Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 6.883
Filter
1.
Front Psychol ; 15: 1435003, 2024.
Article in English | MEDLINE | ID: mdl-39086427

ABSTRACT

Background: Poor self-control is a strong correlate of criminal propensity. It is conceptualized and operationalized differently in criminology than in other scientific traditions. Aims: (1) To verify the dimensionality of the criminological Grasmick self-control items, other self-regulation items and morality ones. (2) To re-interpret the dimensions using a clinical perspective, a taxonomic/diagnostic model and references to possible "biological underpinnings." (3) Validate the dimensions by associations with crime. Method: Population: all persons born 1995 in Malmö and living there at age 12. A random sample (N = 525) filled in a comprehensive self-report questionnaire on themes like personality, crime/abuse and social aspects at age 15, 16 and 18. Age 18 data were analysed: 191 men and 220 women. Results: Self-regulation items were 4-dimensional: ADHD problems (Behavior control and Executive skills) and two Aggression factors. Morality items formed a fifth dimension. Negative Affect and Social interaction factors covered the rest of the variance. The validity of these factors was backed up by correlations with similar items/factors. Self-regulation subscales predicted crimes better than the Grasmick scale; an interaction with morality improved prediction still further. Sex differences were over-all small with three exceptions: Aggression, Morality and Negative affect. Conclusion: We identified four dimensions of the 20-item Grasmick instrument: Cognitive action control (impulsiveness/sensation seeking, response inhibition), Executive skills/future orientation, Affective/aggression reactivity and Aggression control. All should be possible to link to brain functional modules. Much can be gained if we are able to formulate an integrated model of self-regulation including distinct brain functional modules, process-and trait-oriented models, relevant diagnoses and clinical experiences of individual cases.

3.
J Virol ; : e0056024, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39087762

ABSTRACT

Powassan virus (POWV) is an emergent tick-borne flavivirus that causes fatal encephalitis in the elderly and long-term neurologic sequelae in survivors. How age contributes to severe POWV encephalitis remains an enigma, and no animal models have assessed age-dependent POWV neuropathology. Inoculating C57BL/6 mice with a POWV strain (LI9) currently circulating in Ixodes ticks resulted in age-dependent POWV lethality 10-20 dpi. POWV infection of 50-week-old mice was 82% fatal with lethality sequentially reduced by age to 7.1% in 10-week-old mice. POWV LI9 was neuroinvasive in mice of all ages, causing acute spongiform CNS pathology and reactive gliosis 5-15 dpi that persisted in survivors 30 dpi. High CNS viral loads were found in all mice 10 dpi. However, by 15 dpi, viral loads decreased by 2-4 logs in 10- to 40-week-old mice, while remaining at high levels in 50-week-old mice. Age-dependent differences in CNS viral loads 15 dpi occurred concomitantly with striking changes in CNS cytokine responses. In the CNS of 50-week-old mice, POWV induced Th1-type cytokines (IFNγ, IL-2, IL-12, IL-4, TNFα, IL-6), suggesting a neurodegenerative pro-inflammatory M1 microglial program. By contrast, in 10-week-old mice, POWV-induced Th2-type cytokines (IL-10, TGFß, IL-4) were consistent with a neuroprotective M2 microglial phenotype. These findings correlate age-dependent CNS cytokine responses and viral loads with POWV lethality and suggest potential neuroinflammatory therapeutic targets. Our results establish the age-dependent lethality of POWV in a murine model that mirrors human POWV severity and long-term CNS pathology in the elderly. IMPORTANCE: Powassan virus is an emerging tick-borne flavivirus causing lethal encephalitis in aged individuals. We reveal an age-dependent POWV murine model that mirrors human POWV encephalitis and long-term CNS damage in the elderly. We found that POWV is neuroinvasive and directs reactive gliosis in all age mice, but at acute stages selectively induces pro-inflammatory Th1 cytokine responses in 50-week-old mice and neuroprotective Th2 cytokine responses in 10-week-old mice. Our findings associate CNS viral loads and divergent cytokine responses with age-dependent POWV lethality and survival outcomes. Responses of young mice suggest potential therapeutic targets and approaches for preventing severe POWV encephalitis that may be broadly applicable to other neurodegenerative diseases. Our age-dependent murine POWV model permits analysis of vaccines that prevent POWV lethality, and therapeutics that resolve severe POWV encephalitis.

