Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 354
Filter
1.
ACS Nano ; 18(28): 18712-18728, 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-38952208

ABSTRACT

Immunotherapy can potentially suppress the highly aggressive glioblastoma (GBM) by promoting T lymphocyte infiltration. Nevertheless, the immune privilege phenomenon, coupled with the generally low immunogenicity of vaccines, frequently hampers the presence of lymphocytes within brain tumors, particularly in brain tumors. In this study, the membrane-disrupted polymer-wrapped CuS nanoflakes that can penetrate delivery to deep brain tumors via releasing the cell-cell interactions, facilitating the near-infrared II (NIR II) photothermal therapy, and detaining dendritic cells for a self-cascading immunotherapy are developed. By convection-enhanced delivery, membrane-disrupted amphiphilic polymer micelles (poly(methoxypoly(ethylene glycol)-benzoic imine-octadecane, mPEG-b-C18) with CuS nanoflakes enhances tumor permeability and resides in deep brain tumors. Under low-power NIR II irradiation (0.8 W/cm2), the intense heat generated by well-distributed CuS nanoflakes actuates the thermolytic efficacy, facilitating cell apoptosis and the subsequent antigen release. Then, the positively charged polymer after hydrolysis of the benzoic-imine bond serves as an antigen depot, detaining autologous tumor-associated antigens and presenting them to dendritic cells, ensuring sustained immune stimulation. This self-cascading penetrative immunotherapy amplifies the immune response to postoperative brain tumors but also enhances survival outcomes through effective brain immunotherapy.


Subject(s)
Brain Neoplasms , Cell Membrane , Dendritic Cells , Immunotherapy , Infrared Rays , Dendritic Cells/immunology , Dendritic Cells/drug effects , Brain Neoplasms/therapy , Brain Neoplasms/immunology , Brain Neoplasms/pathology , Animals , Mice , Humans , Cell Membrane/chemistry , Cell Line, Tumor , Micelles , Nanoparticles/chemistry , Photothermal Therapy , Polyethylene Glycols/chemistry , Glioblastoma/therapy , Glioblastoma/immunology , Glioblastoma/pathology , Apoptosis/drug effects
2.
Sci Rep ; 14(1): 16155, 2024 Jul 12.
Article in English | MEDLINE | ID: mdl-38997296

ABSTRACT

Copper indium sulfide (CuInS2) exhibits strong visible light absorption and thus has the potential for good photocatalytic activity; however, rapid charge recombination limits its practical usage. An intriguing strategy to overcome this issue is to couple CuInS2 with another semiconductor to form a heterojunction, which can improve the charge carrier separation and, hence, enhance the photocatalytic activity. In this study, photocatalysts comprising CuInS2 with a secondary CuS phase (termed CuInxSy) and CuInxSy loaded with ZnS (termed ZnS@CuInxSy) were synthesized via a microwave-assisted method. Structural and morphological characterization revealed that the ZnS@CuInxSy photocatalyst comprised tetragonal CuInS2 containing a secondary phase of hexagonal CuS, coupled with hexagonal ZnS. The effective band gap energy of CuInxSy was widened from 2.23 to 2.71 as the ZnS loading increased from 0 to 30%. The coupling of CuInxSy with ZnS leads to long-lived charge carriers and efficient visible-light harvesting properties, which in turn lead to a remarkably high activity for the photocatalytic degradation of brilliant green (95.6% in 5 h) and conversion of 4-nitrophenol to 4-nitrophenolate ions (95.4% in 5 h). The active species involved in these photocatalytic processes were evaluated using suitable trapping agents. Based on the obtained results, photocatalytic mechanisms are proposed that emphasize the importance of h+, O2•-, and OH- in photocatalytic processes using ZnS@CuInxSy.

