Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 15.032
Filter
1.
South Afr J Crit Care ; 40(1): e652, 2024.
Article in English | MEDLINE | ID: mdl-38989480

ABSTRACT

Background: The difference in partial pressure of carbon dioxide (PCO2) between mixed or central venous blood and arterial blood, known as the ∆PCO2 or CO2 gap, has demonstrated a strong relationship with cardiac index during septic shock resuscitation. Early monitoring of the ∆PCO2 can help assess the cardiac output (CO) adequacy for tissue perfusion. Objectives: To investigate the value of ∆PCO2 changes in early septic shock management compared with CO. Methods: This observational prospective study included 76 patients diagnosed with septic shock admitted to Cairo University Hospital's Critical Care Department between December 2020 and March 2022. Patients were categorised by initial resuscitation response, initial ∆PCO2 and 28-day mortality. The primary outcome was the relationship between the ∆PCO2 and CO changes before and after initial resuscitation, with secondary outcomes including ICU length of stay (LOS) and 28-day mortality. Results: Peri-resuscitation ∆PCO2 changes predicted a ≥15% change in the cardiac index (CI) (area under the curve (AUC) 0.727; 95% CI 0.614 - 0.840) with 66.7% sensitivity and 62.8% specificity. The optimal ∆PCO2 change cut-off value was <-1.85, corresponding to a <-22% threshold for a 15% cardiac index increase. The PCO2 gap ratio (gap/gap ratio of T1- PCO2 gap to T0 -PCO2 gap) also predicted a ≥15% change in cardiac index (AUC 745; 95% CI 0.634 - 0.855) with 63.6% sensitivity and 79.1% specificity. The optimal CO2 gap/gap ratio cut-off value was <0.71. A significant difference in 28-day mortality was noted based on the gap/gap ratio. Conclusion: Peri-resuscitation ∆PCO2 and the gap/gap ratio are useful non-invasive bedside markers for predicting changes in CO and preload responsiveness. Contribution of the study: The current study provides an insight to the PCO2 gap changes during and after early resuscitation of septic shock patients, which correlate to cardiac output changes and might also serve as a fluid responsiveness indicator.

2.
Chemphyschem ; : e202400536, 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38989542

ABSTRACT

The testing and evaluation of catalysts in CO2 electroreduction is a very tedious process. To study the catalytic system of CO2 reduction more quickly and efficiently, it is necessary to establish a method that can detect multiple catalysts at the same time. Herein, a series of CuBi bimetallic catalysts have been successfully prepared on a single glass carbon electrode by a scanning micropieptte contact method. The application of scanning electrochemical microscopy (SECM) enabled the visualization of the CO2 reduction activity in diverse catalyst micro-points. The SECM imaging with Substrate generation/tip collection (SG/TC) mode was conducted on CuBi bimetallic micro-points, revealing that HER reaction emerged as the prevailing reaction when a low overpotential was employed. While the applied potential was lower than -1.5 V (vs Ag/AgCl), the reduction of CO2 to formic acid became dominant. Increasing the bismuth proportion in the bimetallic catalyst can inhibit the hydrogen evolution reaction at low potential and enhances the selectivity of the CO product at high cathode overpotential.This research offers a novel approach to examining arrays of catalysts for CO2 reduction.

3.
J Colloid Interface Sci ; 675: 207-217, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38968637

ABSTRACT

At present, electrochemical CO2 reduction has been developed towards industrial current density, but the high faradaic efficiency at wide potential range or large current density is still an arduous task. Therefore, in this work, the highly exposed Ni single atoms (NiNCR-0.72) was synthesized through simple metal organic frameworks (MOFs)-derived method with SiO2 protection strategy. The obtained catalyst keeps CO faradaic efficiency (FECO) above 91 % under the wide potential range, and achieves a high FECO of 96.0 % and large CO partial current density of -206.8 mA cm-2 at -0.7 V in flow cell. The experimental results and theoretical calculation disclose that NiNCR-0.72 possesses the robust structure with rich mesopore and more highly exposed Ni-N active sites under SiO2 protection, which could facilitate CO2 transportation, lower energy barrier of CO2 reduction, and raise difficulty of hydrogen evolution reaction. The protection strategy is instructive to the synthesis of other MOFs-derived metal single atoms.

