Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters











Publication year range
1.
Genes (Basel) ; 15(9)2024 Aug 26.
Article in English | MEDLINE | ID: mdl-39336714

ABSTRACT

The prevalence of squamous cell carcinoma is increasing, and efforts that aid in an early and accurate diagnosis are crucial to improve clinical outcomes for patients. Cornulin, a squamous epithelium-specific protein, has recently garnered attention due to its implications in the progression of squamous cell carcinoma developed in several tissues. As an epidermal differentiation marker, it is involved in skin anchoring, regulating cellular proliferation, and is a putative tumor suppressor. The physiologically healthy squamous epithelium displays a considerable level of Cornulin, whereas squamous cell carcinomas have marked downregulation, suggesting that Cornulin expression levels can be utilized for the early detection and follow-up on the progression of these types of cancer. Cornulin's expression patterns in cervical cancer have been examined, and findings support the stepwise downregulation of Cornulin levels that accompanies the progression to neoplasia in the cervix. Additional studies documented a similar trend in expression in other types of cancer, such as cutaneous, esophageal, and oropharyngeal squamous cell carcinomas. The consistent and predictable pattern of Cornulin expression across several squamous cell carcinomas and its correlation with key clinicopathological parameters make it a reliable biomarker for assessing the transformation and progression events in the squamous epithelium, thus potentially contributing to the early detection, definitive diagnosis, and more favorable prognosis for these cancer patients.


Subject(s)
Biomarkers, Tumor , Carcinoma, Squamous Cell , Humans , Biomarkers, Tumor/metabolism , Biomarkers, Tumor/genetics , Carcinoma, Squamous Cell/diagnosis , Carcinoma, Squamous Cell/metabolism , Carcinoma, Squamous Cell/genetics , Carcinoma, Squamous Cell/pathology , Prognosis , Cornified Envelope Proline-Rich Proteins/genetics , Cornified Envelope Proline-Rich Proteins/metabolism , Female , Uterine Cervical Neoplasms/diagnosis , Uterine Cervical Neoplasms/genetics , Uterine Cervical Neoplasms/metabolism , Uterine Cervical Neoplasms/pathology , Epithelium/metabolism , Epithelium/pathology , Gene Expression Regulation, Neoplastic , Membrane Proteins/genetics , Membrane Proteins/metabolism , Neoplasm Proteins
2.
Network ; : 1-23, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38832629

ABSTRACT

Natural language is frequently employed for information exchange between humans and computers in modern digital environments. Natural Language Processing (NLP) is a basic requirement for technological advancement in the field of speech recognition. For additional NLP activities like speech-to-text translation, speech-to-speech translation, speaker recognition, and speech information retrieval, language identification (LID) is a prerequisite. In this paper, we developed a Language Identification (LID) model for Ethio-Semitic languages. We used a hybrid approach (a convolutional recurrent neural network (CRNN)), in addition to a mixed (Mel frequency cepstral coefficient (MFCC) and mel-spectrogram) approach, to build our LID model. The study focused on four Ethio-Semitic languages: Amharic, Ge'ez, Guragigna, and Tigrinya. By using data augmentation for the selected languages, we were able to expand our original dataset of 8 h of audio data to 24 h and 40 min. The proposed selected features, when evaluated, achieved an average performance accuracy of 98.1%, 98.6%, and 99.9% for testing, validation, and training, respectively. The results show that the CRNN model with (Mel-Spectrogram + MFCC) combination feature achieved the best results when compared to other existing models.