5.
Eur J Cancer ; 209: 114241, 2024 Aug 02.
Article in English | MEDLINE | ID: mdl-39096851

ABSTRACT

PURPOSE: The objective of this study was to determine the recommended Phase 2 dose (RP2D) of pevonedistat, a first in class inhibitor of NEDD8 activating enzyme, in combination with irinotecan (IRN) and temozolomide (TMZ) in children with cancer. METHODS: This Phase 1 study used a rolling 6 design to evaluate escalating doses of pevonedistat in combination with standard doses of IRN and TMZ in pediatric patients with recurrent/refractory solid or CNS tumors. During cycle 1, pevonedistat was administered intravenously on days 1, 8, 10, and 12, with IRN (IV, 50 mg/m2) and TMZ (orally, 100 mg/m2), on days 8-12 of a 28-day cycle. In subsequent cycles, pevonedistat was administered on days 1, 3, and 5, with IRN/TMZ on days 1-5 of a 21-day cycle. RESULTS: Thirty patients enrolled; all were eligible and evaluable for toxicity. Six patients each enrolled on pevonedistat dose levels (DL) 1 (15 mg/m2), 2 (20 mg/m2), 3 (25 mg/m2) and 4 (35 mg/m2) as well as an expanded pharmacokinetic (PK) cohort at DL4. The maximum tolerated dose (MTD) was not exceeded. 2/12 (17 %) patients treated at the RP2D (35 mg/m2) experienced a cycle 1 dose limiting toxicity (DLT). IRN is unlikely to affect the pharmacokinetics of pevonedistat. Two patients had a partial response and 6 patients had prolonged stable disease (> 6 cycles). CONCLUSIONS: Pevonedistat in combination with IRN/TMZ is well tolerated in children with solid or CNS tumors. The RP2D of pevonedistat is 35 mg/m2 on days 1, 3, 5 in combination with IRN/TMZ.

6.
Dev Cell ; 2024 Aug 02.
Article in English | MEDLINE | ID: mdl-39096897

ABSTRACT

Unlike humans, teleosts like zebrafish exhibit robust retinal regeneration after injury from endogenous stem cells. However, it is unclear if regenerating cone photoreceptors regain physiological function and integrate correctly into post-synaptic circuits. We used two-photon calcium imaging of living adult retina to examine photoreceptor responses before and after light-induced lesions. To assess functional recovery of cones and downstream outer retinal circuits, we exploited color opponency; UV cones exhibit intrinsic Off-response to blue light, but On-response to green light, which depends on feedback signals from outer retinal circuits. Accordingly, we assessed the presence and quality of Off- vs. On-responses and found that regenerated UV cones regain both Off-responses to short-wavelength and On-responses to long-wavelength light within 3 months after lesion. Therefore, physiological circuit functionality is restored in regenerated cone photoreceptors, suggesting that inducing endogenous regeneration is a promising strategy for human retinal repair.

7.
Int J Mol Sci ; 25(13)2024 Jun 27.
Article in English | MEDLINE | ID: mdl-39000150

ABSTRACT

Neuroinflammation, crucial in neurological disorders like Alzheimer's disease, multiple sclerosis, and hepatic encephalopathy, involves complex immune responses. Extracellular vesicles (EVs) play a pivotal role in intercellular and inter-organ communication, influencing disease progression. EVs serve as key mediators in the immune system, containing molecules capable of activating molecular pathways that exacerbate neuroinflammatory processes in neurological disorders. However, EVs from mesenchymal stem cells show promise in reducing neuroinflammation and cognitive deficits. EVs can cross CNS barriers, and peripheral immune signals can influence brain function via EV-mediated communication, impacting barrier function and neuroinflammatory responses. Understanding EV interactions within the brain and other organs could unveil novel therapeutic targets for neurological disorders.


Subject(s)
Extracellular Vesicles , Neuroinflammatory Diseases , Extracellular Vesicles/metabolism , Humans , Neuroinflammatory Diseases/metabolism , Neuroinflammatory Diseases/pathology , Animals , Cell Communication , Brain/metabolism , Brain/pathology , Mesenchymal Stem Cells/metabolism , Blood-Brain Barrier/metabolism , Inflammation/metabolism , Inflammation/pathology
8.
Cureus ; 16(6): e62998, 2024 Jun.
Article in English | MEDLINE | ID: mdl-39050293