4.
J Colloid Interface Sci ; 675: 150-191, 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38968635

ABSTRACT

Photocatalysis is a promising sustainable technology to remove organic pollution and convert solar energy into chemical energy. Titanium dioxide has drawn extensive attention in this field owing to its high activity under UV light, good chemical stability, large availability, low price and low toxicity. However, the poor quantum efficiency derived from fast electron/hole recombination, the limited utilization of sunlight, and a weak reducing ability still hinder its practical application. Among the modification strategies of TiO2 to enhance its performance, the construction of heterojunctions with other semiconductors is a powerful and versatile way to maximise the separation of photogenerated charge carriers and steer their transport toward enhanced efficiency and selectivity. Here, the research progress and current status of TiO2 modification are reviewed, focusing on heterojunctions. A rapid evolution of the understanding of the different charge transfer mechanisms is witnessed from traditional type II to the recently conceptualised S-scheme. Particular attention is paid to different synthetic approaches and interface engineering methods designed to improve and control the interfacial charge transfer, and several cases of TiO2 heterostructures with metal oxides, metal sulfides and carbon nitride are discussed. The application hotspots of TiO2-based photocatalysts are summarized, including hydrogen generation by water splitting, solar fuel production by CO2 conversion, and the degradation of organic water pollutants. Hints about less studied and emerging processes are also provided. Finally, the main issues and challenges related to the sustainability and scalability of photocatalytic technologies in view of their commercialization are highlighted, outlining future directions of development.

5.
J Colloid Interface Sci ; 675: 94-103, 2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38968640

ABSTRACT

To enhance the economic viability of photocatalytic materials for carbon capture and conversion, the challenge of employing expensive photosensitizer must be overcome. This study aims to improve the visible light utilization with zirconium-based metal-organic frameworks (Zr-MOFs) by employing a multi-component post-synthetic modification (PSM) strategy. An economical photosensitiser and copper ions are introduced into MOF 808 to enhance its photoreduction properties. Notably, the PSM of MOF 808 shows the highest CO yield up to 236.5 µmol g-1 h-1 with aHCOOH production of 993.6 µmol g-1 h-1 under non-noble metal, and its mechanistic insight for CO2 reaction is discussed in detail. The research results have important reference value for the potential application of photocatalytic metal-organic frameworks.

6.
J Environ Manage ; 365: 121664, 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38968880

ABSTRACT

Public interest in climate change-related problems has been developing with the contribution of the recent energy crisis. Accordingly, countries have been increasing their efforts to decarbonize economies. In this context, energy transition and energy-related research and development (R&D) investments can be important strategic tools to be helpful to countries in the decarbonization of economies. Among all, Nordic countries have come to the force because of their well-known position as green economies. Hence, this study examines Nordic countries to investigate the impact of energy transition, renewable energy R&D investments (RRD), energy efficiency R&D investments (EEF) on carbon dioxide (CO2) emissions by performing wavelet local multiple correlation (WLMC) model and using data from 2000/1 to 2021/12. The outcomes reveal that (i) based on bi-variate cases, energy transition and RRD have a mixed impact on CO2 emissions in all countries across all frequencies; EEF has a declining impact on CO2 emissions in Norway (Sweden) at low and medium (very high) frequencies; (ii) according to four-variate cases, all variables have a combined increasing impact on CO2 emissions; (iii) RRD is the most influential dominant factor in all countries excluding Norway, where EEF is the pioneering one. Thus, the reach proves the varying impacts of energy transition, RRD, and EEF investments on CO2 emissions. In line with the outcomes of the novel WLMC model, various policy endeavors, such as focusing on displacement between sub-types of R&D investments, are argued to ensure the decarbonization of the economies.

7.
Chemosphere ; : 142763, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38969216

ABSTRACT

The loss of carbon and nitrogen from broiler litter limits nutrient recycling and is damaging to the environment. This study investigated lignite, a low-rank brown coal, as an amendment to reduce the loss of carbon and nitrogen from broiler litter over 3 consecutive grow-out cycles, November 2021 to May 2022, at a commercially operated farm in Victoria, Australia. Lignite-treated litter contained significantly more carbon and nitrogen, with an increase of 70.1 g/bird and 12.6 g/bird for carbon and nitrogen, respectively. Lignite also reduced aerobic microbial respiration, with a 46.0% reduction in CO2 flux recorded in week 7 of the study, resulting in reduced mass loss. It is expected that this is a key mechanism responsible for nutrient retention in litter following treatment with lignite. Furthermore, lignite treatment lowered litter moisture content by 7, 6 and 3 percentage points for grow-out 1, 2 and 3, respectively. These findings present lignite as a beneficial litter amendment for increasing the nutrient value of waste and reducing carbon dioxide emissions. The study highlights the potential of lignite to reduce the environmental impact of poultry production and presents an alternative use for lignite as an existing resource.