3.
Front Neurorobot ; 18: 1284175, 2024.
Article in English | MEDLINE | ID: mdl-38510208

ABSTRACT

Introduction: Intelligent robots play a crucial role in enhancing efficiency, reducing costs, and improving safety in the logistics industry. However, traditional path planning methods often struggle to adapt to dynamic environments, leading to issues such as collisions and conflicts. This study aims to address the challenges of path planning and control for logistics robots in complex environments. Methods: The proposed method integrates information from different perception modalities to achieve more accurate path planning and obstacle avoidance control, thereby enhancing the autonomy and reliability of logistics robots. Firstly, a 3D convolutional neural network (CNN) is employed to learn the feature representation of objects in the environment for object recognition. Next, long short-term memory (LSTM) is used to model spatio-temporal features and predict the behavior and trajectory of dynamic obstacles. This enables the robot to accurately predict the future position of obstacles in complex environments, reducing collision risks. Finally, the Dijkstra algorithm is applied for path planning and control decisions to ensure the robot selects the optimal path in various scenarios. Results: Experimental results demonstrate the effectiveness of the proposed method in terms of path planning accuracy and obstacle avoidance performance. The method outperforms traditional approaches, showing significant improvements in both aspects. Discussion: The intelligent path planning and control scheme presented in this paper enhances the practicality of logistics robots in complex environments, thereby promoting efficiency and safety in the logistics industry.

4.
Front Biosci (Landmark Ed) ; 29(3): 125, 2024 Mar 22.
Article in English | MEDLINE | ID: mdl-38538265

ABSTRACT

BACKGROUND: The prevalence of laryngeal squamous cell carcinoma (LSCC) is increasing, and it poses a significant threat to human health; therefore, identifying specific targets for LSCC remains crucial. METHODS: Bioinformatics analysis was used to compare the different expression genes expressed in LSCC. Immunohistochemical assay and western blotting were used to analysis protein expression. Cell viability was measured by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide)((4,5 Dimethyl thiazol-2-Yl)-2,5-Diphenyltetrazolium Bromide)4,5 Dimethyl thiazol-2-Yl)-2,5-Diphenyltetrazolium Bromide (MTT) and 5-ethynyl 2'-deoxyuridine (Edu) assay. Flow cytometry was used to measure the cell cycle. Cell migration was measured by wound healing assay and transwell assay. RESULTS: Our analysis revealed 36 upregulated and 65 downregulated differentially expressed genes (DEGs) when comparing LSCC tumors to adjacent tissues, with cornulin (CRNN) identified as a key hub gene connecting these DEGs. We observed a consistent downregulation of CRNN expression in LSCC cell lines and tissues and was associated with poor patient survival and the tumor microenvironment. CRNN overexpression was found to significantly inhibit cell growth, cell cycle progression, migration and invasion, while CRNN knockdown had the opposite effects. Additionally, in vivo experiments demonstrated that CRNN overexpression suppressed tumor growth in nude mice. CONCLUSIONS: CRNN functions as a potential tumor suppressor and regulates important aspects of LSCC, providing valuable insights into the role of CRNN in LSCC pathogenesis and potential for targeted therapeutic interventions.


Subject(s)
Carcinoma, Squamous Cell , Laryngeal Neoplasms , MicroRNAs , Squamous Cell Carcinoma of Head and Neck , Animals , Humans , Mice , Bromides/metabolism , Carcinoma, Squamous Cell/metabolism , Cell Line, Tumor , Cell Proliferation/genetics , Gene Expression Regulation, Neoplastic , Laryngeal Neoplasms/genetics , Laryngeal Neoplasms/metabolism , Laryngeal Neoplasms/pathology , Mice, Nude , MicroRNAs/genetics , Squamous Cell Carcinoma of Head and Neck/genetics , Squamous Cell Carcinoma of Head and Neck/metabolism , Squamous Cell Carcinoma of Head and Neck/pathology , Tumor Microenvironment
5.
Sensors (Basel) ; 23(23)2023 Nov 28.
Article in English | MEDLINE | ID: mdl-38067830

ABSTRACT

The measurement and analysis of vital signs are a subject of significant research interest, particularly for monitoring the driver's physiological state, which is of crucial importance for road safety. Various approaches have been proposed using contact techniques to measure vital signs. However, all of these methods are invasive and cumbersome for the driver. This paper proposes using a non-contact sensor based on continuous wave (CW) radar at 24 GHz to measure vital signs. We associate these measurements with distinct temporal neural networks to analyze the signals to detect and extract heart and respiration rates as well as classify the physiological state of the driver. This approach offers robust performance in estimating the exact values of heart and respiration rates and in classifying the driver's physiological state. It is non-invasive and requires no physical contact with the driver, making it particularly practical and safe. The results presented in this paper, derived from the use of a 1D Convolutional Neural Network (1D-CNN), a Temporal Convolutional Network (TCN), a Recurrent Neural Network particularly the Bidirectional Long Short-Term Memory (Bi-LSTM), and a Convolutional Recurrent Neural Network (CRNN). Among these, the CRNN emerged as the most effective Deep Learning approach for vital signal analysis.


