Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 82
Filter
1.
Curr Drug Metab ; 2024 May 23.
Article in English | MEDLINE | ID: mdl-38797896

ABSTRACT

BACKGROUND: Cytochrome P450 (CYP) 46A1, also known as cholesterol 24S-hydroxylase, is essential for maintaining the homeostasis of cholesterol in the brain and serves as a therapeutic target of neurodegenerative disorders and excitatory neurotoxicity. N-methyl-d-aspartate receptor (NMDAR) is a prototypical receptor for the excitatory neurotransmitter glutamate and can be specifically regulated by 24S-hydroxycholesterol (24S-HC). Glycyrrhiza is one of the most widely used herbs with broad clinical applications. It has several pharmacological activities, such as clearing heat and detoxifying, moistening the lung and relieving cough, analgesic, neuroprotective outcomes, and regulating a variety of drug activities. Glycyrrhiza is a commonly used herb for the treatment of epileptic encephalopathy. However, whether glycyrrhiza can interfere with the activity of CYP46A1 remains unknown. OBJECTIVE: This study aimed to investigate the regulating effects of glycyrrhiza polysaccharides (GP) on CYP46A1-mediated cholesterol conversion, as well as in the modulation of related proteins. MATERIALS AND METHODS: The effects of glycyrrhiza polysaccharide (GP) on the activity of CYP46A1 were investigated in vivo and in vitro. Moreover, the potential regulatory effects of GP on the expressions of CYP46A1, HMG-CoA reductase (HMGCR), and NMDAR were also detected. RESULTS: The in vitro results demonstrated that glycyrrhiza polysaccharide (GP), as the main water-soluble active component of glycyrrhiza, remarkably inhibited the activity of CYP46A1 in a non-competitive mode with a Ki value of 0.7003 mg/ml. Furthermore, the in vivo experiments verified that GP markedly decreased the contents of 24S-HC in rat plasma and brain tissues as compared to the control. More importantly, the protein expressions of CYP46A1, GluN2A, GluN2B, and HMG-CoA reductase (HMGCR) in rat brains were all downregulated, whereas the mRNA expressions of CYP46A1 and HMGCR were not significantly changed after treatment with GP. CONCLUSION: GP exhibits a significant inhibitory effect on CYP46A1 activity in vitro and in vivo, and the protein expressions of CYP46A1, HMGCR, and NMDAR are also inhibited by GP, which are of considerable clinical significance for GP's potential therapeutic role in treating neurological diseases.

2.
Neuromolecular Med ; 26(1): 11, 2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38592597

ABSTRACT

Suicide is a global public health issue, with a particularly high incidence in individuals suffering from Major Depressive Disorder (MDD). The role of cholesterol in suicide risk remains controversial, prompting investigations into genetic markers that may be implicated. This study examines the association between CYP46A1 polymorphisms, specifically SNPs rs754203 and rs4900442, and suicide risk in a Mexican MDD patient cohort. Our study involved 188 unrelated suicide death victims, 126 MDD patients, and 144 non-suicidal controls. Genotypic and allelic frequencies were assessed using the Real Time-polymerase chain reaction method, and associations with suicide risk were evaluated using chi-square tests. The study revealed significant differences in allelic and genotypic frequencies in rs754203 SNP between suicide death and controls. The CYP46A1 rs754203 genotype G/G was significantly linked with suicide, and the G allele was associated with a higher risk of suicide (OR = 1.370, 95% CI = 1.002-1.873). However, we did not observe any significant differences in genotype distribution or allele frequencies of CYP46A1 rs4900442. Our study suggests that carriers of the CYP46A1 rs754203 G allele (A/G + G/G) may play a role in suicidal behavior, especially in males. Our findings support that the CYP46A1 gene may be involved in susceptibility to suicide, which has not been investigated previously. These results underscore the importance of further research in different populations to elucidate the genetic underpinnings of the role of CYP46A1 in suicide risk and to develop targeted interventions for at-risk populations.


Subject(s)
Depressive Disorder, Major , Suicide , Male , Humans , Cholesterol 24-Hydroxylase , Depressive Disorder, Major/genetics , Gene Frequency , Polymorphism, Single Nucleotide
3.
Antioxidants (Basel) ; 13(4)2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38671883