8.
Heliyon ; 10(11): e32388, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38961922

ABSTRACT

Dust cleaning systems are mandatory for use almost in any manufacturing process. Their market size is expected at US$10.77 billion by 2030 growing from US$7.28 billion in 2022. Removing dust particles is the main purpose of these systems and they make an invaluable contribution to environmental safety. However, while cleaning the air from solid particles, industrial pulse-jet baghouse collectors have an additional impact on the environment that usually is not considered. An analysis of energy consumption at the manufacturing and operation stages of the baghouse dust collectors allows for the evaluation of CO2 emissions. The analysis shows that, given the current state of affairs in the industry, by 2030 manufacturing and operation of baghouse dust collectors over the world will emit 70+ million tons of carbon dioxide additionally to the levels of 2021. To reduce the CO2-related environmental impact of industrial pulse-jet baghouse collectors, among all scientific and technical measures, it is recommended to simply scale up the dust collection system, which involves replacing several low-capacity collectors with one general-capacity collector within one industrial enterprise. This allows for a reduction in energy consumption at the collector manufacturing stage from 3 to 10 times and also ensures a significant reduction in operation energy consumption of the dust collector during its service life.

9.
Article in English | MEDLINE | ID: mdl-38963902

ABSTRACT

Dynamic color-changing materials have attracted broad interest due to their widespread applications in visual sensing, dynamic color display, anticounterfeiting, and image encryption/decryption. In this work, we demonstrate a novel pH-responsive dynamic color-changing material based on a metal-insulator-metal (MIM) Fabry-Perot (FP) cavity with a pH-responsive poly(N,N-dimethylaminoethyl methacrylate) (PDMAEMA) brush layer as the responsive insulating layer. The pH-responsive PDMAEMA brush undergoes protonation at a low pH value (pH < 6), which induces different swelling degrees in response to pH and thus refractive index and thickness change of the insulator layer of the MIM FP cavity. This leads to significant optical property changes in transmission and a distinguishable color change spanning the whole visible region by adjusting the pH value of the external environment. Due to the reversible conformational change of the PDMAEMA and the formation of covalent bonds between the PDMAEMA molecular chain and the Ag substrate, the MIM FP cavity exhibits stable performance and good reproducibility. This pH-responsive MIM FP cavity establishes a new way to modulate transmission color in the full visible region and exhibits a broad prospect of applications in dynamic color display, real-time environment monitoring, and information encryption and decryption.

10.
Article in English | MEDLINE | ID: mdl-38965043

ABSTRACT

Solid oxide electrolysis cells (SOECs) show significant promise in converting CO2 to valuable fuels and chemicals, yet exploiting efficient electrode materials poses a great challenge. Perovskite oxides, known for their stability as SOEC electrodes, require improvements in electrocatalytic activity and conductivity. Herein, vanadium(V) cation is newly introduced into the B-site of Sr2Fe1.5Mo0.5O6-δ perovskite to promote its electrochemical performance. The substitution of variable valence V5+ for Mo6+ along with the creation of oxygen vacancies contribute to improved electronic conductivity and enhanced electrocatalytic activity for CO2 reduction. Notably, the Sr2Fe1.5Mo0.4V0.1O6-δ based symmetrical SOEC achieves a current density of 1.56 A cm-2 at 1.5 V and 800 °C, maintaining outstanding durability over 300 h. Theoretical analysis unveils that V-doping facilitates the formation of oxygen vacancies, resulting in high intrinsic electrocatalytic activity for CO2 reduction. These findings present a viable and facile strategy for advancing electrocatalysts in CO2 conversion technologies.