Subject(s)
Radar , Respiratory Rate , Neural Networks, Computer , Vital Signs/physiology , Heart , Respiration
6.
Sensors (Basel) ; 23(18)2023 Sep 07.
Article in English | MEDLINE | ID: mdl-37765773

ABSTRACT

The quality of railroad wheelsets is an important guarantee for the safe operation of wagons, and mastering the production information of wheelsets plays a vital role in vehicle scheduling and railroad transportation safety. However, when using objection detection methods to detect the production information of wheelsets, there are situations that affect detection such as character tilting and unfixed position. Therefore, this paper proposes a deep learning-based method for accurately detecting and recognizing tilted character information on railroad wagon wheelsets. It covers three parts. Firstly, we construct a tilted character detection network based on Faster RCNN for generating a wheelset's character candidate regions. Secondly, we design a tilted character correction network to classify and correct the orientation of flipped characters. Finally, a character recognition network is constructed based on convolutional recurrent neural network (CRNN) to realize the task of recognizing a wheelset's characters. The result shows that the method can quickly and effectively detect and identify the information of tilted characters on wheelsets in images.

7.
Sensors (Basel) ; 23(14)2023 Jul 16.
Article in English | MEDLINE | ID: mdl-37514732

ABSTRACT

Using the source-filter model of speech production, clean speech signals can be decomposed into an excitation component and an envelope component that is related to the phoneme being uttered. Therefore, restoring the envelope of degraded speech during speech enhancement can improve the intelligibility and quality of output. As the number of phonemes in spoken speech is limited, they can be adequately represented by a correspondingly limited number of envelopes. This can be exploited to improve the estimation of speech envelopes from a degraded signal in a data-driven manner. The improved envelopes are then used in a second stage to refine the final speech estimate. Envelopes are typically derived from the linear prediction coefficients (LPCs) or from the cepstral coefficients (CCs). The improved envelope is obtained either by mapping the degraded envelope onto pre-trained codebooks (classification approach) or by directly estimating it from the degraded envelope (regression approach). In this work, we first investigate the optimal features for envelope representation and codebook generation by a series of oracle tests. We demonstrate that CCs provide better envelope representation compared to using the LPCs. Further, we demonstrate that a unified speech codebook is advantageous compared to the typical codebook that manually splits speech and silence as separate entries. Next, we investigate low-complexity neural network architectures to map degraded envelopes to the optimal codebook entry in practical systems. We confirm that simple recurrent neural networks yield good performance with a low complexity and number of parameters. We also demonstrate that with a careful choice of the feature and architecture, a regression approach can further improve the performance at a lower computational cost. However, as also seen from the oracle tests, the benefit of the two-stage framework is now chiefly limited by the statistical noise floor estimate, leading to only a limited improvement in extremely adverse conditions. This highlights the need for further research on joint estimation of speech and noise for optimum enhancement.


Subject(s)
Speech Perception , Speech , Noise , Neural Networks, Computer , Cognition
8.
Bioengineering (Basel) ; 10(7)2023 Jul 21.
Article in English | MEDLINE | ID: mdl-37508891

