Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.401
Filter
1.
Mol Ther Oncol ; 32(2): 200818, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38966038

ABSTRACT

Bladder cancer (BlCa) is an extensively heterogeneous disease that leads to great variability in tumor evolution scenarios and lifelong patient surveillance, emphasizing the need for modern, minimally invasive precision medicine. Here, we explored the clinical significance of copy number alterations (CNAs) in BlCa. CNA profiling was performed in 15 patient-derived xenografts (PDXs) and validated in The Cancer Genome Atlas BlCa (TCGA-BLCA; n = 408) and Lindgren et al. (n = 143) cohorts. CDKN2A copy number loss was identified as the most frequent CNA in bladder tumors, associated with reduced CDKN2A expression, tumors of a papillary phenotype, and prolonged PDX survival. The study's screening cohort consisted of 243 BlCa patients, and CDKN2A copy number was assessed in genomic DNA and cell-free DNA (cfDNA) from 217 tumors and 189 pre-treatment serum samples, respectively. CDKN2A copy number loss was correlated with superior disease-free and progression-free survival of non-muscle-invasive BlCa (NMIBC) patients. Moreover, a higher CDKN2A index (CDKN2A/LEP ratio) in pre-treatment cfDNA was associated with advanced tumor stage and grade and short-term NMIBC progression to invasive disease, while multivariate models fitted for CDKN2A index in pre-treatment cfDNA offered superior risk stratification of T1/high-grade and EORTC high-risk patients, enhancing prediction of treatment outcome. CDKN2A copy number status could serve as a minimally invasive tool to improve risk stratification and support personalized prognosis in BlCa.

2.
Mutat Res Rev Mutat Res ; : 108509, 2024 Jul 06.
Article in English | MEDLINE | ID: mdl-38977176

ABSTRACT

Autism spectrum disorder (ASD) is a complex neurodevelopmental disorder (NDD) influenced by genetic, epigenetic, and environmental factors. Recent advancements in genomic analysis have shed light on numerous genes associated with ASD, highlighting the significant role of both common and rare genetic mutations, as well as copy number variations (CNVs), single nucleotide polymorphisms (SNPs) and unique de novo variants. These genetic variations disrupt neurodevelopmental pathways, contributing to the disorder's complexity. Notably, CNVs are present in 10%-20% of individuals with autism, with 3%-7% detectable through cytogenetic methods. While the role of submicroscopic CNVs in ASD has been recently studied, their association with genomic loci and genes has not been thoroughly explored. In this review, we focus on 47 CNV regions linked to ASD, encompassing 1,632 genes, including protein-coding genes and long non-coding RNAs (lncRNAs), of which 659 show significant brain expression. Using a list of ASD-associated genes from SFARI, we detect 17 regions harboring at least one known ASD-related protein-coding gene. Of the remaining 30 regions, we identify 24 regions containing at least one protein-coding gene with brain-enriched expression and a nervous system phenotype in mouse mutants, and one lncRNA with both brain-enriched expression and upregulation in iPSC to neuron differentiation. This review not only expands our understanding of the genetic diversity associated with ASD but also underscores the potential of lncRNAs in contributing to its etiology. Additionally, the discovered CNVs will be a valuable resource for future diagnostic, therapeutic, and research endeavors aimed at prioritizing genetic variations in ASD.

3.
Front Immunol ; 15: 1421012, 2024.
Article in English | MEDLINE | ID: mdl-38979414

ABSTRACT

Objective: This study revealed a core regulator and common upstream mechanisms for the multifaceted pathological processes of age-related macular degeneration (AMD) and provided proof-of-concept for this new therapeutic target. Methods: Comprehensive gene expression analysis was performed using RNA sequencing of eye cup from old mice as well as laser-induced choroidal neovascularization (CNV) mouse model. Through integrative analysis and protein-protein interaction (PPI) analysis, common pathways and key transcription factor was identified simultaneously engaged in age-related retinal degeneration and CNV, the two typical pathological process of AMD. Subsequently, the expression changes of Spi1, the key regulator, as well as the alternation of the downstream mechanisms were validated in both models through qRT-PCR, Elisa, flow cytometry and immunofluorescence. Further, we assessed the impact of Spi1 knockdown in vitro and in vivo using gene intervention vectors carried by adeno-associated virus or lentivirus to test its potential as a therapeutic target. Results: Compared to corresponding controls, we found 1,939 and 1,319 genes differentially expressed in eye cups of old and CNV mice respectively. The integrative analysis identified a total of 275 overlapping DEGs, of which 150 genes were co-upregulated. PPI analysis verified a central transcription factor, SPI1. The significant upregulation of Spi1 expression was then validated in both models, accompanied by macrophage polarization towards the M1 phenotype. Finally, SPI1 suppression significantly inhibited M1 polarization of BMDMs and attenuated neovascularization in CNV mice. Conclusion: This study demonstrates that SPI1 exerts a pivotal role in AMD by regulation of macrophage polarization and innate immune response, offering promise as an innovative target for treating AMD.


