Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.494
Filter
1.
Aging (Albany NY) ; 162024 Jun 20.
Article in English | MEDLINE | ID: mdl-38949514

ABSTRACT

As a common disease, cervical spondylosis (CS) results from the degeneration of the cervical intervertebral disc. However, there are still no effective clinical strategies for the treatment of this disease. Needle-scalpel (Ns), a therapy guided by traditional Chinese medicine theory, alleviates intervertebral disc degradation and is widely used in the clinic to treat CS. Stromal cell-derived factor-1 (SDF-1) and its receptor CXC receptor 4 (CXCR4) in nucleus pulposus cells play an important role in CS onset and development. This study aimed to explore whether Ns can relieve pain and regulate the SDF-1/CXCR4 axis in nucleus pulposus cells to inhibit apoptosis, thereby delaying cervical intervertebral disc degradation in a rat model of CS. It was found that the Ns-treated groups exhibited higher mechanical allodynia scores than the model group, and H&E staining, MRI, and scanning electron microscopy revealed that Ns therapy inhibited intervertebral disc degeneration. Additionally, Ns therapy significantly inhibited increases in the RNA and protein expression levels of SDF-1 and CXCR4. Furthermore, these treatments alleviated the apoptosis of nucleus pulposus cells, which manifested as a decline in the proportion of apoptotic nucleus pulposus cells and inhibition of the decrease in the levels of Bcl-2/Bax. These findings indicated that Ns mitigated CS-induced pain, inhibited the apoptosis of nucleus pulposus cells, and alleviated intervertebral disc degeneration in CS rats. These effects may be mediated by specifically regulating the SDF-1/CXCR4 signaling axis. Based on these findings, we conclude that Ns might serve as a promising therapy for the treatment of CS.

2.
Cancer Lett ; : 217097, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38964729

ABSTRACT

Gemcitabine is the first-line treatment option for patients with locally advanced or metastatic pancreatic ductal adenocarcinoma (PDAC). However, the frequent adoption of resistance to gemcitabine by cancer cells poses a significant challenge in treating this aggressive disease. In this study, we focused on analyzing the role of trefoil factor 1 (TFF1) in gemcitabine resistance in PDAC. Analysis of PDAC TCGA and cell line datasets indicated an enrichment of TFF1 in the gemcitabine-resistant classical subtype and suggested an inverse correlation between TFF1 expression and sensitivity to gemcitabine treatment. The genetic ablation of TFF1 in PDAC cells enhanced their sensitivity to gemcitabine treatment in both in vitro and in vivo tumor xenografts. The biochemical studies revealed that TFF1 contributes to gemcitabine resistance through enhanced stemness, increasing migration ability of cancer cells, and induction of anti-apoptotic genes. We further pursued studies to predict possible receptors exerting TFF1-mediated gemcitabine resistance. Protein-protein docking investigations with BioLuminate software revealed that TFF1 binds to the chemokine receptor CXCR4, which was supported by real-time binding analysis of TFF1 and CXCR4 using SPR studies. The exogenous addition of TFF1 increased the proliferation and migration of PDAC cells through the pAkt/pERK axis, which was abrogated by treatment with a CXCR4-specific antagonist AMD3100. Overall, the present study demonstrates the contribution of the TFF1-CXCR4 axis in imparting gemcitabine resistance properties to PDAC cells.

3.
Cells ; 13(12)2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38920657

ABSTRACT

The reciprocal modulation between the CXCL12/CXCR4/ACKR3 axis and the STAT3 signaling pathway plays a crucial role in the progression of various diseases and neoplasms. Activation of the CXCL12/CXCR4/ACKR3 axis triggers the STAT3 pathway through multiple mechanisms, while the STAT3 pathway also regulates the expression of CXCL12. This review offers a thorough and systematic analysis of the reciprocal regulatory mechanisms between the CXCL12/CXCR4/ACKR3 signaling axis and the STAT3 signaling pathway in the context of diseases, particularly tumors. It explores the potential clinical applications in tumor treatment, highlighting possible therapeutic targets and novel strategies for targeted tumor therapy.


