (EVs) play a pivotal role in intercellular and inter-organ communication, influencing disease progression. EVs serve as key mediators in the immune system, containing molecules capable of activating molecular pathways that exacerbate neuroinflammatory processes in neurological disorders. However, EVs from mesenchymal stem cells show promise in reducing neuroinflammation and cognitive deficits. EVs can cross CNS barriers, and peripheral immune signals can influence brain function via EV-mediated communication, impacting barrier function and neuroinflammatory responses. Understanding EV interactions within the brain and other organs could unveil novel therapeutic targets for neurological disorders.


Subject(s)
Extracellular Vesicles , Neuroinflammatory Diseases , Extracellular Vesicles/metabolism , Humans , Neuroinflammatory Diseases/metabolism , Neuroinflammatory Diseases/pathology , Animals , Cell Communication , Brain/metabolism , Brain/pathology , Mesenchymal Stem Cells/metabolism , Blood-Brain Barrier/metabolism , Inflammation/metabolism , Inflammation/pathology
8.
Article in English | MEDLINE | ID: mdl-39005131

ABSTRACT

Drug delivery through the blood-brain barrier (BBB) is one of the key challenges in the modern era of medicine due to the highly semipermeable characteristics of BBB that restrict the entry of various drugs into the central nervous system (CNS) for the management of brain disorders. Drugs can be easily incorporated into carbon nanocarriers that can cross the bloodbrain barrier. Numerous nanocarriers have been developed, including polymeric nanoparticles, carbon nanoparticles, lipid-based nanoparticles, etc. Among these, carbon nanostructures could be superior due to their easier BBB penetration and strong biocompatibility. Several CDs (Carbon dots) and CD-ligand conjugates have explored effectively penetrating the BBB, which enables significant progress in using CD-based drug delivery systems (DDS) to manage CNS diseases. Despite the drug delivery applications, they might also be used as a central nervous system (CNS) drug; few of the carbon nanostructures show profound neurodegenerative activity. Further, their impact on neuronal growth and anti- amyloid action is quite interesting. The present study covers diverse carbon nanostructures for brain-targeted drug delivery, exploring a variety of CNS activities. Moreover, it emphasizes recent patents on carbon nanostructures for CNS disorders.

9.
Neurooncol Adv ; 6(1): vdae082, 2024.
Article in English | MEDLINE | ID: mdl-39006162

ABSTRACT

Background: Infrared (IR) spectroscopy allows intraoperative, optical brain tumor diagnosis. Here, we explored it as a translational technology for the identification of aggressive meningioma types according to both, the WHO CNS grading system and the methylation classes (MC). Methods: Frozen sections of 47 meningioma were examined by IR spectroscopic imaging and different classification approaches were compared to discern samples according to WHO grade or MC. Results: IR spectroscopic differences were more pronounced between WHO grade 2 and 3 than between MC intermediate and MC malignant, although similar spectral ranges were affected. Aggressive types of meningioma exhibited reduced bands of carbohydrates (at 1024 cm-1) and nucleic acids (at 1080 cm-1), along with increased bands of phospholipids (at 1240 and 1450 cm-1). While linear discriminant analysis was able to discern spectra of WHO grade 2 and 3 meningiomas (AUC 0.89), it failed for MC (AUC 0.66). However, neural network classifiers were effective for classification according to both WHO grade (AUC 0.91) and MC (AUC 0.83), resulting in the correct classification of 20/23 meningiomas of the test set. Conclusions: IR spectroscopy proved capable of extracting information about the malignancy of meningiomas, not only according to the WHO grade, but also for a diagnostic system based on molecular tumor characteristics. In future clinical use, physicians could assess the goodness of the classification by considering classification probabilities and cross-measurement validation. This might enhance the overall accuracy and clinical utility, reinforcing the potential of IR spectroscopy in advancing precision medicine for meningioma characterization.