Subject(s)
Choroidal Neovascularization , Disease Models, Animal , Macrophages , Macular Degeneration , Trans-Activators , Animals , Macular Degeneration/immunology , Macular Degeneration/metabolism , Macular Degeneration/genetics , Macular Degeneration/pathology , Mice , Macrophages/immunology , Macrophages/metabolism , Choroidal Neovascularization/immunology , Choroidal Neovascularization/genetics , Choroidal Neovascularization/metabolism , Trans-Activators/genetics , Trans-Activators/metabolism , Proto-Oncogene Proteins/genetics , Proto-Oncogene Proteins/metabolism , Mice, Inbred C57BL , Macrophage Activation/genetics , Humans , Gene Expression Profiling , Male
4.
Front Pharmacol ; 15: 1407865, 2024.
Article in English | MEDLINE | ID: mdl-38948459

ABSTRACT

Neurodevelopmental disorders (NDDs) include a broad spectrum of pathological conditions that affect >4% of children worldwide, share common features and present a variegated genetic origin. They include clinically defined diseases, such as autism spectrum disorders (ASD), attention-deficit/hyperactivity disorder (ADHD), motor disorders such as Tics and Tourette's syndromes, but also much more heterogeneous conditions like intellectual disability (ID) and epilepsy. Schizophrenia (SCZ) has also recently been proposed to belong to NDDs. Relatively common causes of NDDs are copy number variations (CNVs), characterised by the gain or the loss of a portion of a chromosome. In this review, we focus on deletions and duplications at the 16p11.2 chromosomal region, associated with NDDs, ID, ASD but also epilepsy and SCZ. Some of the core phenotypes presented by human carriers could be recapitulated in animal and cellular models, which also highlighted prominent neurophysiological and signalling alterations underpinning 16p11.2 CNVs-associated phenotypes. In this review, we also provide an overview of the genes within the 16p11.2 locus, including those with partially known or unknown function as well as non-coding RNAs. A particularly interesting interplay was observed between MVP and MAPK3 in modulating some of the pathological phenotypes associated with the 16p11.2 deletion. Elucidating their role in intracellular signalling and their functional links will be a key step to devise novel therapeutic strategies for 16p11.2 CNVs-related syndromes.

5.
BMC Bioinformatics ; 25(1): 233, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38982375

ABSTRACT

BACKGROUND: Structural variations play an important role in bacterial genomes. They can mediate genome adaptation quickly in response to the external environment and thus can also play a role in antibiotic resistance. The detection of structural variations in bacteria is challenging, and the recognition of even small rearrangements can be important. Even though most detection tools are aimed at and benchmarked on eukaryotic genomes, they can also be used on prokaryotic genomes. The key features of detection are the ability to detect small rearrangements and support haploid genomes. Because of the limiting performance of a single detection tool, combining the detection abilities of multiple tools can lead to more robust results. There are already available workflows for structural variation detection for long-reads technologies and for the detection of single-nucleotide variation and indels, both aimed at bacteria. Yet we are unaware of structural variations detection workflows for the short-reads sequencing platform. Motivated by this gap we created our workflow. Further, we were interested in increasing the detection performance and providing more robust results. RESULTS: We developed an open-source bioinformatics pipeline, ProcaryaSV, for the detection of structural variations in bacterial isolates from paired-end short sequencing reads. Multiple tools, starting with quality control and trimming of sequencing data, alignment to the reference genome, and multiple structural variation detection tools, are integrated. All the partial results are then processed and merged with an in-house merging algorithm. Compared with a single detection approach, ProcaryaSV has improved detection performance and is a reproducible easy-to-use tool. CONCLUSIONS: The ProcaryaSV pipeline provides an integrative approach to structural variation detection from paired-end next-generation sequencing of bacterial samples. It can be easily installed and used on Linux machines. It is publicly available on GitHub at https://github.com/robinjugas/ProcaryaSV .