Subject(s)
Chemokine CXCL12 , Neoplasms , Receptors, CXCR4 , STAT3 Transcription Factor , Signal Transduction , Humans , STAT3 Transcription Factor/metabolism , Receptors, CXCR4/metabolism , Chemokine CXCL12/metabolism , Neoplasms/metabolism , Neoplasms/pathology , Animals , Receptors, CXCR/metabolism , Receptors, CXCR/genetics
4.
Eur J Med Chem ; 275: 116594, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38879970

ABSTRACT

Chemokine receptor 4 (CXCR4) is a subtype receptor protein of the GPCR family with a seven-transmembrane structure widely distributed in human tissues. CXCR4 is involved in diseases (e.g., HIV-1 infection), cancer proliferation and metastasis, inflammation signaling pathways, and leukemia, making it a promising drug target. Clinical trials on CXCR4 antagonists mainly focused on peptides and antibodies, with a few small molecule compounds, such as AMD11070 (2) and MSX-122 (3), showing promise in cancer treatment. This perspective discusses the structure-activity relationship (SAR) of CXCR4 and its role in diseases, mainly focusing on the SAR of CXCR4 antagonists. It also explores the standard structural features and target interactions of CXCR4 binding in different disease categories. Furthermore, it investigates various modification strategies to propose potential improvements in the effectiveness of CXCR4 drugs.

5.
Eur J Med Chem ; 275: 116605, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38885550

ABSTRACT

C-X-C chemokine receptor type 4 (CXCR4) exerts considerable influence on the pathogenesis of inflammatory disorders and offers a potent avenue for drug intervention. This research utilizes a hybrid virtual screening methodology constructed using computer-aided drug design to discover novel CXCR4 inhibitors for the treatment of inflammation. First, a compound library was screened by Lipinski's five rules and adsorption, distribution, metabolism, excretion and toxicity properties. Second, the HypoGen algorithm was used in constructing a 3D-QSAR pharmacophore model and verify it layer by layer, and the obtained optimal pharmacophore 1 (Hypo 1) was used as a 3D query for compound screening. Then, hit compounds were obtained through molecular docking (Libdock and CDOCKER). The toxicity of the compounds to MDA-MB-231 cells was evaluated in vitro, and their binding affinity to the target was evaluated according to how they compete with 12G5 antibody for CXCR4 on the surfaces of the MDA-MB-231 cells. Compound Hit14 showed the strongest binding affinity among the hit compounds and inhibited cell migration and invasion in Matrigel invasion and wound healing assay at a concentration of 100 nM, demonstrating a better effect than AMD3100. Western Blot experiments further showed that Hit14 blocked the CXCR4/CXCL12-mediated phosphorylation of Akt. Meanwhile, cellular thermal displacement assay analysis showed that CXCR4 protein bound to Hit14 had high thermal stability. Finally, through in vivo experiments, we found that Hit14 inhibited mouse ear inflammation and reduced ear swelling and damage. Therefore, Hit14 is a promising drug for the further development of CXCR4 inhibitors for inflammation treatment.

6.
Diagnostics (Basel) ; 14(11)2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38893721

ABSTRACT

Poor long-term survival in localized high-risk soft tissue sarcomas (STSs) of the extremities and trunk highlights the need to identify new prognostic factors. CXCR4 is a chemokine receptor involved in tumor progression, angiogenesis, and metastasis. The aim of this study was to evaluate the association between CXCR4 expression in tumor tissue and survival in STSs patients treated with neoadjuvant therapy. CXCR4 expression was retrospectively determined by immunohistochemical analysis in serial specimens including initial biopsies, tumors post-neoadjuvant treatment, and tumors after relapse. We found that a positive cytoplasmatic expression of CXCR4 in tumors after neoadjuvant treatment was a predictor of poor recurrence-free survival (RFS) (p = 0.003) and overall survival (p = 0.019) in synovial sarcomas. We also found that positive nuclear CXCR4 expression in the initial biopsies was associated with poor RFS (p = 0.022) in undifferentiated pleomorphic sarcomas. In conclusion, our study adds to the evidence that CXCR4 expression in tumor tissue is a promising prognostic factor for STSs.