ABSTRACT

Background and objective Tuberculosis (TB), caused by Mycobacterium tuberculosis, remains a significant global health concern, with India being a hotspot for the disease burden. Central nervous system (CNS) tuberculosis, though comprising a smaller proportion of total TB cases, is associated with significant morbidity and mortality. This study aimed to explore the utility of diffusion tensor imaging (DTI) in assessing the microstructural changes in white matter tracts associated with CNS tuberculosis. Materials and methods This study was conducted over two years at the All India Institute of Medical Sciences, Rishikesh. We employed a cross-sectional observational design and included patients with definite or highly probable tuberculous meningitis, alongside healthy controls. Results Our findings revealed a significant reduction in fractional anisotropy (FA) values in various white matter tracts of patients with CNS tuberculosis compared to healthy individuals. This reduction in FA correlated with the severity of tuberculous meningitis, particularly in the corpus callosum. Additionally, DTI highlighted distinct patterns of white matter involvement around intraparenchymal lesions, suggesting potential implications for clinical outcomes. The study emphasizes the utility of FA values in grading disease severity and prognosticating treatment outcomes in CNS tuberculosis. Conclusions Overall, this study provides valuable insights into the microstructural alterations in white matter tracts associated with CNS tuberculosis, highlighting the potential of DTI in early diagnosis, grading disease severity, and monitoring treatment response. We believe these findings will pave the way for further research to optimize the clinical management of this debilitating disease.

9.
IDCases ; 37: e02021, 2024.
Article in English | MEDLINE | ID: mdl-39050863

ABSTRACT

We report the case of a 56-year-old female with a past medical history of multiple sclerosis on disease-modifying therapy of fingolimod who presented with disseminated Coccidioides infection, initially of the ankles bilaterally before progressing to the central nervous system. CNS coccidiomycosis has thus far not been associated with any pharmacological therapy for multiple sclerosis. Clinicians should have a high degree of suspicion for Coccidioides infection in immunosuppressed patients living in endemic areas.

10.
JMIR Med Inform ; 12: e58886, 2024 Jul 25.
Article in English | MEDLINE | ID: mdl-39052326

ABSTRACT

BACKGROUND: Childhood tumors in the central nervous system (CNS) have longer diagnostic delays than other pediatric tumors. Vague presenting symptoms pose a challenge in the diagnostic process; it has been indicated that patients and parents may be hesitant to seek help, and health care professionals (HCPs) may lack awareness and knowledge about clinical presentation. To raise awareness among HCPs, the Danish CNS tumor awareness initiative hjernetegn.dk was launched. OBJECTIVE: This study aims to present the learnings from designing and implementing a decision support tool for HCPs to reduce diagnostic delay in childhood CNS tumors. The aims also include decisions regarding strategies for dissemination and use of social media, and an evaluation of the digital impact 6 months after launch. METHODS: The phases of developing and implementing the tool include participatory co-creation workshops, designing the website and digital platforms, and implementing a press and media strategy. The digital impact of hjernetegn.dk was evaluated through website analytics and social media engagement. IMPLEMENTATION (RESULTS): hjernetegn.dk was launched in August 2023. The results after 6 months exceeded key performance indicators. The analysis showed a high number of website visitors and engagement, with a plateau reached 3 months after the initial launch. The LinkedIn campaign and Google Search strategy also generated a high number of impressions and clicks. CONCLUSIONS: The findings suggest that the initiative has been successfully integrated, raising awareness and providing a valuable tool for HCPs in diagnosing childhood CNS tumors. The study highlights the importance of interdisciplinary collaboration, co-creation, and ongoing community management, as well as broad dissemination strategies when introducing a digital support tool.

11.
Eur J Med Chem ; 276: 116686, 2024 Jul 20.
Article in English | MEDLINE | ID: mdl-39053192

ABSTRACT

With an objective to improve the profiles of the 1st generation non-basic MCHR1 antagonists, a lean design approach of replacing the bicyclic thienopyrimidine core with a monocyclic pyrrol-2-one chemotype was examined in the context of reducing aromatic ring count, while also contemplating enhanced flexibility as a means of decreasing flat character. The new compounds exhibited potent antagonism up to the sub-nanomolar range, thereby implying that the monocyclic ring could effectively serve as an effective bioisostere of the bicyclic system. The prototype compound 2m offered benefits like improved potency, reduced half-life, and enhanced solubility, while also demonstrating >5% reduction in weight gain in rats, thereby providing proof-of-concept for this new class of compounds as anti-obesity agents.