ABSTRACT

Down syndrome (DS) is a complex chromosomal disorder considered as a genetically determined form of Alzheimer's disease (AD). Maintenance of brain cholesterol homeostasis is essential for brain functioning and development, and its dysregulation is associated with AD neuroinflammation and oxidative damage. Brain cholesterol imbalances also likely occur in DS, concurring with the precocious AD-like neurodegeneration. In this pilot study, we analyzed, in the brain of the Ts2Cje (Ts2) mouse model of DS, the expression of genes encoding key enzymes involved in cholesterol metabolism and of the levels of cholesterol and its main precursors and products of its metabolism (i.e., oxysterols). The results showed, in Ts2 mice compared to euploid mice, the downregulation of the transcription of the genes encoding the enzymes 3-hydroxy-3-methylglutaryl-CoA reductase and 24-dehydrocholesterol reductase, the latter originally recognized as an indicator of AD, and the consequent reduction in total cholesterol levels. Moreover, the expression of genes encoding enzymes responsible for brain cholesterol oxidation and the amounts of the resulting oxysterols were modified in Ts2 mouse brains, and the levels of cholesterol autoxidation products were increased, suggesting an exacerbation of cerebral oxidative stress. We also observed an enhanced inflammatory response in Ts2 mice, underlined by the upregulation of the transcription of the genes encoding for α-interferon and interleukin-6, two cytokines whose synthesis is increased in the brains of AD patients. Overall, these results suggest that DS and AD brains share cholesterol cycle derangements and altered oxysterol levels, which may contribute to the oxidative and inflammatory events involved in both diseases.

4.
Biopharm Drug Dispos ; 45(2): 93-106, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38488691

ABSTRACT

Alzheimer's disease is a complex multifactorial neurodegenerative disorder wherein age is a major risk factor. The appropriateness of the Hartley guinea pig (GP), which displays high sequence homologies of its amyloid-ß (Aß40 and Aß42) peptides, Mdr1 and APP (amyloid precursor protein) and similarity in lipid handling to humans, was appraised among 9-40 weeks old guinea pigs. Protein expression levels of P-gp (Abcb1) and Cyp46a1 (24(S)-hydroxylase) for Aß40, and Aß42 efflux and cholesterol metabolism, respectively, were decreased with age, whereas those for Lrp1 (low-density lipoprotein receptor related protein 1), Rage (receptor for advanced glycation endproducts) for Aß efflux and influx, respectively, and Abca1 (the ATP binding cassette subfamily A member 1) for cholesterol efflux, were unchanged among the ages examined. There was a strong, negative correlation of the brain Aß peptide concentrations and Abca1 protein expression levels with free cholesterol. The correlation of Aß peptide concentrations with Cyp46a1 was, however, not significant, and concentrations of the 24(S)-hydroxycholesterol metabolite revealed a decreasing trend from 20 weeks old toward 40 weeks old guinea pigs. The composite data suggest a role for free cholesterol on brain Aß accumulation. The decreases in P-gp and Lrp1 protein levels should further exacerbate the accumulation of Aß peptides in guinea pig brain.


Subject(s)
Amyloid beta-Peptides , Amyloid beta-Protein Precursor , Guinea Pigs , Humans , Animals , Amyloid beta-Peptides/metabolism , Amyloid beta-Protein Precursor/metabolism , Receptor for Advanced Glycation End Products/metabolism , Cholesterol 24-Hydroxylase/metabolism , Brain/metabolism , Aging , Cholesterol/metabolism
5.
Int J Mol Sci ; 25(4)2024 Feb 13.
Article in English | MEDLINE | ID: mdl-38396919

ABSTRACT

High dose (S)-efavirenz (EFV) inhibits the HIV reverse transcriptase enzyme and is used to lower HIV load. Low-dose EFV allosterically activates CYP46A1, the key enzyme for cholesterol elimination from the brain, and is investigated as a potential treatment for Alzheimer's disease. Simultaneously, we evaluate EFV dihydroxymetabolites for in vivo brain effects to compare with those of (S)-EFV. We have already tested (rac)-8,14dihydroxy EFV on 5XFAD mice, a model of Alzheimer's disease. Herein, we treated 5XFAD mice with (rac)-7,8dihydroxy EFV. In both sexes, the treatment modestly activated CYP46A1 in the brain and increased brain content of acetyl-CoA and acetylcholine. Male mice also showed a decrease in the brain levels of insoluble amyloid ß40 peptides. However, the treatment had no effect on animal performance in different memory tasks. Thus, the overall brain effects of (rac)-7,8dihydroxy EFV were weaker than those of EFV and (rac)-8,14dihydroxy EFV and did not lead to cognitive improvements as were seen in treatments with EFV and (rac)-8,14dihydroxy EFV. An in vitro study assessing CYP46A1 activation in co-incubations with EFV and (rac)-7,8dihydroxy EFV or (rac)-8,14dihydroxy EFV was carried out and provided insight into the compound doses and ratios that could be used for in vivo co-treatments with EFV and its dihydroxymetabolite.