7.
Front Microbiol ; 15: 1342444, 2024.
Article in English | MEDLINE | ID: mdl-38835488

ABSTRACT

HIV-1 relies extensively on host cell machinery for replication. Identification and characterization of these host-virus interactions is vital to our understanding of viral replication and the consequences of infection in cells. Several prior screens have identified host factors important for HIV replication but with limited replication of findings, likely due to differences in experimental design and conditions. Thus, unidentified factors likely exist. To identify novel host factors required for HIV-1 infection, we performed a genome-wide CRISPR/Cas9 screen using HIV-induced cell death as a partitioning method. We created a gene knockout library in TZM-GFP reporter cells using GeCKOv2, which targets 19,050 genes, and infected the library with a lethal dose of HIV-1NL4-3. We hypothesized that cells with a knockout of a gene critical for HIV infection would survive while cells with a knockout of a non-consequential gene would undergo HIV-induced death and be lost from the population. Surviving cells were analyzed by high throughput sequencing of the integrated CRISPR/Cas9 cassette to identify the gene knockout. Of the gene targets, an overwhelming majority of the surviving cells harbored the guide sequence for the AP-1 transcription factor family protein, JunB. Upon the generation of a clonal JunB knockout cell line, we found that HIV-1NL4-3 infection was blocked in the absence of JunB. The phenotype resulted from downregulation of CXCR4, as infection levels were recovered by reintroduction of CXCR4 in JunB KO cells. Thus, JunB downmodulates CXCR4 expression in TZM-GFP cells, reducing CXCR4-tropic HIV infection.

8.
Elife ; 122024 Jun 18.
Article in English | MEDLINE | ID: mdl-38896451

ABSTRACT

Durable serological memory following vaccination is critically dependent on the production and survival of long-lived plasma cells (LLPCs). Yet, the factors that control LLPC specification and survival remain poorly resolved. Using intravital two-photon imaging, we find that in contrast to most plasma cells (PCs) in the bone marrow (BM), LLPCs are uniquely sessile and organized into clusters that are dependent on APRIL, an important survival factor. Using deep, bulk RNA sequencing, and surface protein flow-based phenotyping, we find that LLPCs express a unique transcriptome and phenotype compared to bulk PCs, fine-tuning expression of key cell surface molecules, CD93, CD81, CXCR4, CD326, CD44, and CD48, important for adhesion and homing. Conditional deletion of Cxcr4 in PCs following immunization leads to rapid mobilization from the BM, reduced survival of antigen-specific PCs, and ultimately accelerated decay of antibody titer. In naïve mice, the endogenous LLPCs BCR repertoire exhibits reduced diversity, reduced somatic mutations, and increased public clones and IgM isotypes, particularly in young mice, suggesting LLPC specification is non-random. As mice age, the BM PC compartment becomes enriched in LLPCs, which may outcompete and limit entry of new PCs into the LLPC niche and pool.


Subject(s)
Plasma Cells , Animals , Mice , Plasma Cells/immunology , Plasma Cells/metabolism , Mice, Inbred C57BL , Receptors, Cell Surface/metabolism , Receptors, Cell Surface/genetics , Cell Survival , Receptors, CXCR4/metabolism , Receptors, CXCR4/genetics , Spatio-Temporal Analysis
9.
Endocrine ; 2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38914747

ABSTRACT

PURPOSE: Adrenal venous sampling (AVS) is recommended for subtyping primary aldosteronism (PA). However, in cases of PA, concurrent subclinical Cushing's syndrome (SCS) has the potential to confound AVS results. Pentixafor, a CXC chemokine receptor type 4-specific ligand, has been reported as a promising marker to evaluate functional nature of adrenal adenomas. This study aims to investigate the clinical value of Gallium-68 Pentixafor Positron Emission Tomography-Computed Tomography (68Ga-Pentixafor PET/CT) in the localization diagnosis of patients with PA plus SCS. METHODS: Two patients with a confirmed diagnosis of PA plus SCS underwent AVS and 68Ga-Pentixafor PET/CT. RESULTS: AVS results revealed no lateralization for both patients while 68Ga-Pentixafor PET/CT showed a unilateral adrenal nodule with increased uptake of 68Ga-Pentixafor. Unilateral adrenalectomy was performed based on the results of 68Ga-Pentixafor PET/CT. Subsequently, complete biochemical remission of autonomous aldosterone and cortisol secretion were achieved in both cases. CONCLUSIONS: 68Ga-Pentixafor PET/CT shows promising potential for the localization of aldosterone and cortisol co-secreting adrenal adenoma in patients with PA plus SCS.