3.
Molecules ; 29(13)2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38998900

ABSTRACT

The electrocatalytic carbon dioxide (CO2) reduction reaction (CO2RR) is extensively regarded as a promising strategy to reach carbon neutralization. Copper sulfide (CuS) has been widely studied for its ability to produce C1 products with high selectivity. However, challenges still remain owing to the poor selectivity of formate. Here, a Bi/CeO2/CuS composite was synthesized using a simple solvothermal method. Bi/CeO2-decorated CuS possessed high formate selectivity, with the Faraday efficiency and current density reaching 88% and 17 mA cm-2, respectively, in an H-cell. The Bi/CeO2/CuS structure significantly reduces the energy barrier formed by OCHO*, resulting in the high activity and selectivity of the CO2 conversion to formate. Ce4+ readily undergoes reduction to Ce3+, allowing the formation of a conductive network of Ce4+/Ce3+. This network facilitates electron transfer, stabilizes the Cu+ species, and enhances the adsorption and activation of CO2. Furthermore, sulfur catalyzes the OCHO* transformation to formate. This work describes a highly efficient catalyst for CO2 to formate, which will aid in catalyst design for CO2RR to target products.

4.
Foods ; 13(12)2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38928787

ABSTRACT

In the realm of analysis, the lateral flow immunoassay (LFIA) is frequently utilized due to its capability to be fast and immediate. However, the biggest challenge of the LFIA is its low detection sensitivity and tolerance to matrix interference, making it impossible to enable accurate, qualitative analyses. In this study, we developed a new LFIA with higher affinity and sensitivity, based on a nanobody (G8-DIG) and CuS nanoflowers-Au (CuS NFs-Au), for the detection of aflatoxin B1 (AFB1) in maize. We synthesized the immunoprobe G8-DIG@CuS NFs-Au, stimulated the in situ development of Au nanoparticles (Au NPs) on Cu NFs by electrical displacement, and obtained Cu NFs-Au for fixing the G8-DIG. G8-DIG@CuS NFs-Au probe-based LFIAs may, in ideal circumstances, use a strip chromatography reader to accomplish sensitive quantitative detection and qualitative visualization. AFB1 has a detection range of 2.82-89.56 µg/L and a detection limit of 0.87 µg/L. When compared with an LFIA based on CuS NFs, this sensitivity is increased by 2.76 times. The practical application of this method in corn flour demonstrated a recovery rate of 81.7% to 117%. Therefore, CuS NFs-Au show great potential for detecting analytes.

5.
Small ; : e2402325, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38822721

ABSTRACT

In the search for next-generation green energy storage solutions, Cu-S electrochemistry has recently gained attraction from the battery community owing to its affordability and exceptionally high specific capacity of 3350 mAh gs -1. However, the inferior conductivity and substantial volume expansion of the S cathode hinder its cycling stability, while the low output voltage limits its energy density. Herein, a hollow carbon sphere (HCS) is synthesized as a 3D conductive host to achieve a stable S@HCS cathode, which enables an outstanding cycling performance of 2500 cycles (over 9 months). To address the latter, a Zn//S@HCS alkaline-acid decoupled cell is configured to increase the output voltage from 0.18 to 1.6 V. Moreover, an electrode and electrolyte co-energy storage mechanism is proposed to offset the reduction in energy density resulting from the extra electrolyte required in Zn//S decoupled cells. When combined, the Zn//S@HCS alkaline-acid decoupled cell delivers a record energy density of 334 Wh kg-1 based on the mass of the S cathode and CuSO4 electrolyte. This work tackles the key challenges of Cu-S electrochemistry and brings new insights into the rational design of decoupled batteries.

6.
Heliyon ; 10(11): e32247, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38868022

ABSTRACT

This work provides a comprehensive investigation by using simulations and performance analysis of a high performance and narrowband Ag3CuS2 photodetector (PD) that operates in the near-infrared (NIR) region and is built using WS2 and BaSi2 semiconductors. Across its operational wavelength range, a comprehensive assessment of the device's electrical and optical properties such as photocurrent, open-circuit voltage, quantum efficiency, responsivity and detectivity is methodically carried out. Furthermore, a thorough investigation has been conducted into the impact of many parameters, including width, carrier density and defects of various layers. Also, the intricate interactions between WS2/Ag3CuS2 and Ag3CuS2/BaSi2 interface properties of the photodetector are explored. The Ag3CuS2-based PD remarkably produces the best outcomes with an open-circuit voltage of 0.74 V, current of 43.79 mA/cm2, responsivity of 0.79 AW-1 and detectivity of 4.73 × 1014 Jones and over 90 % QE in the NIR range for the Ag3CuS2 PD. The results showcase this jalpaite material as a promising one in the field of PD.