12.
Iran J Basic Med Sci ; 27(9): 1077-1084, 2024.
Article in English | MEDLINE | ID: mdl-39055875

ABSTRACT

Interest in naturally occurring phytochemicals has been on the increase, they are believed to reduce the risk of brain disorders. Hispidulin (HN) is a phenolic flavonoid compound with various pharmacological and biological effects on the central nervous system. It belongs to the flavone class of flavonoids. It can be found in different plant materials, especially fruits and vegetables. The literature used in this review was collected from credible scientific databases including ScienceDirect, Scopus, PubMed, Google Scholar, and Hindawi without time restriction, using relevant keywords, such as HN, brain, central nervous system, flavonoids, and flavones. HN was discovered to possess pro-apoptotic properties, act as an antioxidant, inhibit cytokine production and toll-like receptor 4 expression, as well as impede nuclear factor kappa beta and mitogen-activated protein kinase B. HN was also found to inhibit lipid peroxidation in vitro and reduce brain edema in mice. These pharmacological potentials suggest that HN is a promising candidate for neuroprotection in CNS disorders like depression and epilepsy. This review provides an update on the scientific literature concerning how these activities could help provide various forms of neuroprotection in the CNS. Additional experimental data on the effects of HN in models of neurological disorders and neuroprotection should be explored further. Based on the current study, HN is a promising candidate for neuroprotection of the CNS.

13.
Sci Rep ; 14(1): 16856, 2024 Jul 22.
Article in English | MEDLINE | ID: mdl-39039158

ABSTRACT

Alkaloid analgesics have been associated with adverse effects on the central nervous system (CNS). Therefore, it is crucial to characterize the effects of alkaloid analgesics. Plants rich in lycorine, an alkaloid, have shown promise as analgesics. However, the exploration of their CNS side effects, and analgesic effectiveness remains incomplete. The aim of the present study was to investigate the CNS safety profiles of lycorine and its potential analgesic efficacy. Lycorine (3, 10, and 30 mg/kg, intraperitoneal) did not affect motor coordination, and doses of 3 and 10 mg/kg of lycorine did not lead to any impairment in spontaneous locomotor activity. However, the highest dose (30 mg/kg) demonstrated a significant impairment in rearing behavior and an increase in immobility. The safety doses were subsequently used to assess the analgesic efficacy of lycorine in a mouse model of inflammatory pain. Lycorine (1, 3, and 10 mg/kg, intraperitoneal) demonstrated a dose-dependent reduction in pain-like behaviors in formalin-induced mice. In the in vitro study, lycorine regulated immune cells, suggesting its involvement as a cellular mechanism underlying the suppression of pain-like behaviors observed in the formalin model. Overall, our findings delineate the CNS safety range of lycorine in mice and suggest its potential use as an analgesic.


Subject(s)
Amaryllidaceae Alkaloids , Analgesics , Central Nervous System , Pain , Phenanthridines , Animals , Phenanthridines/pharmacology , Amaryllidaceae Alkaloids/pharmacology , Mice , Analgesics/pharmacology , Male , Pain/drug therapy , Central Nervous System/drug effects , Behavior, Animal/drug effects , Disease Models, Animal
14.
Mol Ther Nucleic Acids ; 35(2): 102161, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38978695

ABSTRACT

An increasing number of antisense oligonucleotides (ASOs) have been approved for clinical use. However, improvements of both efficacy and safety in the central nervous system (CNS) are crucial for the treatment with CNS diseases. We aimed to overcome the crucial issues by our development of various gapmer ASOs with a novel nucleoside derivative including a 2',4'-BNA/LNA with 9-(aminoethoxy)phenoxazine (BNAP-AEO). The various gapmer ASOs with BNAP-AEO were evaluated for thermal stability, in vitro and in vivo efficacy, and acute CNS toxicity. Thermal stability analysis of the duplexes with their complementary RNAs showed that ASOs with BNAP-AEO had a higher binding affinity than those without BNAP-AEO. In vitro assays, when transfected into neuroblastoma cell lines, demonstrated that ASOs with BNAP-AEO, had a more efficient gene silencing effect than those without BNAP-AEO. In vivo assays, involving intracerebroventricular injections into mice, revealed ASOs with BNAP-AEO potently suppressed gene expression in the brain. Surprisingly, the acute CNS toxicity in mice, as assessed through open field tests and scoring systems, was significantly lower for ASOs with BNAP-AEO than for those without BNAP-AEO. This study underscores the efficient gene-silencing effect and low acute CNS toxicity of ASOs incorporating BNAP-AEO, indicating the potential for future therapeutic applications.