10.
Cells ; 13(9)2024 May 03.
Article in English | MEDLINE | ID: mdl-38727318

ABSTRACT

CXCR4, JUNB and PD-L1 are implicated in cancer progression and metastasis. The current study investigated these biomarkers in CTCs isolated from metastatic prostate cancer (mPCa) patients at the RNA and protein levels. CTCs were isolated from 48 mPCa patients using the Ficoll density gradient and ISET system (17 out of 48). The (CK/PD-L1/CD45) and (CK/CXCR4/JUNB) phenotypes were identified using two triple immunofluorescence stainings followed by VyCAP platform analysis. Molecular analysis was conducted with an EpCAM-dependent method for 25/48 patients. CK-8, CK-18, CK-19, JUNB, CXCR4, PD-L1, and B2M (reference gene) were analyzed with RT-qPCR. The (CK+/PD-L1+/CD45-) and the (CK+/CXCR4+/JUNB+) were the most frequent phenotypes (61.1% and 62.5%, respectively). Furthermore, the (CK+/CXCR4+/JUNB-) phenotype was correlated with poorer progression-free survival [(PFS), HR: 2.5, p = 0.049], while the (CK+/PD-L1+/CD45-) phenotype was linked to decreased overall survival [(OS), HR: 262.7, p = 0.007]. Molecular analysis revealed that 76.0% of the samples were positive for CK-8,18, and 19, while 28.0% were positive for JUNB, 44.0% for CXCR4, and 48.0% for PD-L1. Conclusively, CXCR4, JUNB, and PD-L1 were highly expressed in CTCs from mPCa patients. The CXCR4 protein expression was associated with poorer PFS, while PD-L1 was correlated with decreased OS, providing new biomarkers with potential clinical relevance.


Subject(s)
B7-H1 Antigen , Neoplastic Cells, Circulating , Prostatic Neoplasms , Receptors, CXCR4 , Aged , Humans , Male , Middle Aged , B7-H1 Antigen/metabolism , B7-H1 Antigen/genetics , Biomarkers, Tumor/metabolism , Biomarkers, Tumor/genetics , Gene Expression Regulation, Neoplastic , Neoplastic Cells, Circulating/metabolism , Neoplastic Cells, Circulating/pathology , Prostatic Neoplasms/pathology , Prostatic Neoplasms/genetics , Prostatic Neoplasms/metabolism , Proto-Oncogene Proteins c-jun/metabolism , Receptors, CXCR4/metabolism , Receptors, CXCR4/genetics
11.
Cell Rep ; 43(5): 114245, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38761377

ABSTRACT

Recurrent Clostridioides difficile infection (CDI) results in significant morbidity and mortality. We previously established that CDI in mice does not protect against reinfection and is associated with poor pathogen-specific B cell memory (Bmem), recapitulating our observations with human Bmem. Here, we demonstrate that the secreted toxin TcdB2 is responsible for subversion of Bmem responses. TcdB2 from an endemic C. difficile strain delayed immunoglobulin G (IgG) class switch following vaccination, attenuated IgG recall to a vaccine booster, and prevented germinal center formation. The mechanism of TcdB2 action included increased B cell CXCR4 expression and responsiveness to its ligand CXCL12, accounting for altered cell migration and a failure of germinal center-dependent Bmem. These results were reproduced in a C. difficile infection model, and a US Food and Drug Administration (FDA)-approved CXCR4-blocking drug rescued germinal center formation. We therefore provide mechanistic insights into C. difficile-associated pathogenesis and illuminate a target for clinical intervention to limit recurrent disease.


Subject(s)
Bacterial Proteins , Bacterial Toxins , Clostridioides difficile , Germinal Center , Receptors, CXCR4 , Animals , Receptors, CXCR4/metabolism , Receptors, CXCR4/immunology , Germinal Center/immunology , Bacterial Proteins/metabolism , Bacterial Proteins/immunology , Bacterial Toxins/immunology , Bacterial Toxins/metabolism , Clostridioides difficile/immunology , Clostridioides difficile/pathogenicity , Mice , Mice, Inbred C57BL , B-Lymphocytes/immunology , B-Lymphocytes/metabolism , Chemokine CXCL12/metabolism , Clostridium Infections/immunology , Clostridium Infections/microbiology , Humans , Immunoglobulin G/immunology , Immunoglobulin G/metabolism , Immunologic Memory , Female , Antibody Formation/immunology
12.
Cytokine ; 179: 156629, 2024 07.
Article in English | MEDLINE | ID: mdl-38704961