7.
Neuropeptides ; 107: 102447, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38870753

ABSTRACT

Chronic stress caused by prolonged emotional pressure can lead to various physiological issues, including reproductive dysfunction. Although reproductive problems can also induce chronic stress, the impact of chronic stress-induced reproductive dysfunction remains contentious. This study investigates the effects of chronic unpredictable stress (CUS) on reproductive neuropeptides, sperm quality, and testicular morphology. Sixteen twelve-week-old Sprague Dawley rats were divided into two groups: a non-stress control group and a CUS-induced group. The CUS regimen involved various stressors over 28 days, with both groups undergoing behavioural assessments through sucrose-preference and forced-swim tests. Hypothalamic gene expression levels of CRH, PNX, GPR173, kisspeptin, GnRH, GnIH, and spexin neuropeptides were measured via qPCR, while plasma cortisol, luteinizing hormone (LH), and testosterone concentrations were quantified using ELISA. Seminal fluid and testis samples were collected for sperm analysis and histopathological evaluation, respectively. Results showed altered behaviours in CUS-induced rats, reflecting stress impacts. Hypothalamic corticotropin-releasing hormone (CRH) expression and plasma cortisol levels were significantly higher in CUS-induced rats compared to controls (p < 0.05). Conversely, phoenixin (PNX) expression decreased in the CUS group (p < 0.05), while kisspeptin, spexin, and gonadotropin-inhibitory hormone (GnIH) levels showed no significant differences between groups. Despite a significant increase in GnRH expression (p < 0.05), plasma LH and testosterone concentrations were significantly lower (p < 0.05) in CUS-induced rats. Histopathological analysis revealed abnormal testis morphology in CUS-induced rats, including disrupted architecture, visible interstitial spaces between seminiferous tubules, and absence of spermatogenesis. In conclusion, CUS affects reproductive function by modulating PNX and GnRH expression, influencing cortisol levels, and subsequently reducing plasma LH and testosterone concentrations. This study highlights the complex interplay between chronic stress and reproductive health, emphasizing the significant impact of stress on reproductive functions.

8.
Chem Biodivers ; : e202400486, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38860853

ABSTRACT

This study aims to explore the efficacy of Copper/Tin (CuS/SnS) nanocomposites loaded into exosomes against skin cancer A431 cell line. CuS/SnS nanocomposites (S1, S2, S3) were synthesized and characterized, then loaded into exosomes (Exo) (S1-Exo, S2-Exo and S3-Exo) and characterized. After that, the loaded samples were investigated in vitro against A431 using cytotoxicity, apoptosis, and cell cycle assays. CuS/SnS nanocomposites were indexed to hexagonal CuS structure and orthorhombic α-SnS phase and showed nano-rode shape. The exosomes loaded with nanocomposites were regular and rounded within the size of 120 nm, with no signs of broken exosomes or leakage of their contents. The cytotoxicity assay indicated the enhanced cytotoxic of S1-Exo versus the free nano-form S1 on A431. Interestingly, S1-Exo recorded 1.109 times more than DOX in its anti-skin cancer capacity. Moreover, S1-Exo recorded 40.2% for early apoptosis and 22.1% for late apoptosis. Furthermore, it displayed impact in arresting the cancer cell cycle at G0/G1 phase and reducing G2/M phase. Noteworthy, loaded nanocomposites were safe against normal HSF skin cells. In conclusion, the loaded CuS/SnS nanocomposites into the exosomes could be of great potential as anti-skin cancer candidates through induction of apoptosis and promotion of the cell cycle arrest at G0/G1 phase.