10.
Front Insect Sci ; 4: 1362473, 2024.
Article in English | MEDLINE | ID: mdl-39006940

ABSTRACT

Bombyx mori is a lepidopteran holometabolous insect with distinct developmental stages: egg, larvae, pupae, and adult. The lepidopteran insect undergoes major modifications in the central nervous system (CNS) so as to adapt to the lifestyle of these distinct stages with specific habitats and functions from voraciously feeding larval stages to flying reproductive adults via dormant pupal stages. Such transitions are linked to transcriptional, epigenetic, and translational complexities. Therefore, studying rhythmic gene expression in CNS of various developmental stages and the effects of antagonists on developmental hormones requires a very stable reference gene (RG). To facilitate rhythmic gene expression studies using reverse transcription quantitative polymerase chain reaction (RT-qPCR) in B. mori and the effect of developmental hormone juvenile hormone (JH) and 20-hydroxy ecdysone hormone (20 HE), antagonists Precocene 1 and testosterone, respectively, were used. Eight candidate RGs, namely, Translational initiation factor 3 subunit 4 (TI3S4), Translational initiation factor 3 subunit 5 (TI3S5), Ribosomal protein subunit 7 (RPs7), TATA-binding protein association factor (TAF13), Translational initiation factor 4 A (TI4A), Ribosomal protein (RPL32), Elongation factor 1 (EF1), and Arginine kinase (AK), were assessed in the CNS of B. mori. The postembryonic developmental (PED) stages used were the fifth late larval instar, early pupa, mid pupa, late pupa, and adult. The assessments were done at four different time points, Zeitgeber time (ZT) 0, 6, 12, and 18, to find stability towards 24-h rhythmic expression. RefFinder, geNorm, and Ct value analysis were performed. RefFinder and geNORM studies suggested stability order as TI3S4 > TI3S5 > RPs7, but Ct value evaluation showed stability order as TI3S5 > TI3S4 > RPs7. We therefore demonstrated that TI3S4, TI3S5, and RPs7 can be used as RG in various PED stages in CNS of B. mori (Strain: CB-hybrid, PM×CSR2) towards studies with effects of JH and 20 HE antagonists.

11.
IBRO Neurosci Rep ; 16: 147-154, 2024 Jun.
Article in English | MEDLINE | ID: mdl-39007089

ABSTRACT

Disruption of the blood-central nervous system barrier (BCB) is increasingly recognized as a pathological factor in diseases and trauma of the central nervous system. Despite the neuropathological impact, current treatment modalities do not target the BCB; strategies to reconstitute the impaired BCB have been restricted to nutritional and dietary remedies. As an integral cell type in the neurovascular unit, pericytes are crucial to the development, maintenance, and repair of the BCB. As such, pericytes are well poised as cellular agents for reconstitution of the impaired BCB. Here, we summarize recent revelations regarding the role of BCB disruption in diseases and trauma of the central nervous system and highlight how pericytes are harnessed to provide targeted therapeutic effect in each case. This review will also address how recent advances in pericyte derivation strategies can serve to overcome practical hurdles in the clinical use of pericytes.

12.
Drug Deliv ; 31(1): 2375521, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38995190

ABSTRACT

Leptomeningeal disease (LMD) refers to the infiltration of cancer cells into the leptomeningeal compartment. Leptomeninges are the two membranous layers, called the arachnoid membrane and pia mater. The diffuse nature of LMD poses a challenge to its effective diagnosis and successful management. Furthermore, the predominant phenotype; solid masses or freely floating cells, has altering implications on the effectiveness of drug delivery systems. The standard of care is the intrathecal delivery of chemotherapy drugs but it is associated with increased instances of treatment-related complications, low patient compliance, and suboptimal drug distribution. An alternative involves administering the drugs systemically, after which they must traverse fluid barriers to arrive at their destination within the leptomeningeal space. However, this route is known to cause off-target effects as well as produce subtherapeutic drug concentrations at the target site within the central nervous system. The development of new drug delivery systems such as liposomal cytarabine has improved drug delivery in leptomeningeal metastatic disease, but much still needs to be done to effectively target this challenging condition. In this review, we discuss about the anatomy of leptomeninges relevant for drug penetration, the conventional and advanced drug delivery methods for LMD. We also discuss the future directions being set by different clinical trials.


Subject(s)
Antineoplastic Agents , Drug Delivery Systems , Humans , Drug Delivery Systems/methods , Antineoplastic Agents/administration & dosage , Antineoplastic Agents/pharmacokinetics , Meningeal Neoplasms/drug therapy , Liposomes , Animals , Meninges
13.
BMJ Case Rep ; 17(7)2024 Jul 12.
Article in English | MEDLINE | ID: mdl-39002953

ABSTRACT

Haemophagocytic lymphohistiocytosis (HLH) is a hyperinflammatory condition that can be either familial or acquired and, if untreated, frequently results in multiorgan failure and death. Treatment of HLH typically requires a combination of glucocorticoids and cytotoxic chemotherapy. We describe the case of a woman who presented with signs and symptoms concerning for HLH who was later found to have a primary central nervous system (CNS) diffuse large B-cell lymphoma. Her HLH symptoms were successfully treated with high doses of dexamethasone, and her primary CNS lymphoma was treated with high-dose methotrexate and rituximab. This is a rare case of HLH secondary to primary CNS lymphoma where HLH was controlled with steroids alone and did not require the use of an etoposide-based regimen or cyclophosphamide, doxorubicin, vincristine and prednisone.