Subject(s)
Genome, Bacterial , High-Throughput Nucleotide Sequencing , Software , High-Throughput Nucleotide Sequencing/methods , Sequence Analysis, DNA/methods , Bacteria/genetics
6.
Front Pharmacol ; 15: 1384418, 2024.
Article in English | MEDLINE | ID: mdl-38983912

ABSTRACT

Objective: The study aims to investigate the protective effect of Mingjing granule (MG) in a fibrovascular membrane rat model of neovascular age-related macular degeneration (nAMD) and explore the underlying mechanism. Methods: The nAMD fibrovascular membrane model was established by two-stage laser photocoagulation. BN rats were randomly divided into four groups: the model group was gavaged with distilled water, the anti-VEGF group was given an intravitreous injection of ranibizumab, the MG + anti-VEGF group was gavaged with MG combined with an intravitreous injection of ranibizumab, and the normal group not modeled only fed conventionally. Lesions were evaluated by color fundus photograph, optical coherence tomography, fundus fluorescein angiography, and retinal pigment epithelial-choroid-sclera flat mount. The changes in the retinal structure were observed by histopathology. The expression of inflammatory cell markers F4/80, Iba-1, and glial fibrillary acidic protein (GFAP); the fibrosis-related factors collagen-1, fibronectin, α-smooth muscle actin (α-SMA), and transforming growth factor-beta (TGF-ß); and the complement system-related factors C3a and C3aR in the retina were detected by immunofluorescence or qRT-PCR. Results: The current study revealed that MG + anti-VEGF administration more significantly reduced the thickness of fibrovascular lesions, suppressed vascular leakage (exudation area and mean density value), inhibited the area of fibrovascular lesions, and restrained the formation of the fibrovascular membrane than the anti-VEGF agent alone in the two-stage laser-induced rat model. The fluorescence intensities of F4/80, Iba-1, collagen-1, fibronectin, TGF-ß, and C3aR showed more significant inhibition in MG + anti-VEGF-treated rats than the anti-VEGF agent alone. The mRNA expression levels of F4/80, Iba-1, GFAP, collagen-1, fibronectin, α-SMA, TGF-ß, and C3a showed lower levels in rats treated with MG + anti-VEGF than the anti-VEGF agent alone. Conclusion: Combining MG with anti-VEGF treatment inhibits the growth of the fibrovascular membrane more effectively than using anti-VEGF treatment alone. The mechanism underlying this effect may involve limiting inflammatory cell aggregation, controlling complement system activation, and decreasing the expression of the fibrotic protein.

7.
Environ Int ; 190: 108845, 2024 Jun 23.
Article in English | MEDLINE | ID: mdl-38945087

ABSTRACT

INTRODUCTION: Phthalates, or dieters of phthalic acid, are a ubiquitous type of plasticizer used in a variety of common consumer and industrial products. They act as endocrine disruptors and are associated with increased risk for several diseases. Once in the body, phthalates are metabolized through partially known mechanisms, involving phase I and phase II enzymes. OBJECTIVE: In this study we aimed to identify common single nucleotide polymorphisms (SNPs) and copy number variants (CNVs) associated with the metabolism of phthalate compounds in children through genome-wide association studies (GWAS). METHODS: The study used data from 1,044 children with European ancestry from the Human Early Life Exposome (HELIX) cohort. Ten phthalate metabolites were assessed in a two-void pooled urine collected at the mean age of 8 years. Six ratios between secondary and primary phthalate metabolites were calculated. Genome-wide genotyping was done with the Infinium Global Screening Array (GSA) and imputation with the Haplotype Reference Consortium (HRC) panel. PennCNV was used to estimate copy number variants (CNVs) and CNVRanger to identify consensus regions. GWAS of SNPs and CNVs were conducted using PLINK and SNPassoc, respectively. Subsequently, functional annotation of suggestive SNPs (p-value < 1E-05) was done with the FUMA web-tool. RESULTS: We identified four genome-wide significant (p-value < 5E-08) loci at chromosome (chr) 3 (FECHP1 for oxo-MiNP_oh-MiNP ratio), chr6 (SLC17A1 for MECPP_MEHHP ratio), chr9 (RAPGEF1 for MBzP), and chr10 (CYP2C9 for MECPP_MEHHP ratio). Moreover, 115 additional loci were found at suggestive significance (p-value < 1E-05). Two CNVs located at chr11 (MRGPRX1 for oh-MiNP and SLC35F2 for MEP) were also identified. Functional annotation pointed to genes involved in phase I and phase II detoxification, molecular transfer across membranes, and renal excretion. CONCLUSION: Through genome-wide screenings we identified known and novel loci implicated in phthalate metabolism in children. Genes annotated to these loci participate in detoxification, transmembrane transfer, and renal excretion.