11.
J Colloid Interface Sci ; 673: 985-996, 2024 Jun 08.
Article in English | MEDLINE | ID: mdl-38959699

ABSTRACT

Due to the high dissociation energy of carbon dioxide (CO2) and sluggish charge transfer dynamics, photocatalytic CO2 reduction with high performance remains a huge challenge. Herein, we report a novel dual-homojunction photocatalyst comprising of cyano/cyanamide groups co-modified carbon nitride (CN-TH) intramolecular homojunction and 1 T/2H-MoSe2 homojunction (denoted as 1 T/2H-MoSe2/CN-TH) for enhanced photocatalytic CO2 reduction. In this dual-homojunction photocatalyst, the intramolecular CN-TH homojunction could promote the intralayer charge separation and transfer owing to the strong electron-withdrawing capabilities of the two-type cyanamide, while the 1 T/2H-MoSe2 homojunction mainly contributes to a promote interlayer charge transport of CN-TH. This could consequently induce a tandem multi-step charge transfer and accelerate the charge transfer dynamics, resulting in enhanced CO2 reduction activities. Thanks to this tandem multi-step charge transfer, the optimized 1 T/2H-MoSe2/CN-TH dual-homojunction photocatalyst presented a high CO yield of 27.36 µmol·g-1·h-1, which is 3.58 and 2.87 times higher than those of 1 T/2H-MoSe2/CN and 2H-MoSe2/CN-TH single homojunctions, respectively. This work provides a novel strategy for efficient CO2 reduction via achieving a tandem multi-step charge transfer through designing dual-homojunction photocatalyst.

12.
Nanotechnology ; 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38959865

ABSTRACT

Nickel anchored N-doped carbon electrocatalysts (Ni-N-C) are rapidly developed for the electrochemical reduction reaction of carbon dioxide (CO2RR). However, the high-performanced Ni-N-C analogues design for CO2RR remains bewilderment, for the reason lacking of definite guidance for its structure-activity relationship. Herein, the correlation between the proportion of nitrogen species derived from various nitrogen sources and the CO2RR activity of Ni-N-C is investigated. The X-ray photoelectron spectroscopy (XPS) spectrum combined with the CO2RR performance results show that pyridinic-N content has a positive correlation with CO2RR activity. Moreover, density functional theory (DFT) demonstrates that pyridinic-N coordinated Ni-N4 sites offers optimized free energy and favorable selectivity towards CO2RR compared with pyrrolic-N. Accordingly, Ni-Na-C with highest pyridinic-N content (ammonia as nitrogen source) performs superior CO2RR activity, with the maximum carbon monoxide faradaic efficiency (FECO) of 99.8% at -0.88 V vs. RHE and the FECO surpassing 95% within potential ranging of -0.88 to -1.38 V vs. RHE. The building of this parameter for CO2RR activity of Ni-N-C give instructive forecast for low-cost and highly active CO2RR electrocatalysts. .

13.
Article in English | MEDLINE | ID: mdl-38961021

ABSTRACT

The urgent need to address global carbon emissions and promote sustainable energy solutions has led to a growing interest in carbon dioxide (CO2) conversion technologies. Among these, the transformation of CO2 into methanol (MeOH) has gained prominence as an effective mitigation strategy. This review paper provides a comprehensive exploration of recent advances and applications in the direct utilization of CO2 for the synthesis of MeOH, encompassing various aspects from catalysts to market analysis, environmental impact, and future prospects. We begin by introducing the current state of CO2 mitigation strategies, highlighting the significance of carbon recycling through MeOH production. The paper delves into the chemistry and technology behind the conversion of CO2 into MeOH, encompassing key themes such as feedstock selection, material and energy supply, and the various conversion processes, including chemical, electrochemical, photochemical, and photoelectrochemical pathways. An in-depth analysis of heterogeneous and homogeneous catalysts for MeOH synthesis is provided, shedding light on the advantages and drawbacks of each. Furthermore, we explore diverse routes for CO2 hydrogenation into MeOH, emphasizing the technological advances and production processes associated with this sustainable transformation. As MeOH holds a pivotal role in a wide range of chemical applications and emerges as a promising transportation fuel, the paper explores its various chemical uses, transportation, storage, and distribution, as well as the evolving MeOH market. The environmental and energy implications of CO2 conversion to MeOH are discussed, including a thermodynamic analysis of the process and cost and energy evaluations for large-scale catalytic hydrogenation.