Subject(s)
Central Nervous System Neoplasms , Etoposide , Lymphohistiocytosis, Hemophagocytic , Lymphoma, Large B-Cell, Diffuse , Humans , Lymphohistiocytosis, Hemophagocytic/drug therapy , Lymphohistiocytosis, Hemophagocytic/complications , Female , Etoposide/therapeutic use , Etoposide/administration & dosage , Central Nervous System Neoplasms/drug therapy , Central Nervous System Neoplasms/complications , Lymphoma, Large B-Cell, Diffuse/drug therapy , Lymphoma, Large B-Cell, Diffuse/complications , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Dexamethasone/therapeutic use , Dexamethasone/administration & dosage , Rituximab/therapeutic use , Rituximab/administration & dosage , Methotrexate/therapeutic use , Methotrexate/administration & dosage , Middle Aged , Treatment Outcome
14.
Mol Ther Nucleic Acids ; 35(2): 102161, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38978695

ABSTRACT

An increasing number of antisense oligonucleotides (ASOs) have been approved for clinical use. However, improvements of both efficacy and safety in the central nervous system (CNS) are crucial for the treatment with CNS diseases. We aimed to overcome the crucial issues by our development of various gapmer ASOs with a novel nucleoside derivative including a 2',4'-BNA/LNA with 9-(aminoethoxy)phenoxazine (BNAP-AEO). The various gapmer ASOs with BNAP-AEO were evaluated for thermal stability, in vitro and in vivo efficacy, and acute CNS toxicity. Thermal stability analysis of the duplexes with their complementary RNAs showed that ASOs with BNAP-AEO had a higher binding affinity than those without BNAP-AEO. In vitro assays, when transfected into neuroblastoma cell lines, demonstrated that ASOs with BNAP-AEO, had a more efficient gene silencing effect than those without BNAP-AEO. In vivo assays, involving intracerebroventricular injections into mice, revealed ASOs with BNAP-AEO potently suppressed gene expression in the brain. Surprisingly, the acute CNS toxicity in mice, as assessed through open field tests and scoring systems, was significantly lower for ASOs with BNAP-AEO than for those without BNAP-AEO. This study underscores the efficient gene-silencing effect and low acute CNS toxicity of ASOs incorporating BNAP-AEO, indicating the potential for future therapeutic applications.

15.
Cell Rep Med ; 5(7): 101630, 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-38955178

ABSTRACT

Recurrent high-grade gliomas (rHGGs) have a dismal prognosis, where the maximum tolerated dose (MTD) of IV terameprocol (5 days/month), a transcriptional inhibitor of specificity protein 1 (Sp1)-regulated proteins, is 1,700 mg/day with median area under the plasma concentration-time curve (AUC) of 31.3 µg∗h/mL. Given potentially increased efficacy with sustained systemic exposure and challenging logistics of daily IV therapy, here we investigate oral terameprocol for rHGGs in a multicenter, phase 1 trial (GATOR). Using a 3 + 3 dose-escalation design, we enroll 20 patients, with median age 60 years (range 31-80), 70% male, and median one relapse (range 1-3). Fasting patients tolerate 1,200 mg/day (n = 3), 2,400 mg/day (n = 6), 3,600 mg/day (n = 3), and 6,000 mg/day (n = 2) oral doses without major toxicities. However, increased dosage does not lead to increased systemic exposure, including in fed state (6,000 mg/day, n = 4), with maximal AUC <5 µg∗h/mL. These findings warrant trials investigating approaches that provide sustained systemic levels of transcription inhibitors to exploit their therapeutic potential. This study was registered at ClinicalTrials.gov (NCT02575794).


Subject(s)
Brain Neoplasms , Glioma , Humans , Male , Middle Aged , Glioma/drug therapy , Glioma/pathology , Adult , Female , Aged , Administration, Oral , Brain Neoplasms/drug therapy , Brain Neoplasms/pathology , Aged, 80 and over , Neoplasm Recurrence, Local/drug therapy , Neoplasm Recurrence, Local/pathology , Neoplasm Grading , Maximum Tolerated Dose
16.
FEBS Lett ; 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38955545

ABSTRACT

The poliovirus (PV) enters the central nervous system (CNS) via the bloodstream, suggesting the existence of a mechanism to cross the blood-brain barrier. Here, we report that PV capsid proteins (VP1 and VP3) can penetrate cells, with VP3 being more invasive. Two independent parts of VP3 are responsible for this function. Both peptides can penetrate human umbilical cord vascular endothelial cells, and one peptide of VP3 could also penetrate peripheral blood mononuclear cells. In an in vitro blood-brain barrier model using rat-derived astrocytes, pericytes, and endothelial cells, both peptides were observed to traverse from the blood side to the brain side at 6 h after administration. These results provide insights into the molecular mechanisms underlying PV invasion into the CNS.