8.
Children (Basel) ; 11(6)2024 May 27.
Article in English | MEDLINE | ID: mdl-38929227

ABSTRACT

BACKGROUND: Recognized as one of the most serious musculoskeletal deformities, occurring in 1-2 per 1000 newborns, 80% of clubfeet are idiopathic while 20% present with associated malformations. The etiopathogenesis of clubfoot is described as multifactorial, including both genetic and environmental risk factors. The aim of this study was to analyze possible genetic causes of isolated and syndromic clubfoot in Serbian children, as well as to correlate clinical and genetic characteristics that would provide insight into clubfoot etiopathogenesis and possibly contribute to global knowledge about clinical features of different genetically defined disorders. METHODS: We evaluated 50 randomly selected, eligible children with clubfoot aged 3 to 16 years that were initially hospitalized and treated at University Children's Hospital between November 2006 and November 2022. The tested parameters were gender, age, dominant foot, affected foot, degree of deformity, treatment, neuromuscular disorders, positive family history, and maternal smoking. According to the presence of defined genetic mutation/s by whole exome sequencing (WES), patients were separated into two groups: positive (with genetic mutation/s) and negative (without genetic mutation/s). RESULTS: Seven patients were found to be positive, i.e., with genetic mutation/s. A statistically significant difference between categorical variables was found for families with a history of clubfoot, where more than half (57.14%) of patients with confirmed genetic mutation/s also had a family history of genetic mutation/s (p = 0.023). CONCLUSIONS: The results from this study further expand the genetic epidemiology of clubfoot. This study contributes to the establishment of genetic diagnostic strategies in pediatric patients with this condition, which can lead to more efficient genetic diagnosis.

9.
Exp Brain Res ; 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38896295

ABSTRACT

Musculoskeletal trauma often leads to lasting psychological impacts stemming from concerns of future injuries. Often referred to as kinesiophobia or re-injury anxiety, such concerns have been shown to hinder return to physical activity and are believed to increase the risk for secondary injuries. Screening for re-injury anxiety is currently restricted to subjective questionnaires, which are prone to self-report bias. We introduce a novel approach to objectively identify electrocortical activity associated with the threat of destabilising perturbations. We aimed to explore its feasibility among non-injured persons, with potential future implementation for screening of re-injury anxiety. Twenty-three participants stood blindfolded on a translational balance perturbation platform. Consecutive auditory stimuli were provided as low (neutral stimulus [CS-]) or high (conditioned stimulus [CS+]) tones. For the main experimental protocol (Protocol I), half of the high tones were followed by a perturbation in one of eight unpredictable directions. A separate validation protocol (Protocol II) requiring voluntary squatting without perturbations was performed with 12 participants. Event-related potentials (ERP) were computed from electroencephalography recordings and significant time-domain components were detected using an interval-wise testing procedure. High-amplitude early contingent negative variation (CNV) waves were significantly greater for CS+ compared with CS- trials in all channels for Protocol I (> 521-800ms), most prominently over frontal and central midline locations (P ≤ 0.001). For Protocol II, shorter frontal ERP components were observed (541-609ms). Our test paradigm revealed electrocortical activation possibly associated with movement-related fear. Exploring the discriminative validity of the paradigm among individuals with and without self-reported re-injury anxiety is warranted.