9.
Molecules ; 29(9)2024 May 03.
Article in English | MEDLINE | ID: mdl-38731608

ABSTRACT

In this paper, Cu-BTC derived mesoporous CuS nanomaterial (m-CuS) was synthesized via a two-step process involving carbonization and sulfidation of Cu-BTC for colorimetric glutathione detection. The Cu-BTC was constructed by 1,3,5-benzenetri-carboxylic acid (H3BTC) and Cu2+ ions. The obtained m-CuS showed a large specific surface area (55.751 m2/g), pore volume (0.153 cm3/g), and pore diameter (15.380 nm). In addition, the synthesized m-CuS exhibited high peroxidase-like activity and could catalyze oxidation of the colorless substrate 3,3',5,5'-tetramethylbenzidine to a blue product. Peroxidase-like activity mechanism studies using terephthalic acid as a fluorescent probe proved that m-CuS assists H2O2 decomposition to reactive oxygen species, which are responsible for TMB oxidation. However, the catalytic activity of m-CuS for the oxidation of TMB by H2O2 could be potently inhibited in the presence of glutathione. Based on this phenomenon, the colorimetric detection of glutathione was demonstrated with good selectivity and high sensitivity. The linear range was 1-20 µM and 20-300 µM with a detection limit of 0.1 µM. The m-CuS showing good stability and robust peroxidase catalytic activity was applied for the detection of glutathione in human urine samples.


Subject(s)
Colorimetry , Copper , Glutathione , Hydrogen Peroxide , Nanostructures , Glutathione/analysis , Glutathione/chemistry , Colorimetry/methods , Copper/chemistry , Nanostructures/chemistry , Catalysis , Hydrogen Peroxide/chemistry , Hydrogen Peroxide/analysis , Porosity , Oxidation-Reduction , Phthalic Acids/chemistry , Humans , Benzidines/chemistry , Limit of Detection
10.
J Colloid Interface Sci ; 671: 601-610, 2024 Oct.
Article in English | MEDLINE | ID: mdl-38820844

ABSTRACT

In recent years, aqueous zinc-ion batteries (ZIBs) have emerged as a prominent research topic due to their inherent safety attributes, relatively low cost, and comparatively higher energy density. However, the challenges associated with the zinc metal anode in the form of dendrite formation, hydrogen evolution, and severe side reactions have proven to be particularly vexing. Thus, it is imperative to investigate novel intercalation-type anode materials for ZIBs that exhibit exceptional structural properties and appropriate redox potentials based on conversion mechanisms. In this work, through adding polyvinylpyrrolidone (PVP) surfactant to precursors and tailoring reaction time, hierarchical CuS hollow spheres are successfully constructed by a facile one-step hydrothermal process. When applied as an anode in ZIBs, the hollow hierarchical CuS with large surface area can effectively reduce the transport distance of electrons and Zn2+ and alleviate volume expansion during the insertion/extraction of Zn2+. The hierarchical CuS hollow spheres prepared over 8 h (CuS-8) exhibit a specific capacity of 126 mAh/g and long-term cycle life (1500 cycles) at a current density of 3 A/g. In addition, CuS-8//MnO2@CNTs full-cell shows a capacity retention of 117 mAh/g after 300 cycles at 1 A/g current density, which proves the advantage of hierarchical CuS hollow spheres in serving as an efficient and durable anode material for ZIBs.

11.
ACS Nano ; 18(22): 14312-14326, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38767151

ABSTRACT

Periodontitis, a prevalent chronic inflammatory disease worldwide, is triggered by periodontopathogenic bacteria, resulting in the progressive destruction of periodontal tissue, particularly the alveolar bone. To effectively address periodontitis, this study proposed a nanoformulation known as CuS@MSN-SCS. This formulation involves coating citrate-grafted copper sulfide (CuS) nanoparticles with mesoporous silica (MSNs), followed by surface modification using amino groups and sulfated chitosan (SCS) through electrostatic interactions. The objective of this formulation is to achieve efficient bacteria removal by inducing ROS signaling pathways mediated by Cu2+ ions. Additionally, it aims to promote alveolar bone regeneration through Cu2+-induced pro-angiogenesis and SCS-mediated bone regeneration. As anticipated, by regulating the surface charges, the negatively charged CuS nanoparticles capped with sodium citrate were successfully coated with MSNs, and the subsequent introduction of amine groups using (3-aminopropyl)triethoxysilane was followed by the incorporation of SCS through electrostatic interactions, resulting in the formation of CuS@MSN-SCS. The developed nanoformulation was verified to not only significantly exacerbate the oxidative stress of Fusobacterium nucleatum, thereby suppressing bacteria growth and biofilm formation in vitro, but also effectively alleviate the inflammatory response and promote alveolar bone regeneration without evident biotoxicity in an in vivo rat periodontitis model. These findings contribute to the therapeutic effect on periodontitis. Overall, this study successfully developed a nanoformulation for combating bacteria and facilitating alveolar bone regeneration, demonstrating the promising potential for clinical treatment of periodontitis.