Subject(s)
Alzheimer Disease , Anti-HIV Agents , HIV Infections , Female , Male , Mice , Animals , Cholesterol 24-Hydroxylase/metabolism , Alzheimer Disease/drug therapy , Amyloid beta-Peptides , Benzoxazines/chemistry , Alkynes/therapeutic use , Cyclopropanes/therapeutic use , HIV Infections/drug therapy , Reverse Transcriptase Inhibitors/pharmacology , Anti-HIV Agents/therapeutic use
6.
Brain ; 147(5): 1622-1635, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38301270

ABSTRACT

Cholesterol homeostasis is impaired in Alzheimer's disease; however, attempts to modulate brain cholesterol biology have not translated into tangible clinical benefits for patients to date. Several recent milestone developments have substantially improved our understanding of how excess neuronal cholesterol contributes to the pathophysiology of Alzheimer's disease. Indeed, neuronal cholesterol was linked to the formation of amyloid-ß and neurofibrillary tangles through molecular pathways that were recently delineated in mechanistic studies. Furthermore, remarkable advances in translational molecular imaging have now made it possible to probe cholesterol metabolism in the living human brain with PET, which is an important prerequisite for future clinical trials that target the brain cholesterol machinery in Alzheimer's disease patients-with the ultimate aim being to develop disease-modifying treatments. This work summarizes current concepts of how the biosynthesis, transport and clearance of brain cholesterol are affected in Alzheimer's disease. Further, current strategies to reverse these alterations by pharmacotherapy are critically discussed in the wake of emerging translational research tools that support the assessment of brain cholesterol biology not only in animal models but also in patients with Alzheimer's disease.


Subject(s)
Alzheimer Disease , Brain , Cholesterol , Drug Development , Alzheimer Disease/metabolism , Alzheimer Disease/drug therapy , Humans , Cholesterol/metabolism , Brain/metabolism , Animals , Drug Development/methods
7.
Bio Protoc ; 14(2): e4924, 2024 Jan 20.
Article in English | MEDLINE | ID: mdl-38268974

ABSTRACT

Cholesterol is oxygenated by a variety of cholesterol hydroxylases; oxysterols play diverse important roles in physiological and pathophysiological conditions by regulating several transcription factors and cell-surface receptors. Each oxysterol has distinct and overlapping functions. The expression of cholesterol hydroxylases is highly regulated, but their physiological and pathophysiological roles are not fully understood. Although the activity of cholesterol hydroxylases has been characterized biochemically using radiolabeled cholesterol as the substrate, their specificities remain to be comprehensively determined quantitatively. To better understand their roles, a highly sensitive method to measure the amount of various oxysterols synthesized by cholesterol hydroxylases in living mammalian cells is required. Our method described here, with gas chromatography coupled with tandem mass spectrometry (GC-MS/MS), can quantitatively determine a series of oxysterols endogenously synthesized by forced expression of one of the four major cholesterol hydroxylases-CH25H, CYP7A1, CYP27A1, and CYP46A1-or induction of CH25H expression by a physiological stimulus. This protocol can also simultaneously measure the amount of intermediate sterols, which serve as markers for cellular cholesterol synthesis activity. Key features • Allows measuring the amount of a variety of oxysterols synthesized endogenously by cholesterol hydroxylases using GC-MS/MS. • Comprehensive and quantitative analysis of cholesterol hydroxylase specificities in living mammalian cells. • Simultaneous quantification of intermediate sterols to assess cholesterol synthesis activity.

8.
Biochim Biophys Acta Mol Basis Dis ; 1870(3): 166993, 2024 03.
Article in English | MEDLINE | ID: mdl-38142760

ABSTRACT

Cholesterol 24-hydroxylase (CYP46A1) is an exclusively neuronal cytochrome P450 enzyme responsible for converting cholesterol into 24S-hydroxycholesterol, which serves as the primary pathway for eliminating cholesterol in the brain. We and others have shown that increased activity of CYP46A1 leads to reduced levels of cholesterol and has a positive effect on cognition. Therefore, we hypothesized that CYP46A1 could be a potential therapeutic target in Niemann-Pick type C (NPC) disease, a rare and fatal neurodegenerative disorder, characterized by cholesterol accumulation in endolysosomal compartments. Herein, we show that CYP46A1 ectopic expression, in cellular models of NPC and in Npc1tm(I1061T) mice by adeno-associated virus-mediated gene therapy improved NPC disease phenotype. Amelioration in functional, biochemical, molecular and neuropathological hallmarks of NPC disease were characterized. In vivo, CYP46A1 expression partially prevented weight loss and hepatomegaly, corrected the expression levels of genes involved in cholesterol homeostasis, and promoted a redistribution of brain cholesterol accumulated in late endosomes/lysosomes. Moreover, concomitant with the amelioration of cholesterol metabolism dysregulation, CYP46A1 attenuated microgliosis and lysosomal dysfunction in mouse cerebellum, favoring a pro-resolving phenotype. In vivo CYP46A1 ectopic expression improves important features of NPC disease and may represent a valid therapeutic approach to be used concomitantly with other drugs. However, promoting cholesterol redistribution does not appear to be enough to prevent Purkinje neuronal death in the cerebellum. This indicates that cholesterol buildup in neurons might not be the main cause of neurodegeneration in this human lipidosis.