10.
Int J Mol Sci ; 25(11)2024 May 25.
Article in English | MEDLINE | ID: mdl-38891944

ABSTRACT

Gilles de la Tourette syndrome (GTS) is a neurodevelopmental psychiatric disorder with complex and elusive etiology with a significant role of genetic factors. The aim of this study was to identify structural variants that could be associated with familial GTS. The study group comprised 17 multiplex families with 80 patients. Structural variants were identified from whole-genome sequencing data and followed by co-segregation and bioinformatic analyses. The localization of these variants was used to select candidate genes and create gene sets, which were subsequently processed in gene ontology and pathway enrichment analysis. Seventy putative pathogenic variants shared among affected individuals within one family but not present in the control group were identified. Only four private or rare deletions were exonic in LDLRAD4, B2M, USH2A, and ZNF765 genes. Notably, the USH2A gene is involved in cochlear development and sensory perception of sound, a process that was associated previously with familial GTS. In addition, two rare variants and three not present in the control group were co-segregating with the disease in two families, and uncommon insertions in GOLM1 and DISC1 were co-segregating in three families each. Enrichment analysis showed that identified structural variants affected synaptic vesicle endocytosis, cell leading-edge organization, and signaling for neurite outgrowth. The results further support the involvement of the regulation of neurotransmission, neuronal migration, and sound-sensing in GTS.


Subject(s)
Pedigree , Tourette Syndrome , Humans , Tourette Syndrome/genetics , Male , Female , Genetic Predisposition to Disease , Extracellular Matrix Proteins/genetics , Extracellular Matrix Proteins/metabolism , Adult , Whole Genome Sequencing
11.
Adv Exp Med Biol ; 1441: 505-534, 2024.
Article in English | MEDLINE | ID: mdl-38884729

ABSTRACT

Ventricular septal defects (VSDs) are recognized as one of the commonest congenital heart diseases (CHD), accounting for up to 40% of all cardiac malformations, and occur as isolated CHDs as well as together with other cardiac and extracardiac congenital malformations in individual patients and families. The genetic etiology of VSD is complex and extraordinarily heterogeneous. Chromosomal abnormalities such as aneuploidy and structural variations as well as rare point mutations in various genes have been reported to be associated with this cardiac defect. This includes both well-defined syndromes with known genetic cause (e.g., DiGeorge syndrome and Holt-Oram syndrome) and so far undefined syndromic forms characterized by unspecific symptoms. Mutations in genes encoding cardiac transcription factors (e.g., NKX2-5 and GATA4) and signaling molecules (e.g., CFC1) have been most frequently found in VSD cases. Moreover, new high-resolution methods such as comparative genomic hybridization enabled the discovery of a high number of different copy number variations, leading to gain or loss of chromosomal regions often containing multiple genes, in patients with VSD. In this chapter, we will describe the broad genetic heterogeneity observed in VSD patients considering recent advances in this field.


Subject(s)
Heart Septal Defects, Ventricular , Humans , Chromosome Aberrations , DNA Copy Number Variations/genetics , Genetic Predisposition to Disease/genetics , Heart Septal Defects, Ventricular/genetics , Mutation , Transcription Factors/genetics
12.
Adv Exp Med Biol ; 1441: 937-945, 2024.
Article in English | MEDLINE | ID: mdl-38884762

ABSTRACT

Hypoplastic left heart syndrome (HLHS) is a severe congenital cardiovascular malformation characterized by hypoplasia of the left ventricle, aorta, and other structures on the left side of the heart. The pathologic definition includes atresia or stenosis of both the aortic and mitral valves. Despite considerable progress in clinical and surgical management of HLHS, mortality and morbidity remain concerns. One barrier to progress in HLHS management is poor understanding of its cause. Several lines of evidence point to genetic origins of HLHS. First, some HLHS cases have been associated with cytogenetic abnormalities (e.g., Turner syndrome). Second, studies of family clustering of HLHS and related cardiovascular malformations have determined HLHS is heritable. Third, genomic regions that encode genes influencing the inheritance of HLHS have been identified. Taken together, these diverse studies provide strong evidence for genetic origins of HLHS and related cardiac phenotypes. However, using simple Mendelian inheritance models, identification of single genetic variants that "cause" HLHS has remained elusive, and in most cases, the genetic cause remains unknown. These results suggest that HLHS inheritance is complex rather than simple. The implication of this conclusion is that researchers must move beyond the expectation that a single disease-causing variant can be found. Utilization of complex models to analyze high-throughput genetic data requires careful consideration of study design.