Subject(s)
Anti-Bacterial Agents , Bone Regeneration , Chitosan , Copper , Fusobacterium nucleatum , Nanoparticles , Periodontitis , Chitosan/chemistry , Chitosan/pharmacology , Periodontitis/drug therapy , Periodontitis/microbiology , Periodontitis/therapy , Periodontitis/pathology , Animals , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Bone Regeneration/drug effects , Rats , Copper/chemistry , Copper/pharmacology , Fusobacterium nucleatum/drug effects , Nanoparticles/chemistry , Rats, Sprague-Dawley , Male , Sulfates/chemistry , Sulfates/pharmacology , Silicon Dioxide/chemistry , Silicon Dioxide/pharmacology , Microbial Sensitivity Tests
12.
Brain Sci ; 14(4)2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38672009

ABSTRACT

Stress-related mental disorders have become increasingly prevalent, thus endangering mental health worldwide. Exploring stress-associated brain alterations is vital for understanding the possible neurobiological mechanisms underlying these changes. Based on existing evidence, the brain endogenous cannabinoid system (ECS) plays a significant role in the stress response, and disruptions in its function are associated with the neurobiology of various stress-related disorders. This study primarily focuses on investigating the impact of chronic unpredictable stress (CUS) on the expression of hippocampal cannabinoid type 1 (CB1) receptors, part of the ECS, in adult male and female Wistar rats. Additionally, it explores whether environmental enrichment (EE) initiated during adolescence could mitigate the CUS-associated alterations in CB1 expression. Wistar rats, shortly after weaning, were placed in either standard housing (SH) or EE conditions for a duration of 10 weeks. On postnatal day 66, specific subgroups of SH or EE animals underwent a 4-week CUS protocol. Western blot (WB) analysis was conducted in the whole hippocampus of the left brain hemisphere to assess total CB1 protein expression, while immunohistochemistry (IHC) was performed on the right hemisphere to estimate the expression of CB1 receptors in certain hippocampal areas (i.e., CA1, CA3 and dentate gyrus-DG). The WB analysis revealed no statistically significant differences in total CB1 protein levels among the groups; however, reduced CB1 expression was found in specific hippocampal sub-regions using IHC. Specifically, CUS significantly decreased CB1 receptor expression in the CA1 and DG of both sexes, whereas in CA3 the CUS-associated decrease was limited to SH males. Interestingly, EE housing proved protective against these reductions. These findings suggest a region and sex-specific endocannabinoid response to chronic stress, emphasizing the role of positive early experiences in the protection of the adolescent brain against adverse conditions later in life.