15.
Front Oncol ; 14: 1402970, 2024.
Article in English | MEDLINE | ID: mdl-39015500

ABSTRACT

FLT3-ITD is a type of poor prognostic factors in acute myeloid leukemia (AML) disease. Gilteritinib, the second-generation FLT3 tyrosine kinase inhibitor, improved the overall survival of patients with relapsed/refractory FLT3-mutated AML in the ADMIRAL phase III trial. However, few data are available on the efficacy and safety of gilteritinib-based therapy for FLT3-mutated AML with central nervous system (CNS) involvement. We performed gilteritinib to treat a patient with CNS relapsed AML after allogeneic hematopoietic stem cell transplantation. The positive antileukemic effect of gilteritinib may bring new hope for the treatment of FLT3-mutated AML with CNS relapse.

16.
Brain Commun ; 6(4): fcae206, 2024.
Article in English | MEDLINE | ID: mdl-39015766

ABSTRACT

Chronic inflammatory demyelinating polyneuropathy (CIDP) compromises functions of the peripheral nervous system (PNS). Recently, however, symptoms such as cognitive deficits, visual dysfunction and circadian disorders were reported, compatible with additional involvement of the central nervous system (CNS) in CIDP. Against this background, we were interested in the functional state of melanopsin-expressing retinal ganglion cells (mRGCs) as a potential biomarker for sleep-wake abnormalities and CNS involvement in CIDP. Based on a chromatic pupillometry protocol, we examined the integrity of the melanopsin system in a prospective case-control study in 20 persons with CIDP compared to 20 controls without CIDP. The results were referred to clinical measures of disease severity and sleep behaviour. Patients with CIDP had a significantly reduced melanopsin-mediated post-illumination pupil response (PIPR) compared to healthy controls (25% versus 36%; P < 0.01). This reduction correlated with disease severity (r = 0.478, P < 0.05). Further, patients with CIDP reported diminished sleep quality (P < 0.05); however, there was no significant correlation with the melanopsin-mediated PIPR. The results demonstrate an impairment of mRGC function related to CIDP. Since the PIPR reduction correlated with disease severity, it could be an easily available biomarker for CNS affection in CIDP, a condition defined as PNS disorder.

17.
Cancers (Basel) ; 16(13)2024 Jun 26.
Article in English | MEDLINE | ID: mdl-39001407

ABSTRACT

GBM WHO CNS Grade 4 represents a major challenge for oncology due to its aggressive behavior. Conventional imaging has restrictions in detecting tumor recurrence. This prospective study aims to identify gene-based biomarkers in whole blood instead of isolating exosomes for the early detection of tumor recurrence. Blood samples (n = 33) were collected from seven GBM patients at time points before and after surgery as well as upon tumor recurrence. Four tumor tissue samples were assessed in parallel. Next-generation sequencing (NGS), including mRNA-seq and small RNA-seq, was used to analyze gene expression profiles in blood samples and tumor tissues. A novel filtering pipeline was invented to narrow down potential candidate genes. In total, between 6-93 mRNA and 1-19 small RNA candidates could be identified among the seven patients. The overlap of genes between the patients was minimal, indicating significant inter-individual variance among GBM patients. In summary, this prospective study supports the applicability of gene expression measurements in whole blood for the detection of tumor recurrence. It might provide an alternative to the challenging workflow of liquid biopsy after laborious exosome isolation from whole blood.

18.
Article in English | MEDLINE | ID: mdl-39005131

ABSTRACT

Drug delivery through the blood-brain barrier (BBB) is one of the key challenges in the modern era of medicine due to the highly semipermeable characteristics of BBB that restrict the entry of various drugs into the central nervous system (CNS) for the management of brain disorders. Drugs can be easily incorporated into carbon nanocarriers that can cross the bloodbrain barrier. Numerous nanocarriers have been developed, including polymeric nanoparticles, carbon nanoparticles, lipid-based nanoparticles, etc. Among these, carbon nanostructures could be superior due to their easier BBB penetration and strong biocompatibility. Several CDs (Carbon dots) and CD-ligand conjugates have explored effectively penetrating the BBB, which enables significant progress in using CD-based drug delivery systems (DDS) to manage CNS diseases. Despite the drug delivery applications, they might also be used as a central nervous system (CNS) drug; few of the carbon nanostructures show profound neurodegenerative activity. Further, their impact on neuronal growth and anti- amyloid action is quite interesting. The present study covers diverse carbon nanostructures for brain-targeted drug delivery, exploring a variety of CNS activities. Moreover, it emphasizes recent patents on carbon nanostructures for CNS disorders.