ABSTRACT

Melanoma is a particularly aggressive type of skin cancer that can spread to distant organs, resulting in poor patient outcomes. C-X-C motif chemokine ligand 12 (CXCL12) interacts to the C-X-C chemokine receptor type 4 (CXCR4). This connection between CXCR4 and its companion ligand CXCL12 is important in melanoma metastasis and progression, encouraging cell proliferation, invasion, and survival via downstream signaling pathways. Furthermore, CXCR4 is implicated in the interaction between melanoma cells and the tumor microenvironment, which promotes malignant cell migration and immune evasion. Given the importance of the CXCR4/CXCL12 axis in melanoma, addressing this axis has the potential to prevent metastasis and improve patient outcomes. We present an overview of the CXCR4/CXCL12 axis in cancer progression and explain its role in the melanoma microenvironment in this paper. Furthermore, we investigate CXCR4's predictive usefulness as a possible biomarker for monitoring melanoma progression. Finally, we discuss the most recent research and clinical trials on CXCR4 inhibitors, emphasizing their efficacy and limits. We hope to improve the quality of life for melanoma patients by better understanding the role of CXCR4 and investigating novel therapeutic options.


Subject(s)
Chemokine CXCL12 , Melanoma , Receptors, CXCR4 , Signal Transduction , Tumor Microenvironment , Humans , Receptors, CXCR4/metabolism , Melanoma/metabolism , Melanoma/pathology , Chemokine CXCL12/metabolism , Skin Neoplasms/pathology , Skin Neoplasms/metabolism , Animals , Disease Progression
13.
Zhongguo Zhong Yao Za Zhi ; 49(9): 2308-2315, 2024 May.
Article in Chinese | MEDLINE | ID: mdl-38812131

ABSTRACT

This study aims to decipher the mechanism of tetramethylpyrazine(TMP) in regulating the migration of neural stem cells(NSCs) in the rat model of middle cerebral artery occlusion(MCAO) via the nuclear factor erythroid 2-related factor 2(Nrf2)/heme oxygenase 1(HO-1)/C-X-C motif chemokine receptor 4(CXCR4) pathway. SD rats were randomized into sham, MCAO(model), and tetramethylpyrazine(TMP, 20 mg·kg~(-1) and 40 mg·kg~(-1)) groups. The neurological impairment was assessed by the modified neurological severity score(mNSS). The immunofluorescence assay was employed to detect the cells stained with both 5-bromodeoxyuridine(BrdU) and doublecortin(DCX) in the brain tissue. The effect of TMP on the migration of C17.2 cells was observed. Western blot was employed to determine the protein levels of Nrf2, HO-1, p62, NAD(P)H quinone oxidoreductase 1(NQO1), stromal cell-derived factor 1(SDF-1), and CXCR4 in the brain tissue and C17.2 cells. The results showed that after 7 days and 21 days of mode-ling, the mNSS and BrdU~+/DCX~+ cells were increased, and the expression of Nrf2 and CXCR4 in the brain tissue was up-regulated. Compared with the model group, TMP(40 mg·kg~(-1)) reduced the mNSS, increased the number of BrdU~+/DCX~+ cells, and up-regulated the expression of Nrf2, CXCR4, and SDF-1. In addition, TMP promoted the migration of C17.2 cells and up-regulated the expression of p62, Nrf2, HO-1, and NQO1 in a time-and dose-dependent manner. The expression was the highest at the time point of 12 h in the TMP(50 µg·mL~(-1)) group(P<0.01). In conclusion, TMP activates the Nrf2/HO-1/CXCR4 pathway to promote the migration of NSCs to the ischemic area, thus exerting the therapeutic effect on the ischemia-reperfusion injury. This study provides experimental support for the application of TMP in ischemic stroke.


Subject(s)
Cell Movement , Heme Oxygenase-1 , NF-E2-Related Factor 2 , Neural Stem Cells , Pyrazines , Rats, Sprague-Dawley , Receptors, CXCR4 , Animals , Receptors, CXCR4/metabolism , Receptors, CXCR4/genetics , NF-E2-Related Factor 2/metabolism , NF-E2-Related Factor 2/genetics , Pyrazines/pharmacology , Rats , Neural Stem Cells/drug effects , Neural Stem Cells/metabolism , Neural Stem Cells/cytology , Cell Movement/drug effects , Male , Heme Oxygenase-1/metabolism , Heme Oxygenase-1/genetics , Doublecortin Protein , Signal Transduction/drug effects , Reperfusion Injury/metabolism , Reperfusion Injury/drug therapy , Humans
14.
BMC Complement Med Ther ; 24(1): 204, 2024 May 24.
Article in English | MEDLINE | ID: mdl-38789949