Subject(s)
Hypoplastic Left Heart Syndrome , Humans , Genetic Predisposition to Disease/genetics , Hypoplastic Left Heart Syndrome/genetics , Phenotype
13.
Prog Brain Res ; 286: 211-234, 2024.
Article in English | MEDLINE | ID: mdl-38876576

ABSTRACT

Working memory (WM) plays an important role in daily life and is known to correlated with aerobic fitness. However, whether the relationship between aerobic fitness and WM is dependent on the stimulus modality or is associated with one or multiple subprocesses involved in WM remains unknown. Accordingly, this study utilized event-related potentials (ERPs) to comprehensively examine the encoding, preparation, and retrieval processes during verbal and spatial WM performance. Eighty-eight young adults aged 18-30years were recruited to participate in two laboratory visits on separate days. On day 1, aerobic fitness was assessed by maximum oxygen consumption (V˙O2max) during a treadmill-based graded exercise test. On day 2, participants completed verbal and spatial WM tasks while P2, contingent negative voltage (CNV), and P3 components of ERP were recorded during the encoding, preparatory, and retrieval stages of WM, respectively. Results of hierarchical regression analysis showed that V˙O2max was positively correlated with response accuracy during the high-demanding condition of spatial WM after controlling for age, sex, and self-reported physical activity. Additionally, a higher level of V˙O2max was associated with larger terminal CNV amplitude at the Cz electrode during the high-demanding condition of spatial WM. These findings suggest that aerobic fitness may have selective beneficial associations with the motor preparatory process and subsequent task performance requiring a greater amount of spatial information but not the encoding and retrieval stages nor the verbal modality of WM.


Subject(s)
Electroencephalography , Evoked Potentials , Memory, Short-Term , Spatial Memory , Humans , Male , Female , Young Adult , Memory, Short-Term/physiology , Adult , Evoked Potentials/physiology , Adolescent , Spatial Memory/physiology , Oxygen Consumption/physiology , Exercise/physiology , Physical Fitness/physiology , Exercise Test
14.
Front Genet ; 15: 1387724, 2024.
Article in English | MEDLINE | ID: mdl-38846960

ABSTRACT

Fetal chromosomal abnormalities are the main cause of adverse pregnancy outcomes and are the focus of invasive prenatal diagnosis. Recent studies have demonstrated that various techniques have distinct advantages. Achieving high-resolution and effective prenatal chromosomal abnormality diagnosis requires a multi-technology integration strategy. Based on retrospective samples from a single center, we propose that integrating CNV-seq and karyotype analysis is an effective strategy for prenatal diagnosis of chromosomal abnormalities. In this study, 13.80% of the pregnant women (347/2514) were found to have likely pathogenic or pathogenic fetal chromosomal abnormalities using this integrated approach. Among these cases, 53.89% (187/347) had consistent chromosomal abnormalities detected by both CNV-seq and karyotyping analysis, while 19.02% (66/347) and 27.09% (94/347) of cases were diagnosed solely by CNV-seq or karyotyping, respectively. Fetal chromosomal abnormalities were identified in 18.39% of samples with abnormal ultrasound, which was significantly higher than the percentage found in samples with normal ultrasound (p < 0.001). Samples with multiple ultrasound abnormalities and single-indicator ultrasound abnormalities such as nasal bone dysplasia, renal dysplasia, or echogenic fetal bowel also had higher rates of chromosomal abnormalities (p < 0.05) compared to normal samples. Analyzing samples with Trio family data (N = 521) revealed that about 94% of variants of uncertain significance were inherited from parents and were non-pathogenic. Overall, integrating CNV-seq and karyotype analysis is an effective strategy for prenatal diagnosis of chromosomal abnormalities. This study provides valuable insights for correlating prenatal screening indicators with chromosomal abnormalities.

15.
Am J Med Genet A ; : e63802, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38924610

ABSTRACT

Low-pass whole genome sequencing (LP-WGS) has been applied as alternative method to detect copy number variants (CNVs) in the clinical setting. Compared with chromosomal microarray analysis (CMA), the sequencing-based approach provides a similar resolution of CNV detection at a lower cost. In this study, we assessed the efficiency and reliability of LP-WGS as a more affordable alternative to CMA. A total of 1363 patients with unexplained neurodevelopmental delay/intellectual disability, autism spectrum disorders, and/or multiple congenital anomalies were enrolled. Those patients were referred from 15 nonprofit organizations and university centers located in different states in Brazil. The analysis of LP-WGS at 1x coverage (>50kb) revealed a positive testing result in 22% of the cases (304/1363), in which 219 and 85 correspond to pathogenic/likely pathogenic (P/LP) CNVs and variants of uncertain significance (VUS), respectively. The 16% (219/1363) diagnostic yield observed in our cohort is comparable to the 15%-20% reported for CMA in the literature. The use of commercial software, as demonstrated in this study, simplifies the implementation of the test in clinical settings. Particularly for countries like Brazil, where the cost of CMA presents a substantial barrier to most of the population, LP-WGS emerges as a cost-effective alternative for investigating copy number changes in cytogenetics.

