ABSTRACT
Catalytic wet peroxide oxidation (CWPO) is a novel, alternative technology to conventional disinfection methods that are widely used to control microbial parameters in drinking water. To assess its effectiveness, new studies revealing the kinetics of MS2 coliphage inactivation by CWPO technology are required. This investigation therefore aimed to perform mathematical modelling of MS2 inactivation through CWPO technology activated by an Al/Fe-pillared clay catalyst (Al/Fe-PILC) in the presence of a synthetic surrogate of dissolved natural organic matter. The inactivation constant was obtained from two different statistical approaches, and the experimental data were better fitted to the pseudo-first-order Chick-Watson model in which the inactivation rate is constant. For this model, the maximum inactivation rate was k = 0.1648 min-1, which was achieved in the MS2-3 catalytic test using an initial mass ratio of peroxide to active iron (Feact) of 1.2 mg H2O2/mg Feact. To estimate the inactivation rate due to reactive oxygen species (ROS), we supposed that the inactivation constant depends on both ROS and Feact. In this case, the maximum inactivation rate due to ROS was kr = 2.4 × 10-9 min-1 (using 1.17 mg H2O2/mg Feact), which was achieved in the MS2-10 trial; both cases led to the conclusion that the optimal initial ratio of peroxide to active Fe in the catalyst in CWPO activated by Al/Fe-PILC was close to 1.2 mg H2O2/mg Feact. These kinetic studies showed that rapid inactivation takes place very early in the reaction, followed by slow inactivation during the remaining period of the recorded reaction time. This research revealed the strong potential of CWPO technology to improve microbiological parameters in drinking water due to the high catalytic performance in the heterogeneous Fenton reaction displayed by Fe sites incorporated in the Al/Fe-PILCs.
Subject(s)
Clay , Hydrogen Peroxide , Catalysis , Iron , Kinetics , Oxidation-Reduction , Peroxides , Virus InactivationABSTRACT
The optimization of the Catalytic Wet Peroxide Oxidation (CWPO) assisted by an Al/Fe-pillared clay (Al/Fe-PILC) was assessed in the inactivation of the MS2 coliphage in the presence of a synthetic surrogate of natural organic matter (NOM). The simultaneous effect of two experimental factors (i) H2O2 dose - (H2O2)d (3.00-25.50 % of the H2O2 theoretically required for full mineralization) and (ii) catalyst concentration (0.33-2.60 g/L), and four non-controllable variables (covariates) (a) circumneutral pH (6.00-9.00), (b) temperature (5.00-25.0 °C), (c) synthetic NOM concentration (2.0-20.0 mg C/L) and (d) MS2 titer (104, 105 and 106 PFU/mL) was investigated by Response Surface Methodology (RSM). Every response was modeled and maximized: (1) MS2 inactivation, (2) fraction of reacted H2O2, (3) decolourization and (4) NOM mineralization. Multi-response optimization via desirability function based on responses (1) to (3) achieved excellent fitting (0.94 out of 1.0) and following set of optimal experimental conditions: 0.33 g Al/Fe-PILC/L, 3.36 % (H2O2)d â(Feactive/H2O2) = 0.46, giving rise to 92.9 % of MS2 inactivation and 100 % of reacted H2O2 at pH 7.07, 25.0 +/- 0.1 °C, 16.06 mg C/L as starting NOM concentration, and MS2 titer of 106 PFU/mL after just 70 min âof reaction.
ABSTRACT
The aim of this work was to study the feasibility of textile sludge as a precursor to prepare catalysts for catalytic wet peroxide oxidation (CWPO) by chemical and thermal treatments. Textile sludge was characterized by physical-chemical and metal composition analyses. The chemical activation was evaluated using iron sulfate and the thermal treatment was carried out at 720⯰C in a vacuum pyrolysis reactor. Two catalysts with iron contents of 1.5% and 5.6% were selected. Process parameters influence on CWPO of phenol were evaluated and a maximum removal of phenol and TOC was observed at pH 3 and 60⯰C, using 3â¯gâ¯L-1 of the catalyst containing 5.6% of iron and 11.8â¯mmolâ¯L-1 of H2O2. Metal analysis indicated that the textile sludge is suitable to be employed as both iron catalyst and adsorbent. The catalysts characterization indicated a reasonable surface area with a well-developed microporosity and the presence of Hematite structures in the carbonaceous matrix. The degradation process achieved 98.2% of phenol conversion, 68.2% of mineralization and 2.11â¯mgâ¯L-1 of iron leaching in 150â¯min of reaction. The catalyst presented activity for up to 5 cycles of use, but with loss of efficiency.