14.
Article in English | MEDLINE | ID: mdl-38961823

ABSTRACT

Prior studies have identified variable effects of healthy aging on neurovascular coupling (NVC). Carbon dioxide (CO2) affects both cerebral blood velocity (CBv) and NVC, but the effects of age on NVC under different CO2 conditions are unknown. Therefore, we investigated the effects of aging on NVC in different CO2 states in healthy controls during cognitive paradigms. 78 healthy participants (18-78 years) underwent continuous recordings of CBv by bilateral insonation of middle (MCA) and posterior (PCA) cerebral arteries (transcranial Doppler), blood pressure, end-tidal CO2, and heart rate during poikilocapnia, hypercapnia (5% CO2 inhalation) and hypocapnia (paced hyperventilation). Neuroactivation via visuospatial (VS) and attention tasks (AT) augmented CBv. Peak percentage change in MCAv/PCAv, were compared between CO2 conditions and age groups (< 30, 31-60, and >60 years). For the VS task, in normocapnia, younger adults had a lower NVC response compared to older adults (mean difference (MD): -7.92% (standard deviation (SD): 2.37), p=0.004), but comparable between younger and middle-aged groups. In hypercapnia, both younger (MD: -4.75% (SD: 1.56), p=0.009) and middle (MD: -4.58% (SD: 1.69), p=0.023) age groups had lower NVC responses compared to older adults. Finally, in hypocapnia, both older (MD: 5.92% (SD: 2.21), p=0.025) and middle (MD: 5.44% (SD: 2.27), p=0.049) age groups had greater NVC responses, compared to younger adults. In conclusion, the middle-aged adults demonstrated a variable NVC response, comparable to younger adults under hypercapnia, and older adults under hypocapnia. This may owe to a more cognitively favourable profile while under hypercapnic conditions, compared to hypocapnia.

15.
ChemSusChem ; : e202401007, 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38962948

ABSTRACT

First row transition metal complexes have attracted attention as abundant and affordable electrocatalysts for CO2 reduction. Manganese complexes bearing bis-N-heterocyclic carbene ligands defining 6-membered ring metallacycles have proven to reduce CO2 to CO selectively at very high rates. Herein, we report the synthesis of manganese carbonyl complexes supported by a rigid ortho-phenylene bridged bis-N-heterocyclic carbene ligand (orthophenylene-bis(N-methylimidazol-2-ylidene, Ph-bis-mim), which defines a 7-membered ring metallacycle. We performed a comparative study with the analogues bearing an ethylene-bis(Nmethylimidazol-2-ylidene ligand (C2H4-bis-mim) and a methylenebis(N-methylimidazol-2-ylidene ligand (CH2-bis-mim) and found that catalysts comprising a seven-membered metallacycle retain similar selectivity and high activity as those with six-membered metallacycles, while reducing the overpotential by 120-190 mV. This study reveals general design principles for manganese bis-N-heterocyclic carbene electrocatalysts which can guide further designs of affordable, fast and low overpotential catalysts for CO2 electroreduction.

16.
Adv Mater ; : e2405685, 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38963061

ABSTRACT

To facilitate the transition from a carbon-energy-dependent society to a sustainable society, conventional engineering strategies, which encounter limitations associated with intrinsic material properties, should undergo the paradigm shift. From a theoretical viewpoint, the spin-dependent feature of oxygen evolution reaction (OER) reveals the potential of a spin-polarization strategy in enhancing the performance of electrochemical (EC) reactions. The chirality-induced spin selectivity (CISS) phenomenon attracts unprecedented attention owing to its potential utility in achieving novel breakthroughs. This paper starts with the experimental results aimed at enhancing the efficiency of the spin-dependent OER focusing on the EC system based on the CISS phenomenon. The applicability of spin-polarization to EC system is verified through various analytical methodologies to clarify the theoretical groundwork and mechanisms underlying the spin-dependent reaction pathway. The discussion is then extended to effective spin-control strategies in photoelectrochemical system based on the CISS effect. Exploring the influence of spin-state control on the kinetic and thermodynamic aspects, this perspective also discusses the effect of spin polarization induced by the CISS phenomenon on spin-dependent OER. Lastly, future directions for enhancing the performance of spin-dependent redox systems are discussed, including expansion to various chemical reactions and the development of materials with spin-control capabilities.

17.
Angew Chem Int Ed Engl ; : e202409977, 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38963235

ABSTRACT

Rising global temperatures and critical energy shortages have spurred researches into CO2 fixation and conversion within the realm of energy storage such as Zn-CO2 batteries. However, traditional Zn-CO2 batteries employ double-compartment electrolytic cells with separate carriers for catholytes and anolytes, diverging from the "rocking chair" battery mechanism. The specific energy of these conventional batteries is constrained by the solubility of discharge reactants/products in the electrolyte. Additionally, H2O molecules tend to trigger parasitic reactions at the electrolyte/electrode interfaces, undermining the long-term stability of Zn anodes. In this report, we introduce an innovative "rocking chair" type Zn-CO2 battery that utilizes a weak-acidic Zn(OTf)2 aqueous electrolyte compatible with both cathode and anode. This design minimizes side reactions on the Zn surface and leverages the high catalytic activity of the cathode material, allowing the battery to achieve a substantial discharge capacity of 6734 mAh g-1 and maintain performance over 65 cycles. Moreover, the successful production of pouch cells demonstrates the practical applicability of Zn-CO2 batteries. Electrode characterizations confirm superior electrochemical reversibility, facilitated by solid discharge products of ZnCO3 and C. This work advances a "rocking chair" Zn-CO2 battery with enhanced specific energy and a reversible pathway, providing a foundation for developing high-performance metal-CO2 batteries.