17.
Heliyon ; 10(11): e32376, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38961907

ABSTRACT

Exosomes are naturally present extracellular vesicles (EVs) released into the surrounding body fluids upon the fusion of polycystic and plasma membranes. They facilitate intercellular communication by transporting DNA, mRNA, microRNA, long non-coding RNA, circular RNA, proteins, lipids, and nucleic acids. They contribute to the onset and progression of Central Nervous System (CNS) tumors. In addition, they can be used as biomarkers of tumor proliferation, migration, and blood vessel formation, thereby affecting the Tumor Microenvironment (TME). This paper reviews the recent advancements in the diagnosis and treatment of exosomes in various CNS tumors, the promise and challenges of exosomes as natural carriers of CNS tumors, and the therapeutic prospects of exosomes in CNS tumors. Furthermore, we hope this research can contribute to the development of more targeted and effective treatments for central nervous system tumors.

18.
Front Cell Neurosci ; 18: 1402479, 2024.
Article in English | MEDLINE | ID: mdl-38962511

ABSTRACT

Wound healing of the central nervous system (CNS) is characterized by the classical phases of 'hemostasis', 'inflammation', 'proliferation', and 'remodeling'. Uncontrolled wound healing results in pathological scar formation hindering tissue remodeling and functional recovery in the CNS. Initial blood protein extravasation and activation of the coagulation cascade secure hemostasis in CNS diseases featuring openings in the blood-brain barrier. However, the relevance of blood-derived coagulation factors was overlooked for some time in CNS wound healing and scarring. Recent advancements in animal models and human tissue analysis implicate the blood-derived coagulation factor fibrinogen as a molecular link between vascular permeability and scar formation. In this perspective, we summarize the current understanding of how fibrinogen orchestrates scar formation and highlight fibrinogen-induced signaling pathways in diverse neural and non-neural cells that may contribute to scarring in CNS disease. We particularly highlight a role of fibrinogen in the formation of the lesion border between the healthy neural tissue and the fibrotic scar. Finally, we suggest novel therapeutic strategies via manipulating the fibrinogen-scar-forming cell interaction to improve functional outcomes.

20.
Article in English | MEDLINE | ID: mdl-38967078

ABSTRACT

Dr. Aloysius Alzheimer, a German neuropathologist and psychiatrist, recognized the primary instance of Alzheimer's disease (AD) for a millennium, and this ailment, along with its related dementias, remains a severe overall community issue related to health. Nearly fifty million individuals worldwide suffer from dementia, with Alzheimer's illness contributing to between 60 and 70% of the instances, estimated through the World Health Organization. In addition, 82 million individuals are anticipated to be affected by the global dementia epidemic by 2030 and 152 million by 2050. Furthermore, age, environmental circumstances, and inherited variables all increase the likelihood of acquiring neurodegenerative illnesses. Most recent pharmacological treatments are found in original hypotheses of disease, which include cholinergic (drugs that show affective cholinergic system availability) as well as amyloid-accumulation (a single drug is an antagonist receptor of Nmethyl D-aspartate). In 2020, the FDA provided approval on anti-amyloid drugs. According to mounting scientific data, this gut microbiota affects healthy physiological homeostasis and has a role in the etiology of conditions that range between obesity and neurodegenerative disorders like Alzheimer's. The microbiota-gut-brain axis might facilitate interconnection among gut microbes as well as the central nervous system (CNS). Interaction among the microbiota-gut system as well as the brain occurs through the "two-way" microbiota-gut-brain axis. Along this axis, the stomach as well as the brain develop physiologically and take on their final forms. This contact is constant and is mediated by numerous microbiota-derived products. The gut microbiota, for instance, can act as non-genetic markers to set a threshold for maintaining homeostasis or getting ill. The scientific community has conducted research and found that bowel dysbiosis and gastrointestinal tract dysregulation frequently occur in Alzheimer's disease (AD) patients. In this review, the effects of the microbiota- gut-brain axis on AD pathogenesis will be discussed.

SELECTION OF CITATIONS
SEARCH DETAIL
...