13.
J Genet Eng Biotechnol ; 22(1): 100360, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38494244

ABSTRACT

BACKGROUND: Somatic embryogenesis offers a reliable method for cucumber (Cucumis sativus L.) regeneration and genetic enhancement against Fusarium wilt. This study aimed to establish a tailored somatic embryogenesis system for Egyptian cultivars, fostering genetic improvements and Fusarium wilt-resistance lines. RESULTS: Employing the Optimal Arbitrary Design (OAD) approach, we optimized the induction medium, initiating prolific embryogenic calli (53.3 %) at 1 mg/L 2,4-D. The cotyledonary leaf (CL) was the preferred explant, showing 60 % embryogenic callus development. Bieth Alpha exhibited higher responsiveness, generating âˆ¼ 18 somatic embryos per explant compared to Prince's âˆ¼ 10. Somatic embryogenesis system validation used quantitative RT-PCR, showing Cucumis sativus splicing factor 3B subunit (CUS1) and an embryogenesis marker gene expression exclusively within embryogenic calli and mainly during embryogenesis initiation. Evaluating fungal toxin filtrate concentrations for selecting embryogenic calli, the S2 selection (25 % filtrate, four subculture cycles) was chosen for somatic embryo development. To gauge the ramifications of selection at the genetic stratum, an in-depth analysis was executed. A cluster analysis grounded in ISSR banding patterns revealed a distinct separation between in vivo-cultivated plants of the two cultivars and regenerated plants devoid of pathogen filtrate treatment or those regenerated post-filtrate treatment. This segregation distinctly underscores the discernible genetic impact of the selection process. CONCLUSIONS: The highest embryogenic capacity (53.3%) was achieved in this study by optimizing the induction stage, which demonstrated the optimal concentrations of BA and 2,4-D for induced proembryonic masses. Moreover, consistent gene expression throughout both stages of embryogenesis suggests that our system unequivocally follows the somatic embryogenesis pathway.

14.
Int J Biol Macromol ; 265(Pt 1): 130931, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38508563

ABSTRACT

Our previous study has demonstrated that the microstructure of copper sulfide nanoparticles (CuSNPs) can be controlled to enhance mechanical and photothermal conversion properties of chitosan (CS)/CuSNPs hybrid fibers. However, achieving optimal dispersion and compatibility of CuSNPs within a CS matrix remains a challenge, this study aims to improve dispersion and compatibility by modifying the CuSNPs' interface, thereby enhancing mechanical and photothermal conversion properties of hybrid fibers. The interfaces of @CuSNPs (CuS@Xylan NPs, CuS@SA NPs, and CuS@PEG NPs) contain hydroxyl groups, facilitating the hydrogen bonds formation with the CS matrix. The dispersibility is further enhanced by the synergistic effect of xylan and SA's anionic charges with cationic chitosan. Notably, the viscosity of the CS/@CuSNPs hybrid spinning solution is significantly enhanced, resulting in improved breaking strength for initial hybrid fibers. Specifically, the breaking strength of CS/CuS@Xylan NPs hybrid fibers reaches 1.4 cN/dtex, exhibiting a 42.86 % and 20.6 % increase over CS and CS/CuSNPs hybrid fibers. Simultaneously, the CS/CuS@Xylan NPs hybrid fibers exhibit exceptional photothermal conversion performance, surpassing that of CS fibers by 5.2 times and CS/CuSNPs hybrid fibers by 1.4 times. The regulation of interface modification is an efficient approach to enhance the tensile strength and photothermal conversion properties of CS/CuSNPs hybrid fibers.


Subject(s)
Chitosan , Nanoparticles , Chitosan/chemistry , Xylans , Nanoparticles/chemistry , Copper/chemistry , Sulfides/chemistry
15.
Transl Cancer Res ; 13(1): 278-289, 2024 Jan 31.
Article in English | MEDLINE | ID: mdl-38410213