18.
Article in English | MEDLINE | ID: mdl-38953879

ABSTRACT

Modification with conductive organic polymers consisting of a thiophane- or pyrrole-based backbone improved the cathodic photocurrent of a particulate-CuGaS2-based photoelectrode under simulated solar light. Among these polymers, poly(3,4-ethylenedioxythiophene) (PEDOT) was the most effective in the improvements, providing a photocurrent 670 times as high as that of the bare photocathode. An incident-photon-to-current efficiency (IPCE) for water reduction to form H2 under monochromatic light irradiation (450 nm at 0 V vs RHE) was ca. 11%. The most important point is that modification of the conductive organic polymers does not involve any vacuum processes. This importance lies in the use of an electrochemically oxidative polymerization, not in a physical process such as vapor deposition of metal conductors. This is expected to be advantageous in the large-scale application of photocathodes consisting of particulate photocatalyst materials toward industrial solar-hydrogen production using photoelectrochemical-cell-based devices. Artificial photosynthesis of water splitting and CO2 reduction under simulated solar light was demonstrated by combining the PEDOT-modified CuGaS2 photocathode with a CoOx-loaded BiVO4 photoanode. Furthermore, how the cathodic photocurrent of the particulate-CuGaS2-based photocathode was drastically improved by the modification was clarified based on various characterizations and control experiments as follows: (1) selectively filling cavities between the particulate CuGaS2 photocatalysts and a conductive substrate (FTO; fluorine-doped tin oxide) with the polymers and (2) using a large driving force for carrier transportation governed by the polymers' redox potentials adjusted by functional groups.

19.
ACS Synth Biol ; 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38954490

ABSTRACT

Carbon dioxide emission and acidification during chemical biosynthesis are critical challenges toward microbial cell factories' sustainability and efficiency. Due to its acidophilic traits among workhorse lineages, the probiotic Escherichia coli Nissle (EcN) has emerged as a promising chemical bioproducer. However, EcN lacks a CO2-fixing system. Herein, EcN was equipped with a simultaneous CO2 fixation system and subsequently utilized to produce low-emission 5-aminolevulinic acid (5-ALA). Two different artificial CO2-assimilating pathways were reconstructed: the novel ribose-1,5-bisphosphate (R15P) route and the conventional ribulose-5-phosphate (Ru5P) route. CRISPRi was employed to target the pfkAB and zwf genes in order to redirect the carbon flux. As expected, the CRISPRi design successfully strengthened the CO2 fixation. The CO2-fixing route via R15P resulted in high biomass, while the engineered Ru5P route acquired the highest 5-ALA and suppressed the CO2 release by 77%. CO2 fixation during 5-ALA production in EcN was successfully synchronized through fine-tuning the non-native pathways with CRISPRi.

20.
Article in English | MEDLINE | ID: mdl-38956932

ABSTRACT

Artificial photosynthesis is an effective way of converting CO2 into fuel and high value-added chemicals. However, the sluggish interfacial electron transfer and adsorption of CO2 at the catalyst surface strongly hamper the activity and selectivity of CO2 reduction. Here, we report a photocathode attaching zeolitic imidazolate framework-8 (ZIF-8) onto a ZnTe surface to mimic an aquatic leaf featuring stoma and chlorophyll for efficient photoelectrochemical conversion of CO2 into CO. ZIF-8 possessing high CO2 adsorption capacity and diffusivity has been selected to enrich CO2 into nanocages and provide a large number of catalytic active sites. ZnTe with high light-absorption capacity serves as a light-absorbing layer. CO2 molecules are collected in large nanocages of ZIF-8 and delivered to the ZnTe surface. As evidenced by scanning electrochemical microscopy, the interface can effectively boost interfacial electron transfer kinetics. The ZIF-8/ZnTe photocathode with unsaturated Zn-Nx sites exhibits a high Faradaic efficiency for CO production of 92.9% and a large photocurrent of 6.67 mA·cm-2 at -2.48 V (vs Fc/Fc+) in a nonaqueous electrolyte at AM 1.5G solar irradiation (100 mW·cm-2).

SELECTION OF CITATIONS
SEARCH DETAIL
...