Subject(s)
Niemann-Pick Disease, Type C , Mice , Humans , Animals , Niemann-Pick Disease, Type C/genetics , Niemann-Pick Disease, Type C/therapy , Niemann-Pick Disease, Type C/metabolism , Cholesterol 24-Hydroxylase/metabolism , Cholesterol 24-Hydroxylase/therapeutic use , Cholesterol/metabolism , Brain/metabolism , Cerebellum/pathology
9.
Cell Rep Med ; 4(11): 101278, 2023 11 21.
Article in English | MEDLINE | ID: mdl-37944529

ABSTRACT

The choroid plexus (CP) plays a key role in remotely controlling brain function in health, aging, and disease. Here, we report that CP epithelial cells express the brain-specific cholesterol 24-hydroxylase (CYP46A1) and that its levels are decreased under different mouse and human brain conditions, including amyloidosis, aging, and SARS-CoV-2 infection. Using primary mouse CP cell cultures, we demonstrate that the enzymatic product of CYP46A1, 24(S)-hydroxycholesterol, downregulates inflammatory transcriptomic signatures within the CP, found here to be elevated across multiple neurological conditions. In vitro, the pro-inflammatory cytokine tumor necrosis factor α (TNF-α) downregulates CYP46A1 expression, while overexpression of CYP46A1 or its pharmacological activation in mouse CP organ cultures increases resilience to TNF-α. In vivo, overexpression of CYP46A1 in the CP in transgenic mice with amyloidosis is associated with better cognitive performance and decreased brain inflammation. Our findings suggest that CYP46A1 expression in the CP impacts the role of this niche as a guardian of brain immune homeostasis.


Subject(s)
Amyloidosis , Choroid Plexus , Humans , Mice , Animals , Cholesterol 24-Hydroxylase/metabolism , Choroid Plexus/metabolism , Tumor Necrosis Factor-alpha/metabolism , Brain/pathology , Homeostasis/physiology , Mice, Transgenic , Amyloidosis/metabolism , Amyloidosis/pathology
10.
Pharmaceuticals (Basel) ; 16(7)2023 Jun 22.
Article in English | MEDLINE | ID: mdl-37513826

ABSTRACT

Statins are common drugs that are clinically used to reduce elevated plasma cholesterol levels. Based on their solubility, statins are considered to be either hydrophilic or lipophilic. Amongst them, simvastatin has the highest lipophilicity to facilitate its ability to cross the blood-brain barrier. Recent studies have suggested that simvastatin could be a promising therapeutic option for different brain complications and diseases ranging from brain tumors (i.e., medulloblastoma and glioblastoma) to neurological disorders (i.e., Alzheimer's disease, Parkinson's disease, and Huntington's disease). Specific mechanisms of disease amelioration, however, are still unclear. Independent studies suggest that simvastatin may reduce the risk of developing certain neurodegenerative disorders. Meanwhile, other studies point towards inducing cell death in brain tumor cell lines. In this review, we outline the potential therapeutic effects of simvastatin on brain complications and review the clinically relevant molecular mechanisms in different cases.

11.
Int J Mol Sci ; 24(13)2023 Jul 02.
Article in English | MEDLINE | ID: mdl-37446179

ABSTRACT

Cholesterol metabolism dysregulation is associated with several neurological disorders. In Huntington's disease (HD), several enzymes involved in cholesterol metabolism are downregulated, among which the neuronal cholesterol 24-hydroxylase, CYP46A1, is of particular interest. The restoration of CYP46A1 expression in striatal neurons of HD mouse models is beneficial for motor behavior, cholesterol metabolism, transcriptomic activity, and alleviates neuropathological hallmarks induced by mHTT. Among the genes regulated after CYP46A1 restoration, those involved in cholesterol synthesis and efflux may explain the positive effect of CYP46A1 on cholesterol precursor metabolites. Since cholesterol homeostasis results from a fine-tuning between neurons and astrocytes, we quantified the distribution of key genes regulating cholesterol metabolism and efflux in astrocytes and neurons using in situ hybridization coupled with S100ß and NeuN immunostaining, respectively. Neuronal expression of CYP46A1 in the striatum of HD zQ175 mice increased key cholesterol synthesis driver genes (Hmgcr, Dhcr24), specifically in neurons. This effect was associated with an increase of the srebp2 transcription factor gene that regulates most of the genes encoding for cholesterol enzymes. However, the cholesterol efflux gene, ApoE, was specifically upregulated in astrocytes by CYP46A1, probably though a paracrine effect. In summary, the neuronal expression of CYP46A1 has a dual and specific effect on neurons and astrocytes, regulating cholesterol metabolism. The neuronal restoration of CYP46A1 in HD paves the way for future strategies to compensate for mHTT toxicity.