ABSTRACT

Background: Conventional ultrasound (CUS) technology has proven to be successful in the identification of thyroid nodules. Moreover, the American College of Radiology Thyroid Imaging Reporting and Data System (ACR TI-RADS) was developed for the purpose of evaluating the risk of thyroid nodules based on ultrasound imaging. Nevertheless, identifying papillary thyroid microcarcinoma (PTMC) from TI-RADS 3 nodules using this system can be difficult due to overlapping morphological features. The main objective of this study was to investigate the efficacy of a machine learning model that utilizes ultrasound-based radiomics features and clinical information in accurately predicting the presence of PTMC in TI-RADS 3 nodules. Methods: A total of 221 patients with TI-RADS 3 nodules were included, consisting of 91 cases of PTMC and 130 benign thyroid nodules. They were randomly divided into training and test cohort in an 8:2 ratio. Radiomics features were extracted from CUS images by manually outlining the targets, while clinical parameters were obtained from electronic medical records. The radiomics model, clinical model, and combined model were constructed and validated to distinguish between PTMC and benign thyroid nodules. Radiomics variables were extracted via the Pyradiomics package (V1.3.0). Moreover, least absolute shrinkage and selection operator (LASSO) regression was used for feature selection. Light Gradient Boosting Machine (LightGBM) was employed to build both radiomics and clinical models. Ultimately, a radiomics-clinical model, which fused radiomics features with clinical information, was developed. Results: Among a total of 1,477 radiomics features, fifteen features that were found to be associated with PTMC through univariate analysis and LASSO regression were selected for the development of the radiomics model. The combined "radiomics-clinical" model demonstrated superior diagnostic accuracy compared to the clinical model for distinguishing PTMC in both the training dataset [area under receiver operating curve (AUC): 0.975 vs. 0.845] and the validation dataset (AUC: 0.898 vs. 0.811). We constructed a radiomics-clinical nomogram, and the clinical applicability was confirmed through decision curve analysis. Conclusions: Utilizing an ultrasound-based radiomics approach has proven to be effective in predicting PTMC in patients with TI-RADS 3 nodules.

16.
Small ; 20(30): e2311827, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38381114

ABSTRACT

The expeditious growth of wearable electronic devices has boomed the development of versatile smart textiles for personal health-related applications. In practice, integrated high-performance systems still face challenges of compromised breathability, high cost, and complicated manufacturing processes. Herein, a breathable fibrous membrane with dual-driven heating and electromagnetic interference (EMI) shielding performance is developed through a facile process of electrospinning followed by targeted conformal deposition. The approach constructs a robust hierarchically coaxial heterostructure consisting of elastic polymers as supportive "core" and dual-conductive components of polypyrrole and copper sulfide (CuS) nanosheets as continuous "sheath" at the fiber level. The CuS nanosheets with metal-like electrical conductivity demonstrate the promising potential to substitute the expensive conductive nano-materials with a complex fabricating process. The as-prepared fibrous membrane exhibits high electrical conductivity (70.38 S cm-1), exceptional active heating effects, including solar heating (saturation temperature of 69.7 °C at 1 sun) and Joule heating (75.2 °C at 2.9 V), and impressive EMI shielding performance (50.11 dB in the X-band), coupled with favorable air permeability (161.4 mm s-1 at 200 Pa) and efficient water vapor transmittance (118.9 g m-2 h). This work opens up a new avenue to fabricate versatile wearable devices for personal thermal management and health protection.

17.
Small ; 20(30): e2311975, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38396264

ABSTRACT

Transition metal oxides, fluorides, and sulfides are extensively studied as candidate electrode materials for lithium-ion batteries driven by the urgency of developing next-generation higher energy density lithium batteries. These conversion-type electrode materials often require nanosized active materials to enable a "smooth" lithiation and de-lithiation process during charge/discharge cycles, determined by their size, structure, and phase. Herein, the structural and chemical changes of Copper Disulfide (CuS2) hollow nanoparticles during the lithiation process through an in situ transmission electron microscopy (TEM) method are investigated. The study finds the hollow structure of CuS2 facilitates the quick formation of fluidic Li2S "drops," accompanied by a de-sulfurization to the Cu7S4 phase. Meanwhile, the metallic Cu phase emerges as fine nanoparticles and grows into nano-strips, which are embedded in the Li2S/Cu7S4 matrix. These complex nanostructured phases and their spatial distribution can lead to a low de-lithiation barrier, enabling fast reaction kinetics.