ABSTRACT

PURPOSE: To develop a novel convolutional recurrent neural network (CRNN-DWI) and apply it to reconstruct a highly undersampled (up to six-fold) multi-b-value, multi-direction diffusion-weighted imaging (DWI) dataset. METHODS: A deep neural network that combines a convolutional neural network (CNN) and recurrent neural network (RNN) was first developed by using a set of diffusion images as input. The network was then used to reconstruct a DWI dataset consisting of 14 b-values, each with three diffusion directions. For comparison, the dataset was also reconstructed with zero-padding and 3D-CNN. The experiments were performed with undersampling rates (R) of 4 and 6. Standard image quality metrics (SSIM and PSNR) were employed to provide quantitative assessments of the reconstructed image quality. Additionally, an advanced non-Gaussian diffusion model was employed to fit the reconstructed images from the different approaches, thereby generating a set of diffusion parameter maps. These diffusion parameter maps from the different approaches were then compared using SSIM as a metric. RESULTS: Both the reconstructed diffusion images and diffusion parameter maps from CRNN-DWI were better than those from zero-padding or 3D-CNN. Specifically, the average SSIM and PSNR of CRNN-DWI were 0.750 ± 0.016 and 28.32 ± 0.69 (R = 4), and 0.675 ± 0.023 and 24.16 ± 0.77 (R = 6), respectively, both of which were substantially higher than those of zero-padding or 3D-CNN reconstructions. The diffusion parameter maps from CRNN-DWI also yielded higher SSIM values for R = 4 (>0.8) and for R = 6 (>0.7) than the other two approaches (for R = 4, <0.7, and for R = 6, <0.65). CONCLUSIONS: CRNN-DWI is a viable approach for reconstructing highly undersampled DWI data, providing opportunities to reduce the data acquisition burden.

9.
Medicina (Kaunas) ; 59(3)2023 Mar 09.
Article in English | MEDLINE | ID: mdl-36984536

ABSTRACT

Background and objectives: Telomerase reverse transcriptase (TERT) promoter mutation, found in a subset of patients with thyroid cancer, is strongly associated with aggressive biologic behavior. Predicting TERT promoter mutation is thus necessary for the prognostic stratification of thyroid cancer patients. Materials and Methods: In this study, we evaluate TERT promoter mutation status in thyroid cancer through the deep learning approach using histologic images. Our analysis included 13 consecutive surgically resected thyroid cancers with TERT promoter mutations (either C228T or C250T) and 12 randomly selected surgically resected thyroid cancers with a wild-type TERT promoter. Our deep learning model was created using a two-step cascade approach. First, tumor areas were identified using convolutional neural networks (CNNs), and then TERT promoter mutations within tumor areas were predicted using the CNN-recurrent neural network (CRNN) model. Results: Using the hue-saturation-value (HSV)-strong color transformation scheme, the overall experiment results show 99.9% sensitivity and 60% specificity (improvements of approximately 25% and 37%, respectively, compared to image normalization as a baseline model) in predicting TERT mutations. Conclusions: Highly sensitive screening for TERT promoter mutations is possible using histologic image analysis based on deep learning. This approach will help improve the classification of thyroid cancer patients according to the biologic behavior of tumors.


Subject(s)
Deep Learning , Telomerase , Thyroid Neoplasms , Humans , Mutation , Prognosis , Proto-Oncogene Proteins B-raf/genetics , Telomerase/genetics , Thyroid Neoplasms/diagnostic imaging , Thyroid Neoplasms/genetics , Promoter Regions, Genetic
10.
Comput Biol Med ; 144: 105327, 2022 05.
Article in English | MEDLINE | ID: mdl-35303579

ABSTRACT

Electroencephalogram (EEG) based emotion classification reflects the actual and intrinsic emotional state, resulting in more reliable, natural, and meaningful human-computer interaction with applications in entertainment consumption behavior, interactive brain-computer interface, and monitoring of psychological health of patients in the domain of e-healthcare. Challenges of EEG-based emotion recognition in real-world applications are variations among experimental settings and cognitive health conditions. Parkinson's Disease (PD) is the second most common neurodegenerative disorder, resulting in impaired recognition and expression of emotions. The deficit of emotional expression poses challenges for the healthcare services provided to PD patients. This study proposes 1D-CRNN-ELM architecture, which combines one-dimensional Convolutional Recurrent Neural Network (1D-CRNN) with an Extreme Learning Machine (ELM), robust for the emotion detection of PD patients, also available for cross dataset learning with various emotions and experimental settings. In the proposed framework, after EEG preprocessing, the trained CRNN can use as a feature extractor with ELM as the classifier, and again this trained CRNN can be used for learning of new emotions set with fine-tuning of other datasets. This paper also applied cross dataset learning of emotions by training with PD patients datasets and fine-tuning with publicly available datasets of AMIGOS and SEED-IV, and vice versa. Random splitting of train and test data with 80 - 20 ratio resulted in an accuracy of 97.75% for AMIGOS, 83.20% for PD, and 86.00% for HC with six basic emotion classes. Fine-tuning of trained architecture with four emotions of the SEED-IV dataset results in 92.5% accuracy. To validate the generalization of our results, leave one subject (patient) out cross-validation is also incorporated with mean accuracies of 95.84% for AMIGOS, 75.09% for PD, 77.85% for HC, and 84.97% for SEED-IV is achieved. Only a 1 - sec segment of EEG signal from 14 channels is enough to detect emotions with this performance. The proposed method outperforms state-of-the-art studies to classify EEG-based emotions with publicly available datasets, provide cross dataset learning, and validate the robustness of the deep learning framework for real-world application of psychological healthcare monitoring of Parkinson's disease patients.