16.
Int J Mol Sci ; 25(11)2024 May 28.
Article in English | MEDLINE | ID: mdl-38892065

ABSTRACT

Hormone receptor-positive and HER2-negative breast cancer (HR+/HER2-BC) is the most common type with a favorable prognosis under endocrine therapy. However, it still demonstrates unpredictable progression and recurrences influenced by high tumoral diversity and microenvironmental status. To address these heterogeneous molecular characteristics of HR+/HER2-BC, we aimed to simultaneously characterize its transcriptomic landscape and genetic architecture at the same resolution. Using advanced single-cell RNA and DNA sequencing techniques together, we defined four distinct tumor subtypes. Notably, the migratory tumor subtype was closely linked to genomic alterations of EGFR, related to the tumor-promoting behavior of IL6-positive inflammatory tumor-associated fibroblast, and contributing to poor prognosis. Our study comprehensively utilizes integrated analysis to uncover the complex dynamics of this breast cancer subtype, highlighting the pivotal role of the migratory tumor subtype in influencing surrounding cells. This sheds light on potential therapeutic targets by offering enhanced insights for HR+/HER2-BC treatment.


Subject(s)
Breast Neoplasms , Cancer-Associated Fibroblasts , Cell Movement , Receptor, ErbB-2 , Humans , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Breast Neoplasms/genetics , Female , Cancer-Associated Fibroblasts/metabolism , Cancer-Associated Fibroblasts/pathology , Receptor, ErbB-2/metabolism , Receptor, ErbB-2/genetics , Gene Expression Regulation, Neoplastic , Receptors, Estrogen/metabolism , Receptors, Estrogen/genetics , Tumor Microenvironment , Cell Line, Tumor , Receptors, Progesterone/metabolism , Receptors, Progesterone/genetics , Prognosis , ErbB Receptors/metabolism , ErbB Receptors/genetics , Single-Cell Analysis
17.
Int J Mol Sci ; 25(11)2024 May 29.
Article in English | MEDLINE | ID: mdl-38892127

ABSTRACT

ABCA4 is the most frequently mutated gene leading to inherited retinal disease (IRD) with over 2200 pathogenic variants reported to date. Of these, ~1% are copy number variants (CNVs) involving the deletion or duplication of genomic regions, typically >50 nucleotides in length. An in-depth assessment of the current literature based on the public database LOVD, regarding the presence of known CNVs and structural variants in ABCA4, and additional sequencing analysis of ABCA4 using single-molecule Molecular Inversion Probes (smMIPs) for 148 probands highlighted recurrent and novel CNVs associated with ABCA4-associated retinopathies. An analysis of the coverage depth in the sequencing data led to the identification of eleven deletions (six novel and five recurrent), three duplications (one novel and two recurrent) and one complex CNV. Of particular interest was the identification of a complex defect, i.e., a 15.3 kb duplicated segment encompassing exon 31 through intron 41 that was inserted at the junction of a downstream 2.7 kb deletion encompassing intron 44 through intron 47. In addition, we identified a 7.0 kb tandem duplication of intron 1 in three cases. The identification of CNVs in ABCA4 can provide patients and their families with a genetic diagnosis whilst expanding our understanding of the complexity of diseases caused by ABCA4 variants.