18.
J Pharm Sci ; 113(7): 1865-1873, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38342338

ABSTRACT

Here, a novel targeted nanostructure complex was designed as an alternative to the traditional treatment approaches for breast cancer. A delivery system utilizing CuS nanoparticles (CuS NPs) was developed for the purpose of targeted administration of doxorubicin (Dox), an anticancer agent. To regulate Dox release, chitosan (CS), a biodegradable and hydrophilic polymer with biocompatible properties, was applied to coat the Dox-loaded CuS NPs. Furthermore, AS1411 aptamer, served as a targeting agent for breast cancer cells (MCF-7 and 4T1 cells), was conjugated with CS-Dox-CuS NPs effectively. To assess the effectiveness of APT-CS-CuS NPs, various methods such as flow cytometry analysis, MTT assay, fluorescence imaging, and in vivo antitumor efficacy were employed. The hollow core and porous surface of CuS NPs improved the Dox loading capacity and entrapment efficiency (almost 100%). The rate of drug release at the tumor site (citrate buffer with pH 5.6) exhibited a marked increase in comparison to that observed within the physiological environment (phosphate buffer with pH 7.4). The targeted formulation (APT-CS-Dox-CuS NPs) significantly increased cytotoxicity of the Dox payload in target cells, including 4T1 (p ≤ 0.0001 (****)) and MCF7 (p ≤ 0.01 (**)) cells compared to CHO cells. Moreover, the ability of tumor growth inhibition of the targeted system was significantly (p ≤ 0.05 (*)) more than free Dox in tumor-bearing mice. The findings indicate that the targeted formulation augmented effectiveness and specificity while minimizing harm to non-targeted cells, signifying its potential as a sophisticated cancer drug delivery system.


Subject(s)
Aptamers, Nucleotide , Chitosan , Doxorubicin , Nanoparticles , Doxorubicin/administration & dosage , Doxorubicin/pharmacology , Doxorubicin/pharmacokinetics , Doxorubicin/chemistry , Chitosan/chemistry , Animals , Humans , Aptamers, Nucleotide/chemistry , Aptamers, Nucleotide/administration & dosage , Female , Nanoparticles/chemistry , Mice , MCF-7 Cells , Cell Line, Tumor , Antibiotics, Antineoplastic/administration & dosage , Antibiotics, Antineoplastic/pharmacokinetics , Antibiotics, Antineoplastic/pharmacology , Antibiotics, Antineoplastic/chemistry , Breast Neoplasms/drug therapy , Breast Neoplasms/pathology , Drug Delivery Systems/methods , Mice, Inbred BALB C , Drug Liberation , Drug Carriers/chemistry , Cricetulus , CHO Cells , Copper , Oligodeoxyribonucleotides
20.
J Control Release ; 367: 837-847, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38346502

ABSTRACT

Strawberry anthracnose (Colletotrichum gloeosporioides) exhibits a high pathogenicity, capable of directly infecting leaves through natural openings, resulting in devastating impacts on strawberries. Here, nanocomposite (CuS@Cu-MOF) was prepared with a high photothermal conversion efficiency of 35.3% and a strong response to near-infrared light (NIR) by locally growing CuS nanoparticles on the surface of a copper-based metal-organic framework (Cu-MOF) through in situ sulfurization. The porosity of Cu-MOF facilitated efficient encapsulation of the pesticide difenoconazole within CuS@Cu-MOF (DIF/CuS@Cu-MOF), achieving a loading potential of 19.18 ± 1.07%. Under NIR light irradiation, DIF/CuS@Cu-MOF showed an explosive release of DIF, which was 2.7 times higher than that under dark conditions. DIF/CuS@Cu-MOF exhibited a 43.9% increase in efficacy against C. gloeosporioides compared to difenoconazole microemulsion (DIF ME), demonstrating prolonged effectiveness. The EC50 values for DIF and DIF/CuS@Cu-MOF were 0.219 and 0.189 µg/mL, respectively. Confocal laser scanning microscopy demonstrated that the fluorescently labeled CuS@Cu-MOF acted as a penetrative carrier for the uptake of hyphae. Furthermore, DIF/CuS@Cu-MOF exhibited more substantial resistance to rainwater wash-off than DIF ME, with retention levels on the surfaces of cucumber leaves (hydrophilicity) and peanut leaves (hydrophobicity) increasing by 36.5-fold and 9.4-fold, respectively. These findings underscore the potential of nanocomposite to enhance pesticide utilization efficiency and leaf retention.


Subject(s)
Fragaria , Nanoparticles , Pesticides , Copper , Infrared Rays
SELECTION OF CITATIONS
SEARCH DETAIL
...