Subject(s)
Brain-Computer Interfaces , Parkinson Disease , Electroencephalography , Emotions , Humans , Neural Networks, Computer
11.
Sensors (Basel) ; 22(4)2022 Feb 12.
Article in English | MEDLINE | ID: mdl-35214316

ABSTRACT

The expression of emotions in human communication plays a very important role in the information that needs to be conveyed to the partner. The forms of expression of human emotions are very rich. It could be body language, facial expressions, eye contact, laughter, and tone of voice. The languages of the world's peoples are different, but even without understanding a language in communication, people can almost understand part of the message that the other partner wants to convey with emotional expressions as mentioned. Among the forms of human emotional expression, the expression of emotions through voice is perhaps the most studied. This article presents our research on speech emotion recognition using deep neural networks such as CNN, CRNN, and GRU. We used the Interactive Emotional Dyadic Motion Capture (IEMOCAP) corpus for the study with four emotions: anger, happiness, sadness, and neutrality. The feature parameters used for recognition include the Mel spectral coefficients and other parameters related to the spectrum and the intensity of the speech signal. The data augmentation was used by changing the voice and adding white noise. The results show that the GRU model gave the highest average recognition accuracy of 97.47%. This result is superior to existing studies on speech emotion recognition with the IEMOCAP corpus.


Subject(s)
Speech Perception , Voice , Emotions , Facial Expression , Humans , Neural Networks, Computer , Speech
12.
Sensors (Basel) ; 22(1)2022 Jan 01.
Article in English | MEDLINE | ID: mdl-35009864

ABSTRACT

Power system facility calibration is a compulsory task that requires in-site operations. In this work, we propose a remote calibration device that incorporates edge intelligence so that the required calibration can be accomplished with little human intervention. Our device entails a wireless serial port module, a Bluetooth module, a video acquisition module, a text recognition module, and a message transmission module. First, the wireless serial port is used to communicate with edge node, the Bluetooth is used to search for nearby Bluetooth devices to obtain their state information and the video is used to monitor the calibration process in the calibration lab. Second, to improve the intelligence, we propose a smart meter reading method in our device that is based on artificial intelligence to obtain information about calibration meters. We use a mini camera to capture images of calibration meters, then we adopt the Efficient and Accurate Scene Text Detector (EAST) to complete text detection, finally we built the Convolutional Recurrent Neural Network (CRNN) to complete the recognition of the meter data. Finally, the message transmission module is used to transmit the recognized data to the database through Extensible Messaging and Presence Protocol (XMPP). Our device solves the problem that some calibration meters cannot return information, thereby improving the remote calibration intelligence.


Subject(s)
Artificial Intelligence , Neural Networks, Computer , Calibration , Humans , Intelligence , Monitoring, Physiologic
13.
Sensors (Basel) ; 21(15)2021 Jul 21.
Article in English | MEDLINE | ID: mdl-34372189

ABSTRACT

Drones are becoming increasingly popular not only for recreational purposes but in day-to-day applications in engineering, medicine, logistics, security and others. In addition to their useful applications, an alarming concern in regard to the physical infrastructure security, safety and privacy has arisen due to the potential of their use in malicious activities. To address this problem, we propose a novel solution that automates the drone detection and identification processes using a drone's acoustic features with different deep learning algorithms. However, the lack of acoustic drone datasets hinders the ability to implement an effective solution. In this paper, we aim to fill this gap by introducing a hybrid drone acoustic dataset composed of recorded drone audio clips and artificially generated drone audio samples using a state-of-the-art deep learning technique known as the Generative Adversarial Network. Furthermore, we examine the effectiveness of using drone audio with different deep learning algorithms, namely, the Convolutional Neural Network, the Recurrent Neural Network and the Convolutional Recurrent Neural Network in drone detection and identification. Moreover, we investigate the impact of our proposed hybrid dataset in drone detection. Our findings prove the advantage of using deep learning techniques for drone detection and identification while confirming our hypothesis on the benefits of using the Generative Adversarial Networks to generate real-like drone audio clips with an aim of enhancing the detection of new and unfamiliar drones.