Subject(s)
Huntington Disease , Mice , Animals , Cholesterol 24-Hydroxylase/genetics , Huntington Disease/metabolism , Neurons/metabolism , Cholesterol/metabolism , Homeostasis , Disease Models, Animal , Corpus Striatum/metabolism
12.
Eur J Pharmacol ; 949: 175726, 2023 Jun 15.
Article in English | MEDLINE | ID: mdl-37062503

ABSTRACT

Cholesterol is a key component of the cell membrane that impacts the permeability, fluidity, and functions of membrane-bound proteins. It also participates in synaptogenesis, synaptic function, axonal growth, dendrite outgrowth, and microtubule stability. Cholesterol biosynthesis and metabolism are in balance in the brain. Its metabolism in the brain is mediated mainly by CYP46A1 or cholesterol 24-hydroxylase. It is responsible for eliminating about 80% of the cholesterol excess from the human brain. CYP46A1 converts cholesterol to 24S-hydroxycholesterol (24HC) that readily crosses the blood-brain barrier and reaches the liver for the final elimination process. Studies show that cholesterol and 24HC levels change during neurological diseases and conditions. So, it was hypothesized that inhibition or activation of CYP46A1 would be an effective therapeutic strategy. Accordingly, preclinical studies, using genetic and pharmacological interventions, assessed the role of CYP46A1 in main neurodegenerative disorders such as Parkinson's disease, Huntington's disease, Alzheimer's disease, multiple sclerosis, spinocerebellar ataxias, and amyotrophic lateral sclerosis. In addition, its role in seizures and brain injury was evaluated. The recent development of soticlestat, as a selective and potent CYP46A1 inhibitor, with significant anti-seizure effects in preclinical and clinical studies, suggests the importance of this target for future drug developments. Previous studies have shown that both activation and inhibition of CYP46A1 are of therapeutic value. This article, using recent studies, highlights the role of CYP46A1 in various brain diseases and insults.


Subject(s)
Alzheimer Disease , Cholesterol , Humans , Cholesterol 24-Hydroxylase/metabolism , Cholesterol/metabolism , Alzheimer Disease/metabolism , Brain/metabolism
13.
Curr Drug Metab ; 24(2): 124-130, 2023.
Article in English | MEDLINE | ID: mdl-36748817

ABSTRACT

BACKGROUND: Cytochrome P450 (CYP) 46A1 enzyme is a neuro-specific metabolic enzyme that converts cholesterol to 24-hydroxycholesterol. Inhibition of CYP46A1 activity is of great significance to improve neurodegenerative disorder. OBJECTIVE: The present study aimed to investigate the inhibitory effect of wolfberry dicaffeoylspermidine derivatives on CYP46A1. METHODS: The inhibitory effect of six wolfberry dicaffeoylspermidine derivatives on CYP46A1 activity was investigated using cholesterol as a substrate in vitro. Molecular docking was used to simulate the interactions between wolfberry dicaffeoylspermidine derivatives and CYP46A1. RESULTS: Of these spermidines, lycibarbarspermidines D (1) and A (2) showed highly-selective and strong inhibitory effects on CYP46A1 but not on other human CYP isoforms. Both 1 and 2 exhibit mixed partial competitive inhibition of CYP46A1, with Ki values of 106 nM and 258 nM, respectively. Notably, 1 and 2 had excellent orientations within the active cavity of CYP46A1, and both formed three water-hydrogen bonds with W732 and W765, located near the heme of CYP46A1. CONCLUSION: Compounds 1 and 2 showed a highly-selective and nanomolar affinity for CYP46A1 in vitro. These findings suggested that compounds 1 and 2 could be used as potent inhibitors of CYP46A1 in vitro.