ABSTRACT

PURPOSE: This study aimed to evaluate the potential of astragalus polysaccharide (APS) pretreatment in enhancing the homing and anti-peritoneal fibrosis capabilities of bone marrow mesenchymal stromal cells (BMSCs) and to elucidate the underlying mechanisms. METHODS: Forty male Sprague-Dawley rats were allocated into four groups: control, peritoneal dialysis fluid (PDF), PDF + BMSCs, and PDF + APSBMSCs (APS-pre-treated BMSCs). A peritoneal fibrosis model was induced using PDF. Dil-labeled BMSCs were administered intravenously. Post-transplantation, BMSC homing to the peritoneum and pathological alterations were assessed. Stromal cell-derived factor-1 (SDF-1) levels were quantified via enzyme-linked immunosorbent assay (ELISA), while CXCR4 expression in BMSCs was determined using PCR and immunofluorescence. Additionally, a co-culture system involving BMSCs and peritoneal mesothelial cells (PMCs) was established using a Transwell setup to examine the in vitro effects of APS on BMSC migration and therapeutic efficacy, with the CXCR4 inhibitor AMD3100 deployed to dissect the role of the SDF-1/CXCR4 axis and its downstream impacts. RESULTS: In vivo and in vitro experiments confirmed that APS pre-treatment notably facilitated the targeted homing of BMSCs to the peritoneal tissue of PDF-treated rats, thereby amplifying their therapeutic impact. PDF exposure markedly increased SDF-1 levels in peritoneal and serum samples, which encouraged the migration of CXCR4-positive BMSCs. Inhibition of the SDF-1/CXCR4 axis through AMD3100 application diminished BMSC migration, consequently attenuating their therapeutic response to peritoneal mesenchyme-to-mesothelial transition (MMT). Furthermore, APS upregulated CXCR4 expression in BMSCs, intensified the activation of the SDF-1/CXCR4 axis's downstream pathways, and partially reversed the AMD3100-induced effects. CONCLUSION: APS augments the SDF-1/CXCR4 axis's downstream pathway activation by increasing CXCR4 expression in BMSCs. This action bolsters the targeted homing of BMSCs to the peritoneal tissue and amplifies their suppressive influence on MMT, thereby improving peritoneal fibrosis.


Subject(s)
Astragalus Plant , Chemokine CXCL12 , Mesenchymal Stem Cells , Peritoneal Fibrosis , Polysaccharides , Rats, Sprague-Dawley , Receptors, CXCR4 , Animals , Receptors, CXCR4/metabolism , Chemokine CXCL12/metabolism , Rats , Male , Peritoneal Fibrosis/drug therapy , Peritoneal Fibrosis/metabolism , Polysaccharides/pharmacology , Mesenchymal Stem Cells/drug effects , Disease Models, Animal , Cyclams/pharmacology
15.
Exp Neurol ; 379: 114841, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38821198

ABSTRACT

Alzheimer's disease (AD) is the most prevalent type of dementia, and its causes are currently diverse and not fully understood. In a previous study, we discovered that short-term treatment with miracle fruit seed (MFS) had a therapeutic effect on AD model mice, however, the precise mechanism behind the effect remains unclear. In this research, we aimed to establish the efficacy and safety of long-term use of MFS in AD model mice. A variety of cytokines and chemokines have been implicated in the development of AD. Previous studies have validated a correlation between the expression levels of C-X-C chemokine receptor type 4 (CXCR4) and disease severity in AD. In this research, we observed an upregulation of CXCR4 expression in hippocampal tissues in the AD model group, which was then reversed after MFS treatment. Moreover, CXCR4 knockout led to improving cognitive function in AD model mice, and MFS showed the ability to regulate CXCR4 expression. Finally, our findings indicate that CXCR4 knockout and long-term MFS treatment produce comparable effects in treating AD model mice. In conclusion, this research demonstrates that therapeutic efficacy and safety of long-term use of MFS in AD model mice. MFS treatment and the subsequent reduction of CXCR4 expression exhibit a neuroprotective role in the brain, highlighting their potential as therapeutic targets for AD.