19.
Drug Deliv ; 31(1): 2375521, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38995190

ABSTRACT

Leptomeningeal disease (LMD) refers to the infiltration of cancer cells into the leptomeningeal compartment. Leptomeninges are the two membranous layers, called the arachnoid membrane and pia mater. The diffuse nature of LMD poses a challenge to its effective diagnosis and successful management. Furthermore, the predominant phenotype; solid masses or freely floating cells, has altering implications on the effectiveness of drug delivery systems. The standard of care is the intrathecal delivery of chemotherapy drugs but it is associated with increased instances of treatment-related complications, low patient compliance, and suboptimal drug distribution. An alternative involves administering the drugs systemically, after which they must traverse fluid barriers to arrive at their destination within the leptomeningeal space. However, this route is known to cause off-target effects as well as produce subtherapeutic drug concentrations at the target site within the central nervous system. The development of new drug delivery systems such as liposomal cytarabine has improved drug delivery in leptomeningeal metastatic disease, but much still needs to be done to effectively target this challenging condition. In this review, we discuss about the anatomy of leptomeninges relevant for drug penetration, the conventional and advanced drug delivery methods for LMD. We also discuss the future directions being set by different clinical trials.


Subject(s)
Antineoplastic Agents , Drug Delivery Systems , Humans , Drug Delivery Systems/methods , Antineoplastic Agents/administration & dosage , Antineoplastic Agents/pharmacokinetics , Meningeal Neoplasms/drug therapy , Liposomes , Animals , Meninges
20.
Int J Mol Sci ; 25(13)2024 Jun 22.
Article in English | MEDLINE | ID: mdl-38999983

ABSTRACT

The synthesis, biochemical evaluation and radiosynthesis of a cyclin-dependent kinases 4 and 6 (CDK4/6) inhibitor and radioligand was performed. NT431, a newly synthesized 4-fluorobenzyl-abemaciclib, exhibited high potency to CDK4/6 and against four cancer cell lines with IC50 similar to that of the parent abemaciclib. We performed a two-step one-pot radiosynthesis to produce [18F]NT431 with good radiochemical yield (9.6 ± 3%, n = 3, decay uncorrected), high radiochemical purity (>95%), and high molar activity (>370 GBq/µmol (>10.0 Ci/µmol). In vitro autoradiography confirmed the specific binding of [18F]NT431 to CDK4/6 in brain tissues. Dynamic PET imaging supports that both [18F]NT431 and the parent abemaciclib crossed the BBB albeit with modest brain uptake. Therefore, we conclude that it is unlikely that NT431 or abemaciclib (FDA approved drug) can accumulate in the brain in sufficient concentrations to be potentially effective against breast cancer brain metastases or brain cancers. However, despite the modest BBB penetration, [18F]NT431 represents an important step towards the development and evaluation of a new generation of CDK4/6 inhibitors with superior BBB penetration for the treatment and visualization of CDK4/6 positive tumors in the CNS. Also, [18F]NT431 may have potential application in peripheral tumors such as breast cancer and other CDK4/6 positive tumors.


Subject(s)
Aminopyridines , Benzimidazoles , Brain Neoplasms , Cyclin-Dependent Kinase 4 , Cyclin-Dependent Kinase 6 , Positron-Emission Tomography , Protein Kinase Inhibitors , Cyclin-Dependent Kinase 4/antagonists & inhibitors , Cyclin-Dependent Kinase 4/metabolism , Humans , Positron-Emission Tomography/methods , Brain Neoplasms/diagnostic imaging , Brain Neoplasms/drug therapy , Brain Neoplasms/metabolism , Brain Neoplasms/enzymology , Cyclin-Dependent Kinase 6/antagonists & inhibitors , Cyclin-Dependent Kinase 6/metabolism , Cell Line, Tumor , Benzimidazoles/pharmacology , Benzimidazoles/chemistry , Aminopyridines/chemistry , Aminopyridines/pharmacology , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/chemical synthesis , Animals , Radiopharmaceuticals/chemistry , Fluorine Radioisotopes/chemistry , Brain/diagnostic imaging , Brain/metabolism , Mice , Female
SELECTION OF CITATIONS
SEARCH DETAIL
...