Subject(s)
Lycium , Humans , Cholesterol 24-Hydroxylase/chemistry , Cholesterol 24-Hydroxylase/metabolism , Lycium/metabolism , Molecular Docking Simulation , Cholesterol/metabolism , Cytochrome P-450 Enzyme System
14.
J Lipid Res ; 64(2): 100323, 2023 02.
Article in English | MEDLINE | ID: mdl-36586438

ABSTRACT

CYP46A1 is a CNS-specific enzyme, which eliminates cholesterol from the brain and retina by metabolism to 24-hydroxycholesterol, thus contributing to cholesterol homeostasis in both organs. 2-Hydroxypropyl-ß-cyclodextrin (HPCD), a Food and Drug Administration-approved formulation vehicle, is currently being investigated off-label for treatment of various diseases, including retinal diseases. HPCD was shown to lower retinal cholesterol content in mice but had not yet been evaluated for its therapeutic benefits. Herein, we put Cyp46a1-/- mice on high fat cholesterol-enriched diet from 1 to 14 months of age (control group) and at 12 months of age, started to treat a group of these animals with HPCD until the age of 14 months. We found that as compared with mature and regular chow-fed Cyp46a1-/- mice, control group had about 6-fold increase in the retinal total cholesterol content, focal cholesterol and lipid deposition in the photoreceptor-Bruch's membrane region, and retinal macrophage activation. In addition, aged animals had cholesterol crystals at the photoreceptor-retinal pigment epithelium interface and changes in the Bruch's membrane ultrastructure. HPCD treatment mitigated all these manifestations of retinal cholesterol dyshomeostasis and altered the abundance of six groups of proteins (genetic information transfer, vesicular transport, and cytoskeletal organization, endocytosis and lysosomal processing, unfolded protein removal, lipid homeostasis, and Wnt signaling). Thus, aged Cyp46a1-/- mice on high fat cholesterol-enriched diet revealed pathological changes secondary to retinal cholesterol overload and supported further studies of HPCD as a potential therapeutic for age-related macular degeneration and diabetic retinopathy associated with retinal cholesterol dyshomeostasis.


Subject(s)
Macular Degeneration , Retina , Mice , Animals , 2-Hydroxypropyl-beta-cyclodextrin , Cholesterol 24-Hydroxylase/metabolism , Retina/metabolism , Macular Degeneration/metabolism , Disease Models, Animal , Cholesterol/metabolism
15.
Br J Pharmacol ; 180(4): 401-421, 2023 02.
Article in English | MEDLINE | ID: mdl-36214386

ABSTRACT

BACKGROUND AND PURPOSE: G-protein coupled receptor 17 (GPR17) is an orphan receptor involved in the process of myelination, due to its ability to inhibit the maturation of oligodendrocyte progenitor cells (OPCs) into myelinating oligodendrocytes. Despite multiple claims that the biological ligand has been identified, it remains an orphan receptor. EXPERIMENTAL APPROACH: Seventy-seven oxysterols were screened in a cell-free [35 S]GTPγS binding assay using membranes from cells expressing GPR17. The positive hits were characterized using adenosine 3',5' cyclic monophosphate (cAMP), inositol monophosphate (IP1) and calcium mobilization assays, with results confirmed in rat primary oligodendrocytes. Rat and pig brain extracts were separated by high-performance liquid chromatography (HPLC) and endogenous activator(s) were identified in receptor activation assays. Gene expression studies of GPR17, and CYP46A1 (cytochrome P450 family 46 subfamily A member 1) enzymes responsible for the conversion of cholesterol into specific oxysterols, were performed using quantitative real-time PCR. KEY RESULTS: Five oxysterols were able to stimulate GPR17 activity, including the brain cholesterol, 24(S)-hydroxycholesterol (24S-HC). A specific brain fraction from rat and pig extracts containing 24S-HC activates GPR17 in vitro. Expression of Gpr17 during mouse brain development correlates with the expression of Cyp46a1 and the levels of 24S-HC itself. Other active oxysterols have low brain concentrations below effective ranges. CONCLUSIONS AND IMPLICATIONS: Oxysterols, including but not limited to 24S-HC, could be physiological activators for GPR17 and thus potentially regulate OPC differentiation and myelination through activation of the receptor.


Subject(s)
Oxysterols , Rats , Mice , Animals , Swine , Oxysterols/pharmacology , Cholesterol 24-Hydroxylase , Ligands , Receptors, G-Protein-Coupled/metabolism , Cholesterol , Nerve Tissue Proteins/genetics
16.
J Biol Chem ; 299(1): 102733, 2023 01.
Article in English | MEDLINE | ID: mdl-36423680