Subject(s)
Deep Learning , Acoustics , Algorithms , Humans , Neural Networks, Computer
14.
BMC Med Inform Decis Mak ; 20(1): 215, 2020 09 09.
Article in English | MEDLINE | ID: mdl-32907561

ABSTRACT

BACKGROUND: Accurately determining the softness level of pituitary tumors preoperatively by using their image textures can provide a basis for surgical options and prognosis. Existing methods for this problem require manual intervention, which could hinder the efficiency and accuracy considerably. METHODS: We present an automatic method for diagnosing the texture of pituitary tumors using unbalanced sequence image data. Firstly, for the small sample problem in our pituitary tumor MRI image dataset where T1 and T2 sequence data are unbalanced (due to data missing) and under-sampled, our method uses a CycleGAN (Cycle-Consistent Adversarial Networks) model for domain conversion to obtain fully sampled MRI spatial sequence. Then, it uses a DenseNet (Densely Connected Convolutional Networks)-ResNet(Deep Residual Networks) based Autoencoder framework to optimize the feature extraction process for pituitary tumor image data. Finally, to take advantage of sequence data, it uses a CRNN (Convolutional Recurrent Neural Network) model to classify pituitary tumors based on their predicted softness levels. RESULTS: Experiments show that our method is the best in terms of efficiency and accuracy (91.78%) compared to other methods. CONCLUSIONS: We propose a semi-supervised method for grading pituitary tumor texture. This method can accurately determine the softness level of pituitary tumors, which provides convenience for surgical selection and prognosis, and improves the diagnostic efficiency of pituitary tumors.


Subject(s)
Image Processing, Computer-Assisted/methods , Magnetic Resonance Imaging/methods , Pituitary Neoplasms/diagnostic imaging , Datasets as Topic , Humans , Neoplasm Grading , Neural Networks, Computer , Pituitary Neoplasms/classification , Supervised Machine Learning
15.
IEEE Access ; 8: 106296-106309, 2020.
Article in English | MEDLINE | ID: mdl-32793404

ABSTRACT

Alert signals like sirens and home alarms are important as they warn people of precarious situations. This work presents the detection and separation of these acoustically important alert signals, not to be attenuated as noise, to assist the hearing impaired listeners. The proposed method is based on convolutional neural network (CNN) and convolutional-recurrent neural network (CRNN). The developed method consists of two blocks, the detector block, and the separator block. The entire setup is integrated with speech enhancement (SE) algorithms, and before the compression stage, used in a hearing aid device (HAD) signal processing pipeline. The detector recognizes the presence of alert signal in various noisy environments. The separator block separates the alert signal from the mixture of noisy signals before passing it through SE to ensure minimal or no attenuation of the alert signal. It is implemented on a smartphone as an application that seamlessly works with HADs in real-time. This smartphone assistive setup allows the hearing aid users to know the presence of the alert sounds even when these are out of sight. The algorithm is computationally efficient with a low processing delay. The key contribution of this paper includes the development and integration of alert signal separator block with SE and the realization of the entire setup on a smartphone in real-time. The proposed method is compared with several state-of-the-art techniques through objective measures in various noisy conditions. The experimental analysis demonstrates the effectiveness and practical usefulness of the developed setup in real-world noisy scenarios.