16.
Cell Mol Immunol ; 21(7): 707-722, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38789529

ABSTRACT

B-1a cells, an innate-like cell population, are crucial for pathogen defense and the regulation of inflammation through their release of natural IgM and IL-10. In sepsis, B-1a cell numbers are decreased in the peritoneal cavity as they robustly migrate to the spleen. Within the spleen, migrating B-1a cells differentiate into plasma cells, leading to alterations in their original phenotype and functionality. We discovered a key player, sialic acid-binding immunoglobulin-like lectin-G (Siglec-G), which is expressed predominantly on B-1a cells and negatively regulates B-1a cell migration to maintain homeostasis. Siglec-G interacts with CXCR4/CXCL12 to modulate B-1a cell migration. Neutrophils aid B-1a cell migration via neutrophil elastase (NE)-mediated Siglec-G cleavage. Human studies revealed increased NE expression in septic patients. We identified an NE cleavage sequence in silico, leading to the discovery of a decoy peptide that protects Siglec-G, preserves peritoneal B-1a cells, reduces inflammation, and enhances sepsis survival. The role of Siglec-G in inhibiting B-1a cell migration to maintain their inherent phenotype and function is compromised by NE in sepsis, offering valuable insights into B-1a cell homeostasis. Employing a small decoy peptide to prevent NE-mediated Siglec-G cleavage has emerged as a promising strategy to sustain peritoneal B-1a cell homeostasis, alleviate inflammation, and ultimately improve outcomes in sepsis patients.


Subject(s)
Homeostasis , Neutrophils , Sepsis , Sialic Acid Binding Immunoglobulin-like Lectins , Sepsis/immunology , Animals , Humans , Sialic Acid Binding Immunoglobulin-like Lectins/metabolism , Neutrophils/immunology , Neutrophils/metabolism , Cell Movement , Mice , Mice, Inbred C57BL , Leukocyte Elastase/metabolism , B-Lymphocyte Subsets/immunology , B-Lymphocyte Subsets/metabolism , Receptors, Antigen, B-Cell
17.
Cell Mol Gastroenterol Hepatol ; 18(2): 101349, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38697357

ABSTRACT

BACKGROUND & AIMS: Humans with WNT2B deficiency have severe intestinal disease, including significant inflammatory injury, highlighting a critical role for WNT2B. We sought to understand how WNT2B contributes to intestinal homeostasis. METHODS: We investigated the intestinal health of Wnt2b knock out (KO) mice. We assessed the baseline histology and health of the small intestine and colon, and the impact of inflammatory challenge using dextran sodium sulfate (DSS). We also evaluated human intestinal tissue. RESULTS: Mice with WNT2B deficiency had normal baseline histology but enhanced susceptibility to DSS colitis because of an increased early injury response. Although intestinal stem cells markers were decreased, epithelial proliferation was similar to control subjects. Wnt2b KO mice showed an enhanced inflammatory signature after DSS treatment. Wnt2b KO colon and human WNT2B-deficient organoids had increased levels of CXCR4 and IL6, and biopsy tissue from humans showed increased neutrophils. CONCLUSIONS: WNT2B is important for regulation of inflammation in the intestine. Absence of WNT2B leads to increased expression of inflammatory cytokines and increased susceptibility to gastrointestinal inflammation, particularly in the colon.

18.
Front Microbiol ; 15: 1388729, 2024.
Article in English | MEDLINE | ID: mdl-38699474

ABSTRACT

Introduction: There is increasing evidence supporting a role for HIV-1 envelope in the development of Protease Inhibitor drug resistance, and a recent report from our group suggested that Env mutations co-evolve with Gag-Protease mutations in the pathway to Lopinavir resistance. In this study, we investigated the effect of co-evolving Env mutations on virus function and structure. Methods: Co-receptor usage and n-linked glycosylation were investigated using Geno2Pheno as well as tools available at the Los Alamos sequence database. Molecular dynamics simulations were performed using Amber 18 and analyzed using Cpptraj, and molecular interactions were calculated using the Ring server. Results: The results showed that under Protease Inhibitor drug selection pressure, the envelope gene modulates viral entry by protecting the virus from antibody recognition through the increased length and number of N-glycosylation sites observed in V1/V2 and to some extent V5. Furthermore, gp120 mutations appear to modulate viral entry through a switch to the CXCR4 coreceptor, induced by higher charge in the V3 region and specific mutations at the coreceptor binding sites. In gp41, S534A formed a hydrogen bond with L602 found in the disulfide loop region between the Heptad Repeat 1 and Heptad Repeat 2 domains and could negatively affect the association of gp120-gp41 during viral entry. Lastly, P724Q/S formed both intermolecular and intramolecular interactions with residues within the Kennedy loop, a known epitope. Discussion: In conclusion, the results suggest that mutations in envelope during Protease Inhibitor treatment failure are related to immune escape and that S534A mutants could preferentially use the cell-to-cell route of infection.