Subject(s)
ATP-Binding Cassette Transporters , DNA Copy Number Variations , Retinal Diseases , Humans , ATP-Binding Cassette Transporters/genetics , Retinal Diseases/genetics , Female , Male , Pedigree , Introns/genetics , Exons/genetics , Gene Duplication
18.
Curr Issues Mol Biol ; 46(5): 4832-4844, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38785559

ABSTRACT

Congenital adrenal hyperplasia (CAH) is a group of autosomal recessive genetic defects in cortisol synthesis and shows elevated ACTH concentrations, which in turn has downstream effects. The most common variant of CAH, 21-hydroxylase deficiency (21OHD), is the result of pathogenic variants in the CYP21A2 gene and is one of the most common monogenic disorders. However, the genetics of 21OHD is complex and challenging. The CYP21A2 gene is located in the RCCX copy number variation (CNV), a complex, multiallelic, and tandem CNV in the major histocompatibility complex (MHC) class III region on chromosome 6 (band 6p21.3). Here, CYP21A2 and its pseudogene CYP21A1P are located 30 kb apart and share a high nucleotide homology of approximately 98% and 96% in exons and introns, respectively. This high-sequence homology facilitates large structural rearrangements, copy number changes, and gene conversion through intergenic recombination. There is a good genotype-phenotype correlation in 21OHD, and genotyping can be performed to confirm the clinical diagnosis, predict long-term outcomes, and determine genetic counseling. Thus, genotyping in CAH is clinically relevant but the interpretations can be challenging for non-initiated clinicians. Here, there are some concrete examples of how molecular diagnosis can sometimes require the use of multiple molecular strategies.

19.
Bioengineering (Basel) ; 11(5)2024 May 10.
Article in English | MEDLINE | ID: mdl-38790345

ABSTRACT

Objectives: This study entailed a weekly analysis of real-world data (RWD) on the safety and efficacy of intravitreal (IVT) faricimab in neovascular age-related macular degeneration (nAMD). Methods: A retrospective, single-centre clinical trial was conducted at the Department of Ophthalmology, University Hospital Zurich, University of Zurich, Switzerland, approved by the Cantonal Ethics Committee of Zurich, Switzerland. Patients with nAMD were included. Data from patient charts and imaging were analysed. The safety and efficacy of the first faricimab injection were evaluated weekly until 4 weeks after injection. Results: Sixty-three eyes with a complete 4-week follow-up were enrolled. Six eyes were treatment-naïve; fifty-seven eyes were switched to faricimab from another treatment. Neither group showed signs of retinal vasculitis during the 4 weeks after injection. Central subfield thickness (CST) and volume (CSV) showed a statistically significant decrease compared to the baseline in the switched group (CST: p = 0.00383; CSV: p = 0.00702) after 4 weeks. The corrected visual acuity returned to the baseline level in both groups. The macular neovascularization area decreased in both groups, but this was not statistically significant. A complete resolution of sub- and intraretinal fluid after 4 weeks was found in 40% (switched) and 75% (naïve) of the treated patients. Conclusions: The weekly follow-ups reflect the structure-function relationship beginning with a fast functional improvement within two weeks after injection followed by a return to near-baseline levels after week 3. The first faricimab injection in our cohort showed a high safety profile and a statistically significant reduction in macular oedema in switched nAMD patients.

20.
Mol Neurodegener ; 19(1): 43, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38812061

ABSTRACT

A ~ 1 Mb inversion polymorphism exists within the 17q21.31 locus of the human genome as direct (H1) and inverted (H2) haplotype clades. This inversion region demonstrates high linkage disequilibrium, but the frequency of each haplotype differs across ancestries. While the H1 haplotype exists in all populations and shows a normal pattern of genetic variability and recombination, the H2 haplotype is enriched in European ancestry populations, is less frequent in African ancestry populations, and nearly absent in East Asian ancestry populations. H1 is a known risk factor for several neurodegenerative diseases, and has been associated with many other traits, suggesting its importance in cellular phenotypes of the brain and entire body. Conversely, H2 is protective for these diseases, but is associated with predisposition to recurrent microdeletion syndromes and neurodevelopmental disorders such as autism. Many single nucleotide variants and copy number variants define H1/H2 haplotypes and sub-haplotypes, but identifying the causal variant(s) for specific diseases and phenotypes is complex due to the extended linkage equilibrium. In this review, we assess the current knowledge of this inversion region regarding genomic structure, gene expression, cellular phenotypes, and disease association. We discuss recent discoveries and challenges, evaluate gaps in knowledge, and highlight the importance of understanding the effect of the 17q21.31 haplotypes to promote advances in precision medicine and drug discovery for several diseases.


Subject(s)
Haplotypes , Neurodegenerative Diseases , tau Proteins , Humans , Haplotypes/genetics , Neurodegenerative Diseases/genetics , tau Proteins/genetics , Genetic Predisposition to Disease/genetics , Linkage Disequilibrium/genetics , Polymorphism, Single Nucleotide/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...