16.
Sensors (Basel) ; 19(12)2019 Jun 14.
Article in English | MEDLINE | ID: mdl-31208007

ABSTRACT

This paper proposes a sound event detection (SED) method in tunnels to prevent further uncontrollable accidents. Tunnel accidents are accompanied by crashes and tire skids, which usually produce abnormal sounds. Since the tunnel environment always has a severe level of noise, the detection accuracy can be greatly reduced in the existing methods. To deal with the noise issue in the tunnel environment, the proposed method involves the preprocessing of tunnel acoustic signals and a classifier for detecting acoustic events in tunnels. For preprocessing, a non-negative tensor factorization (NTF) technique is used to separate the acoustic event signal from the noisy signal in the tunnel. In particular, the NTF technique developed in this paper consists of source separation and online noise learning. In other words, the noise basis is adapted by an online noise learning technique for enhancement in adverse noise conditions. Next, a convolutional recurrent neural network (CRNN) is extended to accommodate the contributions of the separated event signal and noise to the event detection; thus, the proposed CRNN is composed of event convolution layers and noise convolution layers in parallel followed by recurrent layers and the output layer. Here, a set of mel-filterbank feature parameters is used as the input features. Evaluations of the proposed method are conducted on two datasets: a publicly available road audio events dataset and a tunnel audio dataset recorded in a real traffic tunnel for six months. In the first evaluation where the background noise is low, the proposed CRNN-based SED method with online noise learning reduces the relative recognition error rate by 56.25% when compared to the conventional CRNN-based method with noise. In the second evaluation, where the tunnel background noise is more severe than in the first evaluation, the proposed CRNN-based SED method yields superior performance when compared to the conventional methods. In particular, it is shown that among all of the compared methods, the proposed method with the online noise learning provides the best recognition rate of 91.07% and reduces the recognition error rates by 47.40% and 28.56% when compared to the Gaussian mixture model (GMM)-hidden Markov model (HMM)-based and conventional CRNN-based SED methods, respectively. The computational complexity measurements also show that the proposed CRNN-based SED method requires a processing time of 599 ms for both the NTF-based source separation with online noise learning and CRNN classification when the tunnel noisy signal is one second long, which implies that the proposed method detects events in real-time.

17.
Clin Oral Investig ; 19(9): 2273-83, 2015 Dec.
Article in English | MEDLINE | ID: mdl-25846277

ABSTRACT

OBJECTIVES: This study includes the direct sequencing of cornulin (CRNN) gene to elucidate the possible mechanism of CRNN downregulation and explore the genetic imbalances at 1q21.3 across oral squamous cell carcinoma (OSCC) samples. MATERIALS AND METHODS: In mutation screening of CRNN gene, gDNA from OSCC tissues were extracted, amplified, and followed by direct sequencing. OSCC samples were also subjected to fragment analysis on CRNN gene to investigate its microsatellite instability (MSI) and loss of heterozygosity (LOH). Immunohistochemistry was performed to validate CRNN downregulation in OSCC samples. RESULTS: No pathogenic mutation was found in CRNN gene, while high frequency of allelic imbalances was found at 1q21.3 region. MSI was found more frequent (25.3 %) than LOH (9.3 %). Approximately 22.6 % of cases had high MSI which reflects higher probability of inactivation of DNA mismatch repair genes. MSI showed significant association with no betel quid chewing (p = 0.003) and tongue subsite (p = 0.026). LOH was associated with ethnicity (p = 0.008) and advanced staging (p = 0.039). The LOH at 1q21.3 was identified to be as an independent prognostic marker in OSCC (HRR = 7.15 (95 % CI, 1.41-36.25), p = 0.018). Downregulation of CRNN was found among MSI-positive OSCCs and was associated with poor prognosis (p = 0.044). CONCLUSION: This study showed a significant correlation between LOH/MSI at 1q21.3 with clinical outcomes and that downregulation of CRNN gene could be considered as a prognostic marker of OSCC. CLINICAL RELEVANCE: Insights of the downregulation mode of CRNN gene lays the basis of drug development on this gene as well as revealing its prognostic value.


Subject(s)
Carcinoma, Squamous Cell/genetics , Genomic Instability , Membrane Proteins/genetics , Mouth Neoplasms/genetics , Neoplasm Proteins/genetics , Down-Regulation , Humans , Immunohistochemistry , Loss of Heterozygosity , Malaysia , Microsatellite Instability , Polymerase Chain Reaction , Prognosis
SELECTION OF CITATIONS
SEARCH DETAIL