ABSTRACT

The cholesterol metabolites, oxysterols, play central roles in cholesterol feedback control. They modulate the activity of two master transcription factors that control cholesterol homeostatic responses, sterol regulatory element-binding protein-2 (SREBP-2) and liver X receptor (LXR). Although the role of exogenous oxysterols in regulating these transcription factors has been well established, whether endogenously synthesized oxysterols similarly control both SREBP-2 and LXR remains poorly explored. Here, we carefully validate the role of oxysterols enzymatically synthesized within cells in cholesterol homeostatic responses. We first show that SREBP-2 responds more sensitively to exogenous oxysterols than LXR in Chinese hamster ovary cells and rat primary hepatocytes. We then show that 25-hydroxycholesterol (25-HC), 27-hydroxycholesterol, and 24S-hydroxycholesterol endogenously synthesized by CH25H, CYP27A1, and CYP46A1, respectively, suppress SREBP-2 activity at different degrees by stabilizing Insig (insulin-induced gene) proteins, whereas 7α-hydroxycholesterol has little impact on SREBP-2. These results demonstrate the role of site-specific hydroxylation of endogenous oxysterols. In contrast, the expression of CH25H, CYP46A1, CYP27A1, or CYP7A1 fails to induce LXR target gene expression. We also show the 25-HC production-dependent suppression of SREBP-2 using a tetracycline-inducible CH25H expression system. To induce 25-HC production physiologically, murine macrophages are stimulated with a Toll-like receptor 4 ligand, and its effect on SREBP-2 and LXR is examined. The results also suggest that de novo synthesis of 25-HC preferentially regulates SREBP-2 activity. Finally, we quantitatively determine the specificity of the four cholesterol hydroxylases in living cells. Based on our current findings, we conclude that endogenous side-chain oxysterols primarily regulate the activity of SREBP-2, not LXR.


Subject(s)
Cholesterol , Liver X Receptors , Oxysterols , Sterol Regulatory Element Binding Protein 2 , Animals , Cricetinae , Mice , Rats , CHO Cells , Cholesterol/metabolism , Cholesterol 24-Hydroxylase , Cricetulus , Homeostasis , Hydroxylation , Liver X Receptors/metabolism , Oxysterols/metabolism , Proteins/metabolism , Sterol Regulatory Element Binding Protein 2/metabolism
17.
Front Ophthalmol (Lausanne) ; 3: 1303649, 2023.
Article in English | MEDLINE | ID: mdl-38983043

ABSTRACT

Cholesterol is an essential component of cellular membranes, crucial for maintaining their structural and functional integrity. It is especially important for nervous tissues, including the retina, which rely on high amounts of plasma membranes for the transmission of the nervous signal. While cholesterol is by far the most abundant sterol, the retina also contains cholesterol precursors and metabolites, especially oxysterols, which are bioactive molecules. Cholesterol lack or excess is deleterious and some oxysterols are known for their effect on neuron survival. Cholesterol homeostasis must therefore be maintained. Retinal glial cells, especially Müller cells, the principal glial cells of the vertebrate retina, provide mechanical, nutritional, and metabolic support for the neighboring neurons. Several pieces of evidence indicate that Müller cells are major actors of cholesterol homeostasis in the retina, as it is known for other glial cells in the brain. This process is based on a close cooperation with neurons, and sterols can be signaling molecules participating in glia-neuron interactions. While some implication of cholesterol in age-related macular degeneration is now recognized, based on epidemiological and laboratory data, evidence for its role in glaucoma is still scarce. The association between cholesterolemia and glaucoma is controversial, but experimental data suggest that sterols could take part in the pathological processes. It has been demonstrated that Müller glial cells are implicated in the development of glaucoma through an ambivalent reactive retinal gliosis process. The early steps contribute to maintaining retinal homeostasis and favor the survival of ganglion cells, which are targeted during glaucoma. If gliosis persists, dysregulation of the neuroprotective functions, cytotoxic effects of gliotic Müller cells and disruption of glia-neuron interactions lead to an acceleration of ganglion cell death. Sterols could play a role in the glial cell response to glaucomatous injury. This represents an understudied but attractive topic to better understand glaucoma and conceive novel preventive or curative strategies. The present review describes the current knowledge on i) sterol metabolism in retinal glial cells, ii) the potential role of cholesterol in glaucoma, and iii) the possible relationships between cholesterol and oxysterols, glial cells and glaucoma. Focus is put on glia-neuron interactions.

18.
Front Pharmacol ; 13: 1046814, 2022.
Article in English | MEDLINE | ID: mdl-36483743

ABSTRACT

CYP46A1 is a brain-specific enzyme responsible for cholesterol homeostasis. Inhibition of CYP46A1 activity serves as a therapeutic target for excitatory neurotoxicity. Sesame is a common medicine and food resource; its component lignans possess various pharmacological activities. In this study, the inhibitory effects of sesame lignans on CYP46A1 activity were investigated. Inhibition kinetics analyses revealed that sesamin and sesamolin produce mixed partial competitive inhibition of CYP46A1, while sesamol produces non-competitive inhibition. Notably, molecular simulations revealed that the sesame lignans have excellent orientations within the active cavity of CYP46A1. Importantly, the sesame lignans had high permeability coefficients and low efflux ratios. Furthermore, sesamin significantly reduced the levels of 24S-hydroxycholesterol in rat plasma and brain tissues, and down-regulated the protein expressions of CYP46A1, NMDAR2A, NMDAR2B, and HMGCR. Collectively, sesame lignans exhibit significant inhibitory effects on CYP46A1 activity, highlighting their potential therapeutic role in treating excitatory neurotoxicity.

19.
Alzheimers Res Ther ; 14(1): 198, 2022 12 29.
Article in English | MEDLINE | ID: mdl-36581878

ABSTRACT

BACKGROUND: Efavirenz is an anti-HIV drug, and cytochrome P450 46A1 (CYP46A1) is a CNS-specific enzyme that metabolizes cholesterol to 24-hydroxycholesterol (24HC). We have previously shown that allosteric CYP46A1 activation by low-dose efavirenz in a transgenic mouse model of Alzheimer's disease (AD) enhanced both cholesterol elimination and turnover in the brain and improved animal performance in memory tests. Here, we sought to determine whether CYP46A1 could be similarly activated by a low-dose efavirenz in human subjects.  METHODS: This pilot study enrolled 5 subjects with early AD. Participants were randomized to placebo (n = 1) or two daily efavirenz doses (50 mg and 200 mg, n = 2 for each) for 20 weeks and evaluated for safety and CYP46A1 target engagement (plasma 24HC levels). A longitudinal mixed model was used to ascertain the statistical significance of target engagement. We also measured 24HC in CSF and conducted a unique stable isotope labeling kinetics (SILK) study with deuterated water to directly measure CYP46A1 activity changes in the brain. RESULTS: In subjects receiving efavirenz, there was a statistically significant within-group increase (P ≤ 0.001) in the levels of plasma 24HC from baseline. The levels of 24HC in the CSF of subjects on the 200-mg dose of efavirenz were also increased. Target engagement was further supported by the labeling kinetics of 24HC by deuterated water in the SILK study. There were no serious adverse effects in any subjects. CONCLUSIONS: Our findings suggest efavirenz target engagement in human subjects with early AD. This supports the pursuit of a larger trial for further determination and confirmation of the efavirenz dose that exerts maximal enzyme activation, as well as evaluation of this drug's effects on AD biomarkers and clinical symptomatology. TRIAL REGISTRATION: ClinicalTrials.gov, NCT03706885.


Subject(s)
Alzheimer Disease , Humans , Alzheimer Disease/metabolism , Brain/metabolism , Cholesterol , Cholesterol 24-Hydroxylase/metabolism , Cholesterol 24-Hydroxylase/therapeutic use , Pilot Projects
20.
Eur J Med Chem ; 240: 114612, 2022 Oct 05.
Article in English | MEDLINE | ID: mdl-35863274

ABSTRACT

Cholesterol 24-hydroxylase (CH24H, CYP46A1) is a cytochrome P450 family enzyme that maintains the homeostasis of brain cholesterol. Soticlestat, a potent and selective CH24H inhibitor, is in development as a therapeutic agent for Dravet syndrome and Lennox-Gastaut syndrome. Herein, we report the discovery of aryl-piperidine derivatives as potent and selective CH24H positron emission tomography (PET) tracers which can be used for dose guidance of a clinical CH24H inhibitor and as a diagnostic tool for CH24H-related pathology. Starting from compound 1 (IC50 = 16 nM, logD = 1.7), which was reported as a CH24H inhibitor with lower lipophilicity, a18F-labeling site (3-fluoroazetidine) was incorporated by structure-based drug design (SBDD) utilizing the co-crystal structure of a compound 1 analog. Subsequent optimization to adjust key parameters for PET tracers, such as potency, lipophilicity, brain penetration, and unbound plasma protein binding, enabled compounds 3f (IC50 = 8.8 nM) and 3g (IC50 = 8.7 nM) as PET imaging candidates. Selectivity of these compounds for CH24H was validated by a brain distribution study using CH24H-WT and KO mice. In non-human primate PET imaging, [18F]3f and [18F]3g showed similar regional uptake in the brain, indicating that these tracers were specific to the CH24H-expressed regions and validated the expression of CH24H in the living brain by different tracers.


Subject(s)
Positron-Emission Tomography , Pyridines , Animals , Brain/diagnostic imaging , Brain/metabolism , Cholesterol 24-Hydroxylase/metabolism , Mice , Piperidines/metabolism , Piperidines/pharmacology , Positron-Emission Tomography/methods , Pyridines/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...