19.
J Nanobiotechnology ; 22(1): 219, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38698419

ABSTRACT

BACKGROUND: Adipose-derived stem cells (ASCs) represent the most advantageous choice for soft tissue regeneration. Studies proved the recruitment of ASCs post tissue injury was mediated by chemokine CXCL12, but the mechanism by which CXCL12 is generated after tissue injury remains unclear. Migrasomes are newly discovered membrane-bound organelles that could deliver CXCL12 spatially and temporally in vivo. In this study, we sought to investigate whether migrasomes participate ASC-mediated tissue regeneration. METHODS: Discrepant and asymmetrical soft tissue regeneration mice model were established, in which HE staining, immunofluorescent staining, western blot and qPCR were conducted to confirm the role of CXCL12 and migrasomes in ASC-mediated tissue regeneration. Characterization of ASC-derived migrasomes were carried out by confocal microscopy, scanning electron microscopy, transmission electron microscopy as well as western blot analysis. The function and mechanism of migrasomes were further testified by assisting tissue regeneration with isolated migrasomes in vivo and by in vitro transwell combined with co-culture system. RESULTS: Here, we show for the first time that migrasomes participate in soft tissue regeneration. ASCs generate migrasomes enriched with CXCL12 to mediate tissue regeneration. Migrasomes from ASCs could promote stem cells migration by activating CXCR4/RhoA signaling in vivo and in vitro. Chemoattracted ASCs facilitate regeneration, as demonstrated by the upregulation of an adipogenesis-associated protein. This positive feed-back-loop creates a favorable microenvironment for soft tissue regeneration. Thus, migrasomes represent a new therapeutic target for ASC-mediated tissue regeneration. CONCLUSIONS: Our findings reveal a previously unknown function of ASCs in mediating tissue regeneration by generating migrasomes. The ASC-derived migrasomes can restore tissue regeneration by recruiting stem cells, which highlighting the potential application of ASC-derived migrasomes in regenerative medicine.


Subject(s)
Adipose Tissue , Chemokine CXCL12 , Receptors, CXCR4 , Regeneration , Stem Cells , rhoA GTP-Binding Protein , Chemokine CXCL12/metabolism , Animals , Receptors, CXCR4/metabolism , Mice , Adipose Tissue/cytology , Adipose Tissue/metabolism , rhoA GTP-Binding Protein/metabolism , Stem Cells/metabolism , Stem Cells/cytology , Mice, Inbred C57BL , Feedback, Physiological , Cell Movement , Cells, Cultured , Male , Signal Transduction
20.
Pediatr Surg Int ; 40(1): 122, 2024 May 04.
Article in English | MEDLINE | ID: mdl-38704513

ABSTRACT

BACKGROUND: Wilm's tumor (WT) is one of the most common childhood urological tumors, ranking second in the incidence of pediatric abdominal tumors. The development of WT is associated with various factors, and the correlation with autophagy is currently unclear. PURPOSE: To develop a new prognostic model of autophagy-related genes (ATG) for WT. METHODS: Using the Therapeutically applicable research to generate effective treatments (TARGET) database to screen for differentially expressed ATGs in WT and normal tissues. ATGs were screened for prognostic relevance to WT using one-way and multifactorial Cox regression analyses and prognostic models were constructed. The risk score was calculated according to the model, and the predictive ability of the constructed model was analyzed using the ROC (receiver operating characteristic) curve to verify the significance of the model for the prognosis of WT. RESULTS: Sixty-eight differentially expressed ATGs were identified by univariate Cox regression analysis, and two critical prognostic ATGs (CXCR4 and ERBB2) were identified by multivariate Cox regression analysis. Patients were divided into high-risk and low-risk groups according to the differential expression of these two ATGs. Kaplan-Meier (KM) curves showed a significant difference in survival time between the two groups. The critical prognostic ATGs were combined with race, age, and stage in a multifactorial regression analysis, and the final prognostic model was produced as a line graph. CONCLUSION: The prognostic model of autophagy-related genes composed of the CXCR4 gene and ERBB2 gene has a specific predictive value for the prognosis of WT, and the present study provides a clear basis for future research on biomarkers and therapeutic targets.


Subject(s)
Autophagy , Kidney Neoplasms , Humans , Autophagy/genetics , Prognosis , Male , Female , Kidney Neoplasms/genetics , Kidney Neoplasms/pathology , Receptors, CXCR4/genetics , Receptors, CXCR4/metabolism , Child, Preschool , Infant , Biomarkers